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Abstract 

To assess the effectiveness of breast support  previous studies monitored breast kinematics 

and kinetics, subjective feedback, muscle activity (EMG), ground reaction forces (GRFs), 

and physiological measures in isolation. Comparing these variables within one study will 

establish the key performance variables that distinguish between breast supports during 

activities such as running.  This study investigates the effects of changes in breast support on 

biomechanical, physiological and subjective measures during running.  Ten females (34D) 

ran for 10 min in high and low breast supports, and for 2 min bare breasted (2.8 m·s
-1

).  

Breast and body kinematics, EMG, expired air, and heart rate were recorded. GRFs were 

recorded during 10 m overground runs (2.8 m·s
-1

) and subjective feedback obtained after 

each condition.  Of the 62 variables measured, 22 kinematic and subjective variables were 

influenced by changes in breast support.  Willingness to exercise, time lag, and superio-

inferior breast velocity were most affected.  GRFs, EMG and physiological variables were 

unaffected by breast support changes during running.  Breast displacement reduction, 

although previously advocated, was not the most sensitive variable to breast support changes 

during running.  Instead breast support products should be assessed using a battery of 

performance indicators, including the key kinematic and subjective variables identified here. 
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Introduction 

Due to the weak intrinsic support in the breast, physical activity such as running causes 

independent breast movement.  This breast movement can result in a number of negative 

consequences including breast pain (Gehlsen & Albohm, 1980), embarrassment (Burnett, 

White & Scurr, 2014), changes in ground reaction forces (GRFs) (White, Scurr & Smith, 

2009), changes in breathing mechanics (White, Lunt & Scurr, 2011), and altered running 

technique (White, Mills & Scurr, 2012). Due to these negative consequences, previous 

research has recommended the use of external breast support.  External breast support, such 

as sports bras, has been reported to reduce breast pain (Brown, White, Brasher & Scurr, 

2013), reduce embarrassment (McGhee & Steele, 2010), and alter performance variables 

(Shivitz, 2002; White, Mills & Scurr, 2012) during running.  Despite these 

recommendations, recent research has shown that only 32% of UK adult females always 

wore a sports bra during physical activity (Brown, Burnett & Scurr, 2015). 

   

With the majority of UK women not engaging in sports bra use during physical activity, 

understanding factors that are influenced by changes in breast support will not only 

determine the impact of such choices, but will also establish the key performance variables 

affected by such garments.  Whilst individual studies may have considered a variety of 

variables influenced by changes in breast support, these have generally been investigated in 

isolation. We have yet to understand the key performance variables that distinguish between 

levels of breast support during activities such as running and as yet, there is no industry 

standard to determine the performance of breast support garments  Such an investigation 

would need to use breast support conditions that are known to differ. Previous literature has 

reported substantial differences in breast biomechanics and breast comfort during running in 

no bra, everyday bras and sports bras (Mills, Loveridge, Milligan, Risius & Scurr, 2014).   

 

To determine the key performance variables that distinguish between changes in breast 

support, we then need to consider all potential variables that may be influenced within a 
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single cohort.  There are a number of potential dependent variables that may be influenced 

by changes in breast support that have been investigated previously.  Typically, sports bra 

performance has been investigated through reductions in breast pain, breast displacement, 

velocity and acceleration (Mason, Page & Fallon, 1999; McGhee, Steele & Zealey, 2010; 

Scurr, White & Hedger, 2009; Scurr, White & Hedger 2010; Scurr, White & Hedger, 2011).  

Breast position within a bra (breast compression and elevation) has also been linked to 

breast discomfort during exercise (McGhee & Steele, 2010).  Limiting force through the 

breast, calculated using estimated breast mass and acceleration data, has also been reported 

as an important aspect of sports bra design (McGhee, Steele, Zealey & Takacs, 2013). 

Similarly, greater breast momentum has been previously related to increased breast pain 

(Gehlsen & Albohm, 1980). Bra-breast stiffness reflects the interaction between breast 

acceleration and displacement, and was shown to be influenced by the level of breast support 

(Shivitz, 2002). Finally, Scurr, White and Hedger (2009) reported a time lag in peak vertical 

trunk and nipple displacement, which reduced as breast support increased, suggesting that 

this may also be an important variable to investigate.  

 

When investigating key breast support performance variables, additional to these breast 

kinematic measures, other variables may be affected by changes in breast support. 

Adaptations in running mechanics have been reported; changes in stride frequency and 

length (Eden, Valiant & Himmelsbach, 1992; Shivitz, 2002), running speed (Mason, Page & 

Fallon, 1999) and vertical trunk movement (Boschma, Smith & Lawson, 1996).  

Additionally, Shivitz (2002) and White, Scurr and Smith (2009) found changes in ground 

reaction forces (GRFs) with increasing breast support. With many variables influencing 

running performance, it is yet to be established whether these gait parameters are a key 

performance variable, influenced by changes in breast support.  

 

If changes in breast support cause changes in running mechanics, muscle activity may also 

be affected. Scurr, Bridgman and Hedger (2010) and Milligan, Mills and Scurr (2014) 
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investigated the influence of breast support on upper body muscle activity in using 

electromyography (EMG) during running.  Both studies found reduced pectoralis major 

activity as breast support increased, suggesting that EMG analysis may also be an important 

variable in breast support assessment. 

 

The effect of breast support on physiological function during activities such as running has 

received little attention, despite the potential for appropriate breast support to increase 

running economy due to reduced upper body muscle activity and changes in mechanics. 

White, Lunt and Scurr (2011) found reduced breathing frequency in bare breasted running 

compared to running in bras, concluding that changes in breast support may affect 

cardiovascular and physiological function.  Additionally, Bowles, Steele and 

Chaunchaiyakul (2005) investigated whether bra style influenced breathing function, but 

found no effect during running. The rate of oxygen consumption has frequently been used as 

a measure of running economy and it is acknowledged that changes which allow runners to 

use less oxygen are advantageous (Williams & Cavanagh, 1987) and warrant further 

investigation related to changes in breast support. 

 

Finally, as well as the variables detailed above, literature suggests that appropriate breast 

support should increase willingness to exercise (Haake, Milligan & Scurr, 2012; McGhee & 

Steele, 2010; McGhee, Steele & Munro, 2010; Scurr, White & Hedger, 2011; Scurr, White, 

Milligan, Risius & Hedger, 2011; Shivitz, 2002; Verscheure, Arate & Hreljac, 2000; White, 

Scurr & Smith, 2009) and reduce embarrassment (McGhee & Steele, 2010; Scurr, White & 

Hedger, 2011; White, Lunt & Scurr, 2011; White, Scurr & Smith, 2009). These subjective 

variables should be incorporated into breast support assessment alongside numeric analogue 

scales which have been routinely used to assess breast comfort, perceived breast support and 

bra fit (Mason, Page & Fallon, 1999; McGhee & Steele, 2010).  
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These previous investigations on the influence of breast support during running fall into five 

areas; breast biomechanics, gait parameters and running mechanics, muscle activity, 

physiological measures and subjective measures.  However, no studies have considered a 

holistic investigation of all these variables on the same cohort, such a study would determine 

the key performance variables that distinguish between breast support conditions during 

running.  Therefore, this study aims to investigate the effect of changes in breast support on 

biomechanical, physiological and subjective variables during running. Based on previous 

research it is hypothesised that changes in breast support will result in significant changes in 

breast biomechanics, gait parameters and running mechanics, muscle activity, physiological 

measures and subjective measures.  

 

Methods 

Following institutional ethical approval (SFEC App 2013-024), 10 female volunteers with a 

mean (standard deviation) body mass of 65 kg (6 kg), height of 1.66 m (0.04 m) and age 27 

years (6 years) were selected to participate in this study. Participants had not experienced 

any breast surgical procedures, were not undergoing any breast treatments, had not gone 

through pregnancy and were regular treadmill runners who exercised for >30 minutes, 

>twice a week.  All participants wore bras daily and during sporting activity. 

 

Participants attended a preliminary laboratory session.  Following a full explanation of 

procedures participants provided written informed consent and were professionally bra fitted 

using best-fit criteria (White & Scurr, 2012). Females who were not a UK 34D breast size 

were excluded; this breast size was investigated as it has been reported that it is particularly 

important for larger-breasted women (D cup and above).  

 

Each participant then attended a laboratory testing session, which began with a warm up. 

Participants performed activities in three random order breast support conditions; bare 

breasted, an everyday bra (low support: Marks & Spencer T-shirt bra, 92% cotton, 8% 
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elastane lycra) and a sports bra (high support: Shock Absorber Run Bra, 81% polyamide, 

10% polyester, 9% elastane).  These breast support conditions were chosen as they have 

been reported to be functionally different (Mills, Loveridge, Milligan, Risius & Scurr, 2014).  

Adequate rest periods (>10 minutes) were implemented between each condition to return 

participant’s heart rate and breathing to resting levels.  

 

The activities undertaken were 10 min of treadmill running at 2.8 m·s
-1

 in the two bra 

conditions (for the collection of physiological measures), this was reduced to 2 minutes of 

treadmill running at 2.8 m·s
-1

 in the bare breasted condition to minimise breast pain (Scurr, 

White & Hedger, 2010; Zhou, Yu & Ng, 2012), and five 10 m over ground runs also at 2.8 

m·s
-1

.  In an attempt to mitigate for changes in natural running gait due to the testing 

conditions, before each trial participants were given adequate time to familiarise themselves 

with the breast support condition, the exercise mode and the equipment.  To determine 

breast biomechanics, gait parameters and running mechanics, during the treadmill running 

conditions, retroreflective markers (5 mm diameter) were attached to the following 

anatomical landmarks on both side of the body; acromiales, acromioclavicular joints, medial 

and lateral humeral epicondyles, radius and ulnar styloid processes, anterior superior iliac 

spines, posterior superior iliac spines, medial and lateral femoral epicondyles, calcaneous, 

medial and lateral malleolus, second and fifth metatarsals (Visual 3D, www.c-motion.com). 

Additional markers were positioned on the trunk and right nipple (directly or on the bra) 

using the Scurr, White and Hedger (2010) marker set to determine relative breast kinematics.  

Three-dimensional marker coordinates were tracked for up to four gait cycles at the end of 

each running trial (to enable comparison across all breast support conditions) using a 

calibrated motion capture system (Qualisys, Oqus, Sweden), sampling at 200 Hz. 

 

During treadmill running surface EMG was recorded at 1000 Hz from upper body muscles 

associated with running mechanics (right pectoralis major, anterior and posterior deltoid, 

rectus abdominis, trapezius, latissimus dorsi, erector spinae, and external oblique; Datalink 
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Biometrics, UK). Following skin preparation (shaving and cleansing) SENIAM 

recommendations were utilised and electrodes (Biometrics SX230 active (Ag/AgCl) bipolar 

pre-amplified disk electrodes) attached parallel to the muscle fibres and on the muscle 

bellies (De Luca, 1997).  After 2 min of running, the start of the EMG and motion capture 

systems were synchronised using a wireless trigger and receiver (Neewer RT-16, China).  

From 3 to 10 min of running physiological variables were measured.  Heart rate was 

recorded every minute using a chest strap heart rate monitor (Polar T31, UK) positioned just 

below the participant’s bra band. Expired air was measured using an online gas analysis 

system (Cosmed, Quark B2, Italy), which required participants to be fitted with a breathing 

mask (Hans Rudolph, V mask) covering the nose and mouth.  

 

During over ground running GRFs were collected at 1000 Hz using a Kistler Force Plate 

(9281CA; Switzerland, 0.6 × 0.4 m) embedded in the laboratory floor. Participants 

performed five successful, non-targeted, 10 m runs over the force platform. Timing gates 

(Sprint Timer CM LSMEM, Brower) matched over ground and treadmill running speeds 

(2.8 m·s
-1

 ±5%). 

 

Immediately following each condition, participants completed a numeric analogue scale 

(Mason, Page & Fallon, 1999) assessing breast pain, bra fit, perceived breast support, and 

embarrassment.  Willingness to exercise was assessed on a validated exercise scale (Ajzen, 

2014; Rhodes & Matheson, 2005), and rating of perceived exertion using the Borg scale 

(Borg, 1982) was included as a new comparative measure between breast support 

conditions. 

 

During treadmill and over ground running, up to four gait cycles in each breast support 

condition were analysed. Gait cycles were determined using the left heel marker (Zeni, 

Richards & Higginson, 2008).  All markers were identified in Qualisys Track Manager 

(QTM, Sweden Version 2.9). The trunk and nipple markers were filtered with a second order 
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low pass Butterworth filter (13 Hz cut-off; Mills, Loveridge, Milligan, Risius & Scurr, 2014) 

and used to calculate relative right nipple coordinates (Scurr, White & Hedger, 2010).  Using 

the relative nipple coordinates from each gait cycle, 14 breast kinematic variables were 

calculated as detailed in Table 1.  Breast force and breast momentum were excluded from 

this analysis because theoretically the mass of the breast within a cohort of similar breast 

size should be constant.  Full body marker coordinates were exported to Visual 3D to 

calculate the 19 gait parameters and running mechanics defined in Table 1.  Joint angles 

were calculated using Cardan angles. GRF variables (× 10) were normalised to participant’s 

body weight (bw) (Bioware, Version 5.1.3.0, USA) (Table 1).  The eight EMG variables 

detailed in Table 1 were processed and analysed in DataLink Management and Analysis 

software (Version 8.6).  Oxygen consumption was measured breath by breath, running 

economy and minute ventilation were averaged every minute from the third to the tenth 

minute of running.   All objective results are presented as means (standard deviations) across 

gait cycles in each breast support condition.  Subjective variables were recorded at the end 

of each breast support condition (after all activities had been undertaken).   

 

Data were statistically analysed using PASW (Version 18).  All objective data were 

normally distributed (Kolmogorov-Smirnov and Shapiro-Wilk, P>0.05), with the exception 

of vertical trunk oscillation.  Statistical analysis using repeated measures ANOVAs, 

followed by multiple Paired Samples T-Tests were conducted to determine significant 

differences across breast support conditions and then between conditions.  Vertical trunk 

oscillation and the subjective data were compared across breast support conditions using 

Friedman Tests, followed by multiple Wilcoxon Tests.  Where multiple paired tests were 

performed Bonferroni correction factors were used to determine significant differences 

where P≤0.02. Effect sizes were calculated (parametric: η
2
, non-parametric: r) to rank the 

variables which were affected by breast support (strong effect size >0.5, moderate 0.5 to 0.3, 

and a weak effect <0.3 (Field, 2009, p. 389)).  All statistical comparisons demonstrated 
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strong power >0.9 (Cohen, 1988) in all variables except peak pelvis rotation where power 

was 0.68.   

 

Results 

Sixty two variables were investigated across the five categories (Table 1).  Across all 

variables, 22 were significantly affected by changes in breast support.  Willingness to 

exercise was the most affected by changes in breast support, followed by high time lag, 

superio-inferior velocity and superio-inferior acceleration (Table 2).  Fourteen variables 

were sensitive to changes in the bra (from low to high breast support).  Within the breast 

kinematic analysis, bare breasted running demonstrated significantly greater nipple 

kinematics in all directions compared to the bra conditions (Figure 1a-c).  Interestingly, the 

breast support condition had a significant effect on time lag during the flight phase of the 

gait cycle (high time lag) (Figure 2(a)), but not during the contact phase (low time lag). High 

time lag was reduced by 56% in the low support and 70% in the high support compared to 

bare breasted running.  Unsurprisingly, both bra conditions had a significant effect on breast 

elevation and compression when compared to bare breasted running (Figure 2(b,c)).  As 

breast support increased vertical trunk oscillation increased by up to 2 cm from bare breasted 

running to running in high breast support (Figure 2(d)). Running mechanics identified 

significantly less pelvis (Figure 3(a,b)) and trunk rotation (Figure 3(c,d)) during bare 

breasted running, compared to either bra. 

 

The GRFs, EMG and physiological variables investigated were not significantly influenced 

by changes in breast support during running.  Participants rated the high breast support 

condition as providing significantly greater breast comfort, bra comfort, and breast support, 

compared to the low support condition, and (where applicable) the bare breasted condition 

(Figure 4(a,b,d)). The high breast support condition was also rated as less embarrassing than 

both the other conditions (Figure 4(c)), and participants were more willing to exercise in the 

high breast support condition compared to the other conditions (Figure 4(e)). However, no 
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differences were identified in rating of perceived exertion between the breast support 

conditions. 

 

Discussion 

The current study is the first to investigate the effect of changes in breast support on a 

comprehensive range of biomechanical, physiological and subjective variables within a 

single cohort during running.  The aim was to identify the key performance variables that 

distinguish between changes in breast support.  Of the 62 variables analysed, 22 were 

influenced by changes in breast support, and despite a small sample size, all 22 

demonstrated a strong effect (>0.5) and power (>0.68).  Fourteen variables demonstrated 

sensitivity to changes in the bra from low support (an everyday bra) to high support (a sports 

bra). It is acknowledged that there may be other variables that have not been included in this 

study (e.g. thermal properties, body composition) as they have received little attention in the 

literature or have as yet not been investigated. However, this is the most comprehensive 

study undertaken in the area to date. 

 

The majority of previous research in this area has used reductions in breast displacement, 

velocity, acceleration and pain to assess the performance of bras and this study supports this, 

demonstrating reductions in breast displacement, velocity, acceleration and pain with 

increases in breast support.  However, it is interesting to note is that changes in breast 

support also had a strong (sometimes stronger) effect on other variables.  In this cohort of 

34D participants, the variables most sensitive to changes in breast support were firstly, 

willingness to exercise, followed by high time lag, superio-inferior breast velocity and 

superio-inferior breast acceleration.  These results highlight the importance of a 

comprehensive approach to performance assessment of breast support. 

 

The results of this study showed that willingness to exercise was effected to the greatest 

extent by changes in breast support during running.  This subjective variable incorporates 
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participant’s preferences, for example, a woman may find a sports bra comfortable and 

supportive, but may find it too revealing.  This result concurs with Risius, Thelwell, 

Wagstaff and Scurr (2012) who concluded that whilst the majority of previous empirical 

research on bras has focused on support, it appears the important functions of a bra are more 

diverse, incorporating subjective measures as well as objective. The importance of 

incorporating subjective measures is further evidence by the significantly higher ratings of 

breast comfort, bra comfort and breast support observed in the high breast support condition, 

compared to the low breast support condition, with all variables demonstrating strong effect 

sizes. As these subjective data are quickly and easily obtained, and demonstrate significant 

differences between breast support conditions, their inclusion within a battery of assessment 

measures when assessing the performance of breast support is recommended.  

 

The time lag between the trunk (sternal notch) and the breast reaching inflection points in 

the gait cycle has only been investigated in one previous study (Scurr, White & Hedger, 

2009) where time lag reduced as breast support increased.  Despite the limited research in 

this area, the results of the current study show that of the 62 variables investigated, high time 

lag was the second most sensitive variable to changes in breast support during running, 

suggesting that time lag is an important breast support performance variable.  Scurr, White 

and Hedger (2009) speculated that time lag was related to the inertia property of the breast, 

this suggests that appropriate breast support needs to reduce breast inertia during running.  

Reductions in time lag suggest greater synchrony between the temporal displacement of the 

trunk and breast.  Interestingly, changes in breast support had a significant effect on time lag 

during the flight phase of the gait cycle (high time lag), but not during the contact phase 

(low time lag). This may be due to differences in the elastic properties of the breast tissues 

that restrict inferior breast movement (stiffer due to gravitational effects over time), 

compared to the tissues that restrict superior movement (which may be more elastic). 
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The next variable most affected by changes in breast support was superio-inferior breast 

velocity. Superio-inferior breast velocity has been highlighted as an important variable in 

previous breast biomechanics research.  Scurr, White and Hedger (2010) identified that 

reductions in superio-inferior (referred to as vertical) velocity were most closely correlated 

to improvements in breast comfort during running at a similar speed to the current study, 

when compared to other breast kinematic variables (displacement, velocity and acceleration 

in three directions).  Scurr, White and Hedger (2010) concluding that breast support should 

primarily be defined in terms of superio-inferior breast velocity reductions.  

 

A number of other breast kinematic and running mechanics variables demonstrated 

significant effects across conditions. Breast acceleration (medio-lateral and anterio-

posterior), breast compression, pelvis, and trunk kinematics demonstrated a significant effect 

across all conditions, but not between bra conditions. Despite previous literature reporting 

differences in vertical and medial GRFs following changes in breast support (Shivitz, 2002; 

White, Scurr & Smith, 2009), the kinetic data from this study showed no differences.  

Muscle activity also showed no differences between breast support conditions, despite 

previous literature indicating a decrease in pectoralis major activity with increasing breast 

support (Scurr, Bridgman & Hedger, 2010).  This suggests that muscle activity assessment 

in these muscles do not contribute to  determining differences between breast support 

conditions. Finally, physiological variables were not influenced by changes in breast support 

during 10 minutes of running. This supports Bowles, Steele and Chaunchaiyakul (2005), but 

contradicts White, Lunt and Scurr (2011) who concluded that changes in breast support 

influenced cardiovascular and physiological function during running.  Although, it is 

acknowledged that in both of these previous studies participants exercised for less than 5 

min, while previous research suggests that physiological variables may take 6 min to 

stabilise (Hardin, Van Den Bogert & Hamill, 2004). These results suggest that GRFs, muscle 

activity and physiological measures are not key performance variables in distinguishing 

changes in breast support for this cohort.  
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Conclusions 

In conclusion, this is the most comprehensive study undertaken to determine the key 

performance variables affected by changes in breast support during running.  Of the 62 

variables investigated 22 kinematic and subjective variables were sensitive to changes in 

breast support and 14 to changes in bras during running.  The variables that were most 

sensitive to the level of breast support were willingness to exercise, high time lag and 

superio-inferior breast velocity and acceleration.  Future research should consider a more 

comprehensive approach to the assessment of appropriate breast support during running  

incorporating the key kinematic and subjective variables identified in this study, rather than 

relying solely on the commonly reported breast displacement reduction.  
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Table 1. The influence of breast support on each variable during running at 2.8 ms
-1

 

(n=10). Statistical comparison across all breast support conditions (P<0.05). 

Variable Units Description                P value 
BREAST KINEMATICS 
Anterio-posterior 

displacement 
m Max - min relative nipple displacement  

(Scurr, White & Hedger, 2011)  
0.000 

Medio-lateral 

displacement 
m Max - min relative nipple displacement  

(Scurr, White & Hedger, 2011) 
0.000 

Superio-inferior 

displacement 
m Max - min relative nipple displacement  

(Scurr, White & Hedger, 2011) 
0.000 

Anterio-posterior 

velocity 
ms

-1 Derived, instantaneous peak  0.000 

Medio-lateral 

velocity 
ms

-1 Derived, instantaneous peak 0.000 

Superio-inferior 

velocity 
ms

-1 Derived, instantaneous peak 0.000 

Anterio-posterior 

accel 
ms

-2 Derived, instantaneous peak 0.003 

Medio-lateral accel ms
-2 Derived, instantaneous peak 0.000 

Superio-inferior 

accel 
ms

-2 Derived, instantaneous peak 0.000 

High breast-body 

time lag 
% Time between sternal notch and nipple reaching max 

superio-inferior displacement as a % of gait cycle 

(Scurr, White & Hedger, 2010) 

0.000 

Low breast-body time 

lag 
% Time between sternal notch and nipple reaching max 

superio-inferior displacement as a % of gait cycle 

(Scurr, White & Hedger, 2010) 

NS 

Breast elevation m Peak inferior sternal notch to nipple distance (McGhee 

& Steele, 2010) 
0.000 

Breast compression m Peak anterior sternal notch to nipple distance (McGhee 

& Steele, 2014) 
0.000 

    

    
Bra-breast stiffness ms

-2
/cm Peak superioinferior nipple acceleration / peak 

superioinferior nipple displacement (McGhee, Steele, 

Zealey & Takacs, 2013) 

NS 

GAIT PARAMETERS AND RUNNING MECHANICS  
Stride length m Right toe off to Right heel strike   NS 
Stride frequency Hz Gait cycles per second   NS 
Trunk oscillation m Peak vertical displacement of sternal notch   0.032 
Peak ankle flexion  ° Internal segment angle NS 
Ankle range of motion ° NS 

Peak knee flexion  ° Internal segment angle NS  
Knee range of motion ° NS  

Peak hip flexion  ° Internal segment angle   NS 
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Hip range of motion °   NS  
Peak pelvis rotation  ° Axial rotation of pelvis segment relative to trunk segment 0.026 
Pelvis range of motion ° Axial rotation of pelvis segment relative to trunk segment 0.002 
Peak trunk flexion  ° Trunk segment rotation about global medio-

lateral axis 
NS  

Trunk flexion range of 

motion 
° NS  

Peak trunk rotation  ° Trunk segment axial rotation about the global vertical axis  0.003 
Trunk rotation range  ° Trunk segment axial rotation about the global vertical axis 0.002 
Peak shoulder flexion  ° Internal segment angle NS 
Shoulder range of 

motion 
° NS  

Peak elbow flexion  ° Internal segment angle NS  
Elbow range of motion ° NS  

GRF VARIABLES   
Loading rate bws

-1 Average peak vertical impact force/time to peak NS  
Medio-lateral impulse bws

-1 Medio-lateral force (bw) * time NS  
Anterio-posterior impulse bws

-1 Anterio-posterior force (bw) * time NS  
Vertical impulse bws

-1 Vertical force (bw) * time NS  
Active peak bw Second vertical force peak NS  
Impact peak bw First vertical force peak NS  
Peak medial force bw Peak medial force NS  
Peak lateral force bw Peak lateral force NS  
Peak propulsive force bw Peak posterior force NS  
Peak breaking force bw Peak anterior force NS  
MUSCLE ACTIVITY   
Pectoralis major % Full wave rectified and integrated to calculated total 

muscle activity during each running gait cycle, this 

was then normalised to the greatest activity in no bra 

running. 

NS  
Anterior deltoid % NS  
Posterior deltoid % NS  
Rectus abdominus % NS  
Upper trapezius % NS  
Latissimus dorsi % NS  
Erector spinae % NS  
External oblique % NS 
PHYSIOLOGICAL VARIABLES   
Breathing frequency Breathsmin

-1 Number of breaths per minute NS  
Minute ventilation lmin

-1 Total quantity of air breathed in/out in 1 minute NS  
Oxygen consumption mlminkg

-1 Collected breath by breath NS  
Running economy mlkgkm

-1 O2 consumption relative to body mass per km NS  
Heart rate beatsmin

-1 Number of beats per minute NS  
SUBJECTIVE VARIABLES   
Breast comfort 0=comfortable, 10=painful. 0.000 
Bra comfort 0=comfortable, 10=very uncomfortable. 0.015 
Embarrassment 0=No Embarrassment, 10=High embarrassment 0.000 
Breast support 0=Very supportive, 10=Very unsupportive 0.003 
Willingness to exercise 0=Very unwilling, 7=Very willing 0.000 
Rating of Perceived Exertion 6=No exertion, 20=Maximal exertion NS  
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Table 2: Variables that were significantly different (P values) across breast support 

conditions during running at 2.8 m·s
-1

 (n=10). 

Rank Significant Variables Across all breast support 

conditions 

Between bra 

conditions 

  Effect size P 

1 Willingness to exercise 0.982 0.003 

2 High breast-body time lag 0.921 0.001 

3 Superio-inferior velocity 0.900 0.002 

4 Superio-inferior acceleration 0.880 0.001 

5 Embarrassment 0.876 0.008 

6 Medio-lateral velocity 0.859 0.012 

7 Superio-inferior displacement 0.851 0.001 

8 Breast comfort 0.850 0.007 

9 Medio-lateral acceleration 0.848 NS 

10 Breast compression 0.842 NS 

11 Breast elevation 0.808 0.001 

12 Perceived breast support 0.806 0.003 

13 Anterio-posterior displacement 0.779 0.015 

14 Medio-lateral displacement 0.766 0.014 

15 Anterio-posterior velocity 0.743 0.014 

16 Vertical trunk oscillation >0.733 NS 

17 Anterio-posterior acceleration 0.720 NS 

18 Trunk rotation range of motion 0.592 NS 

19 Pelvis range of motion 0.581 NS 

20 Peak trunk rotation  0.574 NS 

21 Bra comfort 0.515 0.003 

22 Peak pelvis rotation  0.508 NS 
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Figure 1. (a) Mean (standard deviation) nipple displacement, (b) velocity and (c) 

acceleration in each direction during treadmill running at 2.8 ms
-1

 in three breast support 

conditions (n = 10).  Brackets and * show where significant differences at P ≤ 0.05 occurred 

between each breast support condition. 
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Figure 2. (a-c) Mean (standard deviation) nipple variables and (d) vertical trunk oscillation 

during treadmill running at 2.8 ms
-1

in three breast support conditions (n = 10).  Brackets 

and * show where significant differences at P ≤ 0.05 occurred between breast support 

condition. 

 

NB: Breast kinematic variables identified in Table 1 that showed no significant difference 

between breast support conditions are not presented. 
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Figure 3. Mean (standard deviation) running mechanics during treadmill running at 2.8 ms
-1 

in three breast support conditions (n = 10).  Brackets and * show where significant 

differences at P ≤ 0.05 occurred between breast support condition. 

 

NB: Running mechanics variables identified in Table 1 that showed no significant difference 

between breast support conditions are not presented. 
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Figure 4. Mean (standard deviation) subjective ratings during treadmill and over ground 

running at 2.8 ms
-1 

in three breast support conditions (n = 10).  Brackets and * show where 

significant differences at P ≤ 0.05 occurred between breast support condition. 

 

NB: Subjective rating variables identified in Table 1 that showed no significant difference 

between breast support conditions are not presented. 


