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ABSTRACT 
 2 

Segment-based musculoskeletal models allow the prediction of muscle, ligament and 

joint forces without making assumptions regarding joint degrees of freedom. The 4 

dataset published for the “Grand Challenge Competition to Predict In Vivo Knee Loads” 

provides directly-measured tibiofemoral contact forces for activities of daily living. For 6 

the “Sixth Grand Challenge Competition to Predict In Vivo Knee Loads”, blinded results 

for “smooth” and “bouncy” gait trials were predicted using a customised patient-specific 8 

musculoskeletal model. For an unblinded comparison the following modifications were 

made to improve the predictions: 10 

 further customisations, including modifications to the knee centre of rotation; 

 reductions to the maximum allowable muscle forces to represent known loss of 12 

strength in knee arthroplasty patients; and 

 a kinematic constraint to the hip joint to address the sensitivity of the segment-14 

based approach to motion tracking artefact. 

For validation, the improved model was applied to normal gait, squat and sit-to-stand 16 

for three subjects. Comparisons of the predictions with measured contact forces 

showed that segment-based musculoskeletal models using patient-specific input data 18 

can estimate tibiofemoral contact forces with root mean square errors (RMSEs) of 0.48-

0.65 times body weight (BW) for normal gait trials. Comparisons between measured and 20 

predicted tibiofemoral contact forces yielded an average coefficient of determination of 

0.81 and RMSEs of 0.46-1.01 times BW for squatting and 0.70-0.99 times BW for sit-to-22 
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stand tasks. This is comparable to the best validations in the literature using alternative 

models.  2 

INTRODUCTION 
 4 

An important mechanical function of the musculoskeletal system is to actuate 

and provide motion and, as such, transmit the forces associated with that motion. These 6 

forces induce stresses and deformations in multiple tissues, including the muscles, 

articular surfaces, and ligaments. Musculoskeletal models allow the mechanical function 8 

of the musculoskeletal system to be quantified and analysed. Validation of the outputs 

of musculoskeletal models using in vivo measures is possible through comparison with a 10 

range of measurements, including electrical activity within the muscles [1], tendon 

forces [2], and articular contact force via instrumented implants [3]. As muscle forces 12 

directly produce articular contact forces, instrumented implants provide not only 

explicit validation of these contact forces, but also indirect validation of the muscle 14 

forces that produce the contact forces at the joints.  

Musculoskeletal modelling is a technology that is now reaching maturity with 16 

multiple validation studies demonstrating that articular contact forces can be quantified 

with a high level of accuracy for gait [4-7] and shoulder motions [8]. However, to date 18 

there has been minimal validation for the wider activities of daily living (ADLs) [9,10]. 

Data now exist that will allow such a validation [11].  20 

Most musculoskeletal models are posed in such a way as to assume a fixed 

centre of rotation for each joint [12], or a fixed or defined path of motion [13,14]. These, 22 

therefore, do not take into account any variations in the contact at the joint that may 
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occur as a result of the differing loading conditions during the performance of ADLs, in 

particular at the surfaces of a total knee joint replacement, the contact points of which 2 

move up to 36 mm [15].  

Cleather and Bull have proposed a segment-based musculoskeletal model of the 4 

lower limb, allowing full six degrees of freedom movement of each lower limb segment 

with no joint constraints [16]. Given each segment’s position in generalised coordinates 6 

[17], the model is capable of estimating muscle forces, ligament forces and articular 

contact forces acting upon the segment simultaneously [18]. Since the mechanical 8 

function of muscle elements, ligaments, and articular contact forces exerted upon the 

segments is explicitly described in the force equilibrium, the model can provide 10 

additional insights into the musculoligamentous interaction [18] and functional role of 

biarticular muscles [19].  However, previously only a generic musculoskeletal model was 12 

implemented and the estimated forces were not fully validated.  

The aims of this study, which was undertaken in the framework given in the 14 

“Sixth Grand Challenge Competition to Predict In Vivo Knee Loads”, are to: (1) customise 

a subject-specific segment-based musculoskeletal model and compare tibiofemoral 16 

outcomes for two different variations of gait; (2) assess the influence of personalized 

musculoskeletal geometry data, strength data, and appropriate kinematic constraint on 18 

tibiofemoral loading and (3) validate outcomes for other ADLs, namely ‘normal’ gait, 

rising from a chair, and squatting. For the first aim a set of blinded contact force 20 

predictions was generated without knowledge of the measured contact forces. After the 

contact force measurements were released as part of the competition, a set of 22 
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unblinded predictions was generated with some modifications to the model. Therefore, 

this paper comprises two parts: the first part presents methods, results and discussion 2 

for the unblinded predictions; the second part presents methods, results and discussion 

for the unblinded predictions, performing a wide validation based on the database of 4 

“Grand Challenge Competition to Predict In Vivo Knee Loads”.  A final conclusion section 

summarises both sets of predictions.  6 

 

METHODS FOR BLINDED PREDICTIONS 8 

Experimental Data 

All experimental data used in this blinded study were obtained from the 10 

publically available database that was released as part of the sixth “Grand Challenge 

Competition to Predict In Vivo Knee Loads” [11]. The data for the blinded predictions 12 

were obtained from a single male subject (DM, age: 83 years, height: 172 cm, mass: 70 

kg) who had an instrumented Generation II tibial component (eTibia) implanted as part 14 

of a total knee replacement on the right knee [20]. Available data that were used 

included pre- and post-operative computed tomography (CT) scans, implant component 16 

and bone models of the implanted leg, optical motion capture data, and ground reaction 

forces. 18 

Two variations of overground gait were analysed, “bouncy” and “smooth”, which 

reflect different magnitudes of superior-inferior translation of the pelvis [21]. In bouncy 20 

gait this translation is higher than in smooth gait. The bouncy gait cycle came from the 

DM_bouncy5 trial and had a start time of 1.876 s and an end time of 3.075 s. The 22 
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smooth gait cycle came from the DM_smooth1 trial and had a start time of 2.53 s and 

an end time of 3.775 s. 2 

 

Musculoskeletal Model 4 

A custom-written three-dimensional musculoskeletal model of the lower limb, 

FreeBody [17], was used for this study. FreeBody is a publicly available musculoskeletal 6 

model of the lower limb (available at www.msksoftware.org.uk) that is packaged as a 

MATLAB (The Mathworks Inc., Natick, USA) application. It consists of five rigid segments 8 

– foot, shank, patella, thigh, and pelvis – articulated by four joints – ankle, tibiofemoral, 

patellofemoral joint, and hip. The computational approach adopted within the software 10 

is distinct from the majority of lower limb models described within the literature 

[7,12,22-24].  Firstly, the model is posed entirely on the basis of segmental motion, 12 

rather than considering joint motion. Captured marker trajectories directly define 

segmental motions. The segmental kinematic data and measured ground reaction forces 14 

are used in an inverse dynamic analysis. The inverse dynamic analysis is implemented 

using quaternion algebra and wrench notation to describe the kinematics [17,26]. 16 

Secondly, muscle forces, ligament forces and articular contact forces that act upon each 

segment and contribute to its motion are solved simultaneously in the optimisation 18 

stage, using an objective function minimising the sum of cubed muscle stresses [1].  A 

total of 22 equations of motion are constructed:  18 equations describing the motions of 20 

the foot, shank and thigh segment allowing six degrees of freedom for each segment; 

three equations describing three linear motions of the patella; and one equation 22 
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describing the ratio between the forces of the quadriceps muscles and the patella 

ligament [16]. On the shank segment, the tibiofemoral joint reaction force is 2 

compartmentalised into a medial and a lateral component by the definition of contact 

points of the two femoral condyles. The effect of medial and lateral contact forces on 4 

the segment’s motion is hence explicitly described in the equations of motion. The 

muscle forces were constrained using upper bounds determined by multiplying 6 

published physiological cross-sectional areas of each muscle [27] by an assumed 

maximum muscle stress (31.39 N/cm2) [28].  8 

The subject’s anatomical model consists of 164 line elements representing 38 

different lower limb muscles and the patellar ligament following topology from the 10 

literature [27]. Muscle origin, via, and insertion points, along with anatomic landmarks, 

joint centres (defined as different points relative to the proximal and distal segments, 12 

free to move relative to each other), and contact points between the femur and tibial 

plateau were manually digitized from the CT scans provided using Mimics (v. 16.0, 14 

Materialise, Leuven, Belgium). For points on the foot and pelvis that were not visible on 

the CT scans, bones of subjects with similar anthropometry were registered to the 16 

images and the points were digitised on these registered surfaces. Cylindrical wrapping 

objects, as described by Klein Horsman et al. [27], were also defined from the CT scans 18 

to represent the underlying anatomical structure of the femoral condyles and superior 

pubic ramus of the pelvis.  20 

Raw motion capture data and synchronised ground reaction force data were 

filtered using a fourth-order Butterworth low pass filter with a cut-off frequency of 4 Hz.  22 
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To match the anatomical model to the dynamic trials, motion capture data of a static 

trial with the subject in a neutral standing position was required. A static trial with the 2 

feet pointing forward (DM_staticfor1) was selected. The segment’s local coordinate 

system was defined using anatomical marker data recorded in the trial, including marker 4 

data on the anterior/posterior superior iliac spine, medial/lateral femoral epicondyle, 

medial/lateral malleolus and the second metatarsal. Unfortunately, the trial was missing 6 

the marker on the medial femoral epicondyle. The marker’s position in the static trial 

was therefore reconstructed using the average of the point determined using two 8 

prediction methods which both minimised the distance between the tibial plateau and 

femoral epicondyles. In the first method, the segments from a second static trial 10 

(DM_staticout2) were aligned to the chosen neutral trial using the algorithm described 

by Söderkvist et al. [29]. In the second method, the positions of the thigh markers were 12 

calculated by minimising discrepancies between the relative positions of the hip centre 

of rotation, patellar marker, and femoral epicondyle positions obtained from the frame 14 

within the bouncy gait dynamic trial in which the leg was most straight. Furthermore, 

the anatomical landmark of the second metatarsal in the anatomical model was re-16 

estimated in order to accommodate the right toe marker on the shoe in the static and 

dynamic trials.  18 

 

Model Evaluation 20 

Medial, lateral, and total tibiofemoral articular contact forces were calculated. 

Results were interpolated using cubic splines and resampled so values could be reported 22 
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in 1% increments over the gait cycle.  Differences between the results from FreeBody 

and the experimental measurements were quantified by the root mean squared error 2 

(RMSE) and the coefficient of determination (R2). 

 4 

RESULTS FOR BLINDED PREDICTIONS 
 6 

Tibiofemoral contact force magnitudes during smooth and bouncy gait for 

medial, lateral, and total tibiofemoral contact forces were calculated (Fig. 1).  RMSE and 8 

R2 values when compared to directly measured data are listed in Table 1.  In both gait 

variations the R2 value of the total error is higher than that on either side separately. 10 

Smaller total errors were found in the lateral compartment, with RMSE values of 0.46 

and 0.27 times body weight (BW) for smooth and bouncy gait, respectively. The RMSE 12 

values on the medial side were 0.56 and 0.60 times BW for smooth and bouncy gait, 

respectively. On the lateral side this was predominantly due to an overprediction of the 14 

second peak of the gait cycle, which reached 70% of the measured load in the smooth 

gait trial.  Errors in the medial compartment were more consistent across the cycles. The 16 

RMSE of the total force was 0.77 and 0.62 times BW for smooth and bouncy gait 

respectively.  18 

 

DISCUSSION OF BLINDED PREDICTIONS 20 

 

Predicted forces consistently exceeded those measured in vivo with an RMSE of 22 

0.69 times BW on average – as has been the case with other blinded predictions in the 
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literature. Previous models have predicted tibiofemoral contact forces with an RMSE of 

0.69 [30], 0.66 [31], 0.67 [32] and 0.48 [33] times BW during gait. The timings of peak 2 

contact forces were correctly identified in both gait trials; however, the values of the 

peak contact forces were overpredicted with a maximum error of 0.66 times BW on the 4 

second peak of stance during gait. Other authors have reported errors in peak value 

estimation ranging between 0.35 and 0.80 times BW [7,31, 34-35]. 6 

The greater agreement, as quantified by the R2 value, between measured and 

calculated total contact forces, when compared to those in either compartment 8 

separately, indicated that the distribution of the contact forces between the medial and 

lateral sides could be improved.  10 

Muscle geometries were modelled as accurately as possible using manual 

digitisation of the CT scan in order to create the subject-specific anatomical model. 12 

Nevertheless, prediction results were also influenced by the reconstruction of the static 

marker data which was needed to map the dynamic kinematic data to the anatomical 14 

model. As the static trial was missing the medial femoral condyle marker, it was 

necessary to fit marker data from the bouncy gait trial to recreate the complete static 16 

dataset. Despite using rigid body registration [29], this procedure may still have 

introduced errors into the kinematic parameters. Calculation of inverse kinematics using 18 

a segment-based approach is sensitive to skin motion artefact [36] and therefore it is 

recommended that, in some cases, consideration is given to applying additional 20 

kinematic constraints. This is considered in the next section of this manuscript. 
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Muscle strengths were taken from a generic dataset based on the physiological 

cross sectional area (PCSA) [27]. As muscle strength reduces with age in ways that do 2 

not scale with PCSA [37] and do not scale for all muscles equally [38], the model could 

be improved through the incorporation of subject-specific strength measures that are 4 

likely to change the medio-lateral force distribution. 

 6 

MODIFIED METHODS FOR UNBLINDED PREDICTIONS 
 8 

Experimental Data 

The modified model described below was tested on a series of three subjects 10 

(DM, PS, JW; age: 84 ± 1.7 years, height: 173 ± 6 cm, weight: 70.6 ± 4.2 kg) from the 

fourth through sixth “Grand Challenge Competition to Predict In Vivo Knee Loads” [11] 12 

for three ADLs: overground gait, sit-to-stand, and squatting. All three subjects had an 

instrumented total knee replacement; two subjects had the instrumented Generation II 14 

tibial component (eTibia) [20], while the third had an instrumented Generation I tibial 

component (eKnee) [39].  Once again, available data included CT scans, optical motion 16 

capture data, and ground reaction forces. Isometric strength data were available for two 

of the three subjects. 18 

Kinematic data for gait trials were extracted by manually selecting sequential 

heel strikes on the force plate from the available c3d files. For the sit-to-stand task, 20 

cycles started with the subject in an upright seated position just prior to the forward 

motion of the upper body that initiated the motion. Each cycle ended with the subject in 22 

an upright seated position, following a backward movement of the upper body. For the 
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squatting task, a cycle was defined between two upright standing positions; the start of 

the motion was characterised by the first bend of the knee from a neutral position and 2 

the end by the return to a static neutral position. 

The number of available trials for each subject and each activity varied (DM: 3 4 

gait, 3 sit-to-stand, 2 squatting; PS: 6 gait, 2 sit-to-stand, 4 squatting; JW: 5 gait, 4 sit-to-

stand, 3 squatting); the mean results for each task were calculated at each percentage 6 

of the cycle. 

 8 

Musculoskeletal Model 

Several modifications were made to improve the predictions from the blinded 10 

results.  These included the following customisations: modifications to the knee centre 

of rotation; the locations of markers in the static trial; and reduction of the maximum 12 

allowable muscle forces. Additionally, in order to address the sensitivity of the segment-

based approach to motion tracking artefact, a kinematic constraint to the hip joint 14 

centre was applied. 

The tibiofemoral joint centre, as originally determined from the CT scans, was 16 

located about 7 mm lateral, inferior and anterior to the mid-point of the femoral 

epicondyles as a centre of a sphere best approximating the curvature of the bone at the 18 

femoral condyles. However, subject DW’s anteroposterior radiographs showed a valgus 

tibiofemoral alignment. This could also be observed in the static trial marker data, but 20 

could not be determined in the anatomical dataset due to image artefacts in the CT 

caused by the implant. The valgus angulation of 174° in the frontal plane was used to 22 
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alter the definitions of the anatomical dataset. Therefore, the knee centre was re-

estimated in order to ensure correct leg alignment. Compared to the estimation of the 2 

knee centre used for the blinded results, the position was moved 13.6 mm toward the 

medial, proximal and posterior direction.  4 

With the assistance of visualisation tools within FreeBody, marker data on the 

subject’s shank and thigh collected during the static trial were further adjusted 6 

iteratively in order to better match their placements relative to those in the first frame 

of the gait trials. This resulted in a reduction in the discrepancy of marker placements 8 

between the static trial and the first frame of the gait trials from up to 5.2 mm to 1.5 

mm.  10 

It has been shown that the strength of both flexor and extensor muscles is 

reduced for patients following total knee arthroplasty [40]. When compared with a 12 

group of control subjects from the literature (age: 62±7.3 years; height: 168.8±11.6 cm; 

weight 82.4±18.3 kg; BMI: 28.9±5.9 kg/m2) [40] isometric extension and flexion peak 14 

torques for DM were found to be 30.3% and 50.3% lower, respectively (Table 2). In 

order to represent the patient-specific reductions of muscle strength, coefficient factors 16 

were introduced into the cost function for the knee flexors and extensors 

𝑐𝑒 ∑ (
𝑓𝑖

𝑓𝑖𝑚𝑎𝑥
)
3

𝑖𝜖𝑀𝑒
+ 𝑐𝑓 ∑ (

𝑓𝑖

𝑓𝑖𝑚𝑎𝑥
)
3

𝑖𝜖𝑀𝑓
+ ∑ (

𝑓𝑖

𝑓𝑖𝑚𝑎𝑥
)
3

𝑖𝜖𝑀\(𝑀𝑒∪𝑀𝑓)    (1) 18 

 

where 𝑓𝑖  and 𝑓𝑖𝑚𝑎𝑥are the muscle and maximal muscle force, respectively; ce is the 20 

coefficient factor for the knee extensor; cf is the coefficient factor for the knee flexors; 

M is the list of all muscles; Me is the index for the knee extensors, which included rectus 22 
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femoris, vastus medialis, vastus laterals, and vastus intermedius; Mf is the index for the 

knee flexors, which included gastrocnemius, biceps femoris (long head), 2 

semitendinosus, semimembranosus, sartorius, gracilis, popliteus, and plantaris. 

In the segment-based model, the positions and orientations of each segment 4 

were determined independently, based upon the trajectories of the markers on each. 

Modelled as a fixed point in the adjacent distal segment, each joint has full six degrees 6 

of freedom with respect to its proximal segment. However, for those subjects for which 

no joint translation is observed or possible, for example in patients with a fully-8 

functioning hip arthroplasty, then constraining joint translation provides the 

opportunity to reduce kinematic measurement errors due to skin motion artefact. 10 

Therefore, a kinematic constraint was applied to the hip joint, retaining three rotational 

degrees of freedom only.  This was used for the single subject who had hip joint 12 

arthroplasty.  

In each subject-specific anatomical dataset, a local pelvic coordinate frame was 14 

constructed in terms of markers on anterior and posterior superior iliac spines. The hip 

centre of rotation, determined from the CT scan, was then transformed within this local 16 

frame. In order to model the hip joint arthroplasty of subject JW, a recipient of hip 

arthroplasty, the joint was restricted to have three rotational degrees of freedom; in 18 

each dynamic trial, the position of the thigh segment, as provided from the optical 

motion capture, was translated such that the femoral head was aligned with the hip 20 

centre within the pelvic frame.  

 22 
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Model Evaluation 

 2 

All predicted results were rescaled to a time interval from 0 to 100% using cubic 

spline interpolation. Differences between the predicted forces and the experimental 4 

measurements over each cycle were evaluated by calculating the root mean squared 

error (RMSE) and the coefficient of determination (R2). The peak values of articular 6 

contact forces were compared as a discrete assessment.   

Further, linear envelopes of the EMG data were computed through high-pass 8 

filtering, rectification, lower-pass filtering and normalisation of the magnitude following 

the procedure described in Arnold et al. [41]. Predicted muscle forces of the blinded and 10 

unblinded models were compared with the linear envelopes using a threshold method 

[42, 43]: a muscle is defined as active if the mean EMG value is above 20% of the 12 

maximal EMG envelope for the period of one of the seven gait phases described in 

Giroux et al. [42].  14 

 

RESULTS FOR UNBLINDED PREDICTIONS 16 

 

Tibiofemoral contact force magnitudes during smooth and bouncy gait for 18 

medial, lateral, and total tibiofemoral contact forces were calculated using the modified 

model (Fig. 2). In comparison with the blinded results, predicted values for both 20 

compartments decreased resulting in an improvement in RMSE and R2 values (Table 3), 

particularly for the bouncy gait trial. 22 
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A good agreement with the muscle active/inactive states was found for 

predicted muscle forces crossing the ankle (soleus and tibialis anterior), knee 2 

(semimembranosus, vastus medialis/laterial and gastrocnemius) and hip (adductor 

brevis, and gluteus maximus) (Fig. 3). Timing inconsistencies between the predicted 4 

muscle forces and the EMG signals were observed for several muscles, for example, 

rectus femoris and sartorius: the rectus femoris produced a peak force in the initial 6 

swing phase, differing from the corresponding inactive EMG state; the sartorius was 

seen to lag behind its EMG envelope as it reached the peak force at the swing phase.   8 

After the adjustment of muscle strength for knee flexors and extensors, 

predicted muscle forces were lower, e.g., for semimembranosus and biceps femoris in 10 

the loading response phase (0-17% of stance), and gastrocnemius medialis, sartorius 

and gracilis between the mid-stance to the mid-swing phase. This decreased the 12 

resultant tibiofemoral articular contact forces in the corresponding phases, especially in 

the medial compartment (Fig.2).   14 

Results for normal gait, squatting, and sit-to-stand trials are presented in Tables 

4-5.  For normal gait, the experimental measurements revealed a double-peak total 16 

force during the gait cycle. The model over-estimated or under-estimated the peak 

values; for the first peak the error was 0.41 times BW on average and for the second 18 

peak the error reached 1.82 times BW for subject JW. During the squatting cycle, the 

measured contact force was greater in leg flexion than leg extension. The model 20 

predicted the pattern well with an R2 value of 0.83 on average but consistently over-

estimated the force magnitudes. During the sit-to-stand cycle, there are two peaks 22 
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observed for the measured contact forces. The model showed a high accuracy in 

predicting the pattern with an average R2 value of 0.80 but errors in predicting the peak 2 

values. On average, the greatest agreement between measured and predicted total 

forces was in normal gait with an average RMSE of 0.54 times BW; the greatest 4 

differences in peak forces were observed in the sit-to-stand task, with errors of up to 2 

times BW for subject PS. 6 

 

DISCUSSION OF UNBLINDED PREDICTIONS 8 

 

The first aim of this study was to model two different variations of gait, based on 10 

publically available datasets provided by the “Grand Challenge Competition to Predict In 

Vivo Knee Loads”.  Available data included CT imaging, kinematic data, kinetic data and 12 

strength data, which were used to customise subject-specific input to a segment-based 

musculoskeletal model. This allowed the simultaneous prediction of articular contact 14 

and muscle forces.  Subject-specific anatomical geometry was constructed based on 

manual digitization of CT scans, and muscle strength was obtained based on 16 

measurement of maximal knee joint torques. A three-dimensional lower limb 

musculoskeletal model [16] was updated by implementing the subject-specific 18 

instantiation of anatomical data. For unblinded prediction an average R2 value of 0.65 

was obtained; however, the force magnitudes were overestimated with an average 20 

RMSE of 0.35 times BW. 

The second aim of this study was to assess the influence of customised 22 

musculoskeletal input data on tibiofemoral loading, including the geometry data, 
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strength data and appropriate kinematic constraint. The most significant improvement 

in unblinded predictions was achieved by accounting for subject DM’s valgus 2 

tibiofemoral alignment. This allowed the missing marker on the medial epicondyle to be 

virtually replaced more accurately.  The resultant correction to the position of the 4 

tibiofemoral joint centre of rotation in the dynamic trials positively influenced the 

lateral force prediction. In particular, in the smooth gait trial the overprediction of the 6 

second peak that was observed in the blinded predictions was removed. The subject-

specific reductions of muscle strength decreased the muscle forces, resulting in lower 8 

tibiofemoral forces. This was most evident in the reduction of the RMSE and increase in 

R2 in the medial compartment during both smooth and bouncy gait trials.  Several 10 

musculoskeletal modelling studies have reported an improvement in tibiofemoral 

contact force estimations by implementing subject-specific anatomical geometry 12 

parameters [14,44]. The study of DeMers et al. [45] has reported that by prohibiting 

knee muscle activations tibiofemoral forces could be decreased from over to 14 

underestimation, especially in the second peak of a gait cycle. Similar to those findings, 

our study demonstrated that the predictions in the unblinded model were significantly 16 

improved when subject-specific input information was fully applied.  

Hip joints with three rotational degrees of freedom are often used in lower limb 18 

musculoskeletal models [43, 44]. This study indicated that this simplification should be 

subject-dependent. The additional kinematic constraints on the hip joint did not 20 

substantially alter the loading predictions at the knee joint, especially for subjects with a 

normal hip joint (Table 6). This revealed that the addition of such constraints is 22 
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appropriate for subjects for whom the joint translations are measured to be negligible, 

or for whom joint translation are simply not possible, for example in a constrained hip 2 

joint replacement, or in a reverse shoulder prosthesis. We do not propose adding such a 

constraint for other cases as hip joint distraction can, in some cases, be present in gait 4 

and other motions [46, 47].  

Our third aim was to evaluate the performance of our subject-specific 6 

musculoskeletal model for a wider range of ADLs. Normal gait predictions showed 

similar error ranges to those obtained from smooth and bouncy gait trials with RMSEs 8 

for total tibiofemoral force of between 0.48 and 0.65 times BW (Table 4). The forces 

during squatting (0.46 to 1.01 times BW) and sit-to-stand (0.70 to 0.99 times BW) were 10 

overestimated when compared with the measured tibiofemoral contact forces, with 

RMSE for the total force between 0.46 and 1.01 times BW (Table 4). These results were 12 

consistent with the results from the conventional joint-based musculoskeletal modelling 

simulations, which reported peak forces of up to 3.9 times BW for gait and forces in the 14 

range of 2.4 to 4.9 times BW or even higher during other ADLs [9,48-50]. As the 

segment-based model can predict tibiofemoral force patterns with an average R2 value 16 

of 0.77 and the errors in the tibiofemoral forces show comparable magnitudes, the 

presented modelling approach provides a new possibility for studying the mechanical 18 

function of the musculoskeletal system.   

This study has a number of limitations. Firstly, each subject’s PCSAs were 20 

identical to those determined in a generic dataset based on a cadaver dissection [27]. 

The study of Handsfield et al. [51] had shown that muscle volumes obtained from 22 
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cadavers did not match well to muscle volumes collected in vivo which would have an 

important influence on the maximum potential muscle forces presented. An appropriate 2 

scaling through the muscle PCSAs should be incorporated in the model in order to better 

account for the anatomical variability. Second, discrepancies in the timing of muscle 4 

active states compared to the EMG signal were observed from several predicted 

muscles forces. As muscle activation patterns of patients following total knee 6 

arthroplasty may not coincide with activation patterns of healthy patients [43], the cost 

function minimising the sum of cubed muscle stresses may not be appropriate for all 8 

subjects.  Errors of up to 1.82 times BW were obtained for predictions of the second 

peak value of tibiofemoral articular contact force during normal gait. This would limit 10 

the model’s clinical applicability in, for example, predicting the wear of joint 

replacements, where the absolute values of load are key. In DeMers et al. [45] similar 12 

over-predictions were found when using an objective function minimising the sum of 

squared muscle activations; these peaks can be reduced by changing the objective 14 

function. Incorporating the EMG data quantitatively in the optimization stage seems to 

be able to better predict muscle activation patterns for symptomatic subjects and hence 16 

further improve the tibiofemoral force estimations [14]. Third, as the ligaments’ 

attachment sites could not be determined accurately from the subjects’ CT scans, they 18 

were excluded in our subject-specific anatomical model. Ligaments play an important 

role in maintaining the stability of the knee joint [44]; therefore, including ligament 20 

models in the future would be beneficial for understanding the interaction mechanism 
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between the muscle forces, ligament forces and artificial contact forces around the 

knee.  2 

 

CONCLUSIONS 4 

In conclusion, this study shows that taking patient-specific geometry data, 

strength data, kinematic and kinetic data as the input to a segment-based 6 

musculoskeletal model, contact forces can be estimated for gait and other ADLs such as 

squatting and sit-to-stand. From the comparison between blinded and unblinded 8 

results, the segment-based musculoskeletal model was identified to be sensitive to a 

number of factors: the patient-specific anatomical geometry, such as varus/valgus leg 10 

alignment and medio-lateral contact points; maximum allowable muscle forces; and 

marker trajectories in the static and dynamic trials. As segment-based musculoskeletal 12 

modelling can predict muscle and joint forces as accurately as conventional joint-based 

musculoskeletal simulations it provides a new opportunity to study the mechanical 14 

function of the musculoskeletal system. 
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NOMENCLATURE 
 2 

AdB Adductor brevis 

ADL Activity of daily living 

BW Body weight 

BF Biceps femoris long head 

CT Computed tomography 

EMG Electromyography 

GasMed Gastrocnemius medialis 

GMax Gluteus maximus 

Gra Gracilis 

MRI Magnetic resonance imaging 

PCSA  Physiological cross sectional area 

R2 Coefficient of determination 

RF Rectus femoris 

RMSE Root mean squared error 

Sar Sartorius 

SemM Semimembranosus 

Sol Soleus 
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TibA Tibialis anterior 

VasMed Vastus medialis 

VasLat Vastus lateralis 
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Figure Captions List 
 2 

Fig. 1 Blinded model predictions of medial, lateral and total tibiofemoral 

contact forces compared with in vivo measurements obtained during 

two different gait trials 

Fig. 2 Unblinded model predictions of medial, lateral and total tibiofemoral 

contact forces compared with in vivo measurements obtained during 

two different gait trials 

Fig.3 Comparison of the predicted muscle forces in blinded and unblinded 

models and the corresponding active/inactive state for muscles of 

adductor brevis (AdB), gluteus maximus (GMax), gracilis (Gra), 

semimembranosus (SemM), biceps femoris long head (BF), vastus 

medialis (VasMed), vastus lateralis (VasLat), rectus femoris (RF), 

gastrocnemius medialis (GasMed), sartorius (Sar), tibialis anterior (TibA) 

and soleus (Sol) 
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Table Caption List 
 2 

Table 1 Comparison between in vivo and blinded predictions of tibiofemoral 

contact forces during a single gait cycle for two gait trials 

Table 2 Peak isometric extension and flexion torques for subjects with total knee 

arthroplasty and matched controls from Silva et al. [34] and those for 

subjects JW and DM 

Table 3 Comparison between in vivo and predicted tibiofemoral contact forces 

during a single gait cycle for smooth1 and bouncy5 gait trials following 

model modification 

Table 4 Comparison between in vivo and predicted tibiofemoral contact forces 

during normal gait, squatting, and sit-to-stand trials averaged for each 

subject over all trials 

Table 5 Comparison between predicted and measured peak forces in the 

tibiofemoral joint in normal gait, squatting, and sit-to-stand trials 

averaged for each subject over all trials 

Table 6 Comparison between predicted and measured tibiofemoral contact 

forces in smooth, bouncy and normal gait trials for 3 subjects  
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 2 

Fig. 1 Blinded model predictions of medial, lateral and total tibiofemoral contact forces 
compared with in vivo measurements obtained during two different gait trials 4 

 
  6 
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Table 1. Comparison between in vivo and blinded predictions of tibiofemoral contact 
forces during a single gait cycle for two gait trials 2 

 

Gait Trial Medial Lateral Total 

 RMSE 
(N) 

R2 RMSE 
(N) 

R2 RMSE 
(N) 

R2 

Smooth1 383 0.56 315 0.50 526 0.69 

Bouncy5 413 0.44 186 0.53 427 0.74 

 4 
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Table 2. Peak isometric extension and flexion torques for subjects with total knee 2 

arthroplasty and matched controls from Silva et al. [40] and those for subjects JW and 
DM 4 

 

 Isometric extension 
peak torque 

(Nm) 

Isometric flexion 
peak torque 

(Nm) 

Control subjects 113 50 

Total knee arthroplasty 92 31 

JW 96 51 

DM 79 25 

 6 

 
 8 
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Fig. 2 Unblinded model predictions of medial, lateral and total tibiofemoral contact 2 

forces compared with in vivo measurements obtained during two different gait trials 
 4 
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Table 3. Comparison between in vivo and predicted tibiofemoral contact forces during a 
single gait cycle for smooth1 and bouncy5 gait trials following model modification 2 

 

 Medial Lateral Total 

 RMSE 
(N) 

R2 RMSE 
(N) 

R2 RMSE 
(N) 

R2 

Smooth1 287 0.75 262 0.31 429 0.62 

Bouncy5 242 0.79 163 0.74 320 0.82 

 4 
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Fig. 3 Comparison of the predicted muscle forces in blinded and unblinded models and 4 

the corresponding active/inactive state for muscles of adductor brevis (AdB), gluteus 
maximus (GMax), gracilis (Gra), semimembranosus (SemM), biceps femoris long head 6 

(BF), vastus medialis (VasMed), vastus lateralis (VasLat), rectus femoris (RF), 
gastrocnemius medialis (GasMed), sartorius (Sar), tibialis anterior (TibA) and soleus (Sol).  8 
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Table 4. Comparison between in vivo and predicted tibiofemoral contact forces during 
normal gait, squatting, and sit-to-stand trials averaged for each subject over all trials  2 

 

Task Subject Medial Lateral Total 

RMSE 
(BW) 

R2 RMSE 
(BW) 

R2 RMSE 
(BW) 

R2 

Normal 
gait 

JW 0.252 0.844 0.469 0.516 0.653 0.538 

PS 0.480 0.719 0.274 0.301 0.491 0.727 

DM 0.506 0.798 0.460 0.278 0.484 0.748 

Squat JW 0.252 0.854 0.741 0.885 0.861 0.858 

PS 0.593 0.440 0.220 0.835 0.463 0.765 

DM 0.660 0.859 0.412 0.230 1.010 0.873 

Sit-to-
stand 

JW 0.146 0.913 0.773 0.705 0.810 0.970 

PS 0.751 0.240 0.287 0.693 0.703 0.525 

DM 0.520 0.874 0.527 0.488 0.991 0.897 

 4 
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Table 5. Comparison between predicted and measured peak forces in the tibiofemoral 
joint in normal gait, squatting, and sit-to-stand trials averaged for each subject over all 2 

trials 
 4 

Task Subject Peak Mean difference in peak force (BW) 

medial lateral total 

Normal 
gait 

JW 1st -0.12 0.28 -0.29 

2nd 0.33 1.47 1.82 

PS 1st -0.95 1.49 -0.5 

2nd -0.78 3.41 0.23 

DM 1st -0.71 -0.37 0.45 

2nd 0.23 -0.89 -0.72 

Squat JW  0.62 0.94 1.55 

PS  0.76 0.25 0.44 

DM  0.64 0.27 1.03 

Sit-to-
stand 

JW 1st 0.34 0.97 1.02 

2nd 0.17 1.15 1.33 

PS 1st 2.00 0.85 1.91 

2nd 2.00 0.85 1.91 

DM 1st 0.50 0.61 1.10 

2nd 0.59 0.64 1.32 
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Table 6. Comparison between predicted and measured tibiofemoral contact forces in 
smooth, bouncy and normal gait trials for 3 subjects.  2 

 

Subject Trial 

6DOFs hip model 3DOFs hip model 

Medial Lateral Medial Lateral 

RMSE 
(N) 

R2 
RMSE 

(N) 
R2 

RMSE 
(N) 

R2 
RMSE 

(N) 
R2 

DM 

Smooth 
gait 

287 0.75 262 0.31 301 0.79 416 0.22 

Bouncy 
gait 

242 0.79 163 0.74 243 0.79 159 0.75 

Normal 
gait 

328 0.86 294 0.27 368 0.88 304 0.46 

PS 
Normal 

gait 
341 0.80 152 0.60 386 0.79 174 0.36 

JW 
Normal 

gait 
325 0.72 262 0.67 178 0.82 276 0.59 


