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1.  Introduction 

Childhood obesity is associated with significant comorbidity and disability [1].  Worldwide prevalence 

of childhood overweight and obesity increased from 4.2% in 1990 to 6.7% in 2010 and is expected to 

reach 9.1% in 2020 [2]. Recent data from the UK National Child Measurement Programme estimated 

rates of overweight and obesity in England at 29% and 15% respectively [3].  Childhood obesity is 

associated with reduced physical activity and engagement in childhood activities [4], along with 

multiple health co-morbidities [5].   Childhood obesity has been reported to impact on the functional 

characteristics of the lower limb, potentially predisposing children to pain and discomfort during gait 

and musculoskeletal comorbidities [6].  Recent studies have reported reduced hip and knee flexion 

during gait and greater valgus positioning of the knee [7]. These findings support the view that obesity 

predisposes joint dysfunction and underpins a theoretical association with musculoskeletal pathology.  

Despite this, few studies have documented the impact of childhood obesity on the foot.  Given the 

distal location and flexibility of the paediatric foot there is an increased susceptibility to pathology and 

deformation. It follows that any external influence upon the developing foot, such as obesity, may 

affect its function during gait [8].      

Research on the plantar loading profiles of the paediatric foot have demonstrated childhood obesity 

to increase peak vertical forces [9], increase plantar contact area [10] and elevate plantar pressures 

[11] under the medial longitudinal arch.   Emerging from this is the view that childhood obesity is 

associated with a pes planus foot type which, coupled with altered joint function, may predispose to 

the development of foot discomfort and pathologies [9,10,11].  Recent work supports the association 

between obesity and structural foot changes but given plantar pressure analysis is limited to two-

dimensional analysis of the foot during stance more work is required to characterise the impact of 

childhood obesity on the three-dimensional foot during the gait cycle.   A recent study looking at the 

kinematics of sagittal and frontal plane lower limb motion in overweight boys [12] reported greater 

rear-foot eversion during gait.  This finding supports the view of pes planus and a pronated foot type 

and suggests that obesity affects the function of the paediatric foot during walking.  However, the 

findings are limited as this work did not take into account the complex motion of the multiple foot 

segments.  Determining the intersegmental motion of the foot during gait can help to inform current 

approaches to rehabilitation and underpin clinical interventions where foot and joint problems in 

childhood obesity are indicated.  The aim of this study was to explore the relationships between 

intersegmental foot motion during gait and obesity (measured by body fat) in boys between the age 

of 7 and 11 years.   It was hypothesised that body fat (obesity level) would be associated with altered 

intersegment foot motion over the gait cycle, particularly in the midfoot. 
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2.  Methods 

2.1. Selection and Description of Participants 

Fifty-five boys, aged seven to eleven years, participated in the study and participant characteristics 

are presented in Table 1. Ethical approval was obtained from the host institution (Ref No. ETH/13/11) 

and parental consent was obtained prior to testing.  All participants were recruited from local school 

children.  Exclusion criteria included medical conditions affecting neuromuscular and orthopaedic 

integrity or any complications contributing to altered foot posture and/or gait disturbance.   

 

2.2. Instrumentation and Procedures 

2.2.1. Measures of Anthropometrics and Body fat 

Body fat (level of obesity) was measured by air displacement plethysmography using a Bodpod (Life 

Measurement, Inc, Concord, CA, USA).  Estimates of body volume were derived from pressure 

measures within the Bodpod chamber under isothermal and adiabatic conditions [13]. The Bodpod 

has been shown to be a reliable and accurate measure of body fat in healthy and obese children [14, 

15].  Each participant wore swimming shorts and a swimming cap and was asked to enter the Bodpod 

chamber and remain still for 40 seconds for three successive trials.  Changes in pressure were 

measured and averaged across the three trials to calculate body volume. Raw body volumes were 

corrected for isothermal air in the lungs and close to the skin surface using child-specific equations 

[16, 17].  Corrected body volumes were converted to body percentages using age- and gender- specific 

equations [18].  Body fat was expressed as percentage fat mass relative to total body mass.  Weight 

was measured to the nearest 0.1 kg using Bodpod scales and height measured to the nearest 0.5 cm 

using a portable Leicester stadiometer (Seca Leicester portable stadiometer; Seca Vogel, Hamburg, 

Germany).  Body Mass Index (BMI) score was calculated as height/weight2 and reported as an age and 

sex specific z-score (standard deviation score).  This was based on the distribution of BMI in the UK90 

growth reference [19] using a Microsoft Excel macro developed for use with this growth reference 

(Child Growth Foundation, Chiswick, UK).  

 

2.2.2. Measures of spatiotemporal and 3D intersegment foot motion during gait  
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An eight-camera Vicon Nexus motion capture system (Vicon Motion Systems Ltd, Oxford, UK) was 

used to track and record the motion of skin mounted reflective markers at 200Hz during barefoot 

walking at self-selected speed.   Fifteen 9mm retro-reflective markers were attached to the right shank 

and foot of each participant in line with the 3DFoot model [20].  Previous research has demonstrated 

the reliability of this foot model in a paediatric population [21].  A four segment model of the foot was 

constructed for calculation of relative intersegment angular motion in Visual 3D software (C-Motion 

Inc., MD, USA).  Two floor mounted force plates (Bertec, Model MIE Ltd, Leeds, UK) recorded ground 

reaction forces during gait trials at 1000 Hz.  The gait cycle was defined from initial contact 

(determined as an increase in vertical force (Fz) above 20N) through foot-off and the subsequent initial 

contact of the same foot.  Sagittal, frontal and transverse planar motion was described for the shank-

calcaneus, calcaneus-midfoot and midfoot-metatarsals segments of the right foot. 3D intersegment 

foot angles from each participant were extracted as 51 data points normalised over the gait cycle 

representing angular waveform patterns of foot segment motion.  Mean 3D intersegment angles were 

calculated for each participant based on ten gait cycles captured.   

 

2.3. Statistical analysis 

2.3.1. Principal Component Analysis (PCA) 

Principle component analysis (PCA) was employed to reduce the major modes of variation in the data 

in order to fully explore foot segment motion over the entire gait cycle.  Previous research on 

paediatric gait has employed PCA to analyse multiple waveforms utilising separate matrices [22]).  In 

the current study, nine matrices (3 segmental angles of shank-calcaneus, calcaneus-midfoot, midfoot-

metatarsals each in 3 planes of sagittal, frontal and transverse) were constructed for 3D foot angle 

waveforms based on the 55 participants and the 51 points (55 x 51).  The features of variation in the 

waveform data were extracted using PCA by orthogonally rotating the variables, using a varimax 

method, into components which maximally explained variability in the original waveforms. Principal 

components (PC) were retained that cumulatively explained at least 90% of the waveform variation.  

The rotated loadings (describing the proportion of variance explained by the underlying data points) 

were assessed to determine which data points contributed to each component.  Rotated loadings in 

excess of 0.722 or below -0.722 were considered as contributing to a component [24].  A regression 

score (estimated coefficient representing a participants score on a component) of was calculated for 

each participant based on their 3D intersegment foot angle within each PC. Positive regression scores 

indicated dorsiflexion, eversion and abduction and negative regression scores indicated 
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plantarflexion, inversion and adduction. This regression score was used for subsequent analysis by 

multiple linear regression analysis.          

 

2.3.2. Multiple linear regression 

In order to determine the association between body fat and 3D intersegment foot angles, the 

regression scores extracted from PCA were entered into multiple linear regression.  The regression 

score was entered as the dependent variable and obesity as the predictor variable.  Based on the 

potential confounding effects which may influence the relationship between obesity and 3D 

intersegment foot motion, eight potential confounding predictor variables (age, height, BMI Z-Score, 

walking speed, step length, step width, stance phase duration and  total single support phase duration) 

were entered into multiple linear regression. To account for the possibility of a curvilinear relationship 

between the predictor variables and the regression score, a second order polynomial (e.g. body 

fatquad) was fitted to each predictor variable. The linear (e.g. body fatlin) and curvilinear (e.g. body 

fatquad) predictor variables were entered into multiple linear regression.  For the exploratory nature 

of the study a backward step-wise regression method was used to determine the predictors for the 

regression scores based on 3D intersegment foot motion.  Predictor variables were removed in the 

order of least significance (i.e. highest p value) until the remaining predictors (if any), were significantly 

associated with the regression score.  If obesity and one or more other variables were significantly 

associated with the regression score, further analysis in mixed model linear regression to account for 

the potentially confounding influence amongst the predictor variables was undertaken.  Only those 

regression scores that were significantly associated with obesity are presented in the results.  All 

statistical analysis was carried out in SPSS version 20.  Statistical significance was set to p<.05.        

 

3. Results 

3.1. Demographic, anthropometric and spatiotemporal characteristics of the participants 

Table 1 shows the demographic, anthropometric and spatiotemporal characteristics of the 

participants.  According to the UK90 BMI Z-Score cut-offs for children [19], 8 participants were 

classified as obese, 12 participants were classified overweight, 29 as ideal weight and 6 were 

underweight. 
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3.2. Principal Component Analysis 

Table 2 presents the results of PCA of the three foot joints, each joint in three planes of motion.  Four 

shank-calcaneus sagittal plane angular PC were extracted from the original waveform, explaining 

97.62% of the variance (Figure 1 a, e).  Two shank-calcaneus frontal plane PCs were extracted from 

the original waveform, explaining 95.47% of the variance.  Two shank-calcaneus transverse plane PCs 

were extracted from the original waveform, explaining 96.79% of the variance (Figure 1 b, f).   

One calcaneus-midfoot sagittal plane angular PC was extracted from the original waveform, explaining 

96.56% of the variance in angular motion (Figure 1 c, g).   Calcaneus-midfoot frontal plane waveform 

was captured in one PC, explaining 97.39% of the variance (Figure 1 d, h).  One calcaneus-midfoot 

transverse plane angular PC was extracted, explaining 99.31% of the variance.   

Two midfoot-metatarsal sagittal plane angular PCs were extracted from the original waveform, 

explaining 98.17% of the variance.  One midfoot-metatarsal frontal plane angular PC was extracted 

explaining 96.97% of variance and one midfoot-metatarsal transverse plane angular PC was extracted 

covering 98.76% of the variance.     

 

3.3. Multiple linear regression analysis  

Significant findings from the regression analysis are presented in Table 3.  A regression model 

containing body fatlinear and stance phase durationlinear was significant in predicting shank-

calcaneus sagittal PC1.  Mixed model regression confirmed the significant association between body 

fatlinear and stance phase durationlinear with PC1 (F=7.35, p=.009 and F=23.71, p<.000 for body 

fatlinear and stance phase durationlinear respectively).  Higher obesity and greater stance phase 

duration were positively associated with plantarflexion of the calcaneus relative to the shank during 

the first half of the single support phase of the gait cycle.  Body fatlinear significantly predicted shank-

calcaneus sagittal PC2 and PC3.  Greater plantarflexion of the calcaneus relative to the shank during 

the end of stance (PC2) and the end of swing (PC3) was positively associated with higher.   

 

A regression model containing body fatlinear and body fatquad was significant in predicting shank-

calcaneus transverse PC1.  Mixed model regression confirmed the significant association between 

body fatlinear and body fatquad with PC1 (F=3.18, p=.043 and F=4.36, p=.026, for body fatlinear and 

body fatquad respectively).  Higher body fat was positively associated with greater abduction of the 

calcaneus relative to the shank through-out stance phase.  Shank-calcaneus transverse plane motion, 
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captured in PC2, was significantly predicted by body fatlinear. Higher body fat was positively 

associated with greater abduction of the calcaneus relative to the shank through swing phase. 

 

 A regression model of body fatlinear was significant in predicting calcaneus-midfoot sagittal PC1.  

Higher body fat was positively associated with greater dorsiflexion of the midfoot relative to the 

calcaneus throughout the gait cycle.   

 

A regression model containing body fatlinear, body fatquad, ZScorelinear, Z-Scorequad, Heightlinear 

and Step distancelinear significantly predicated calcaneus-midfoot frontal PC1.  Mixed model revealed 

a significant association between body fatlinear (F=6.37, p=.026), body fatquad (F=6.63, p=.017), 

ZScorelinear (F=10.86, p=.007), Z-Scorequad (F=14.51, p=.002), Heightlinear (F=13.20, p=.003) and 

Step distancelinear (F=3.31, p=.041) with PC1.  Higher body fat and BMI Z-Score, greater height and 

longer step distance where positively associated with eversion of the midfoot relative to the calcaneus 

throughout the gait cycle.   

 

Figure 2 summarises the significant relationships between body fat with shank-calcaneus and 

calcaneus-midfoot motion which indicates greater plantarflexion and adduction of the calcaneus and 

greater dorsiflextion and eversion of the midfoot during the gait cycle. 

 

4. Discussion 

The aim of this study was to explore the relationships between intersegmental foot motion and body 

fat in a cohort of male participants.  The findings offer novel relationships between angular motion 

between foot segments and body fat and support our hypothesis that body fat (obesity level) would 

be associated with altered angular motion of foot segments across the gait cycle, as illustrated in 

Figure 2.  

The analysis of 3D shank-calcaneus motion demonstrated a relationship between higher body fat and 

greater calcaneus plantarflexion throughout the gait cycle.  This finding concurs with McMillan et al 

[7] who reported greater peak calcaneus plantarflexion during the early part of stance phase in obese 

compared to non-obese children.  Greater plantarflexion of the calcaneus segment may represent a 

horizontal position of the calcaneal bone and a vertically orientated talus.  This bone orientation has 

been previously reported in children with pes planus, indicating a lowering of the longitudinal arch 

and foot pronation [24].          
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Reduced shank-calcaneus adduction was identified in the participants with higher body fat across the 

whole gait cycle.  Transverse plane analysis of obese/overweight children’s feet have previously 

considered the foot as only one rigid segment [25].  Shultz et al., [25] reported reduced adduction, 

reported as external rotation, of the foot in overweight children compared to their healthy weight 

peers.  Similar results were reported in an earlier study by Hills & Parker [26] which demonstrated 

greater external rotation of the foot, described by the authors as out-toeing, at all phases of the gait 

cycle.  These authors proposed that greater out-toeing may encourage a wider base of support as a 

compensatory change to aid stability during walking.   The results of the current study agree with 

previous reports of an externally rotated foot in obese children highlighting this rotation as occurring 

at the calcaneus relative to the shank 

The current study also reported greater midfoot dorsiflexion throughout the gait cycle in boys with 

greater body fat. Adoracion Villarroya et al., [27] using radiographic imaging, found talus-first 

metatarsal sagittal plane angles in standing to be more dorsiflexed in obese children and adolescents 

compared to published normal values. The finding in this study of greater midfoot dorsiflexion is 

consistent with the view that obese children have a pronated foot-type.  While comparisons between 

static foot alignments from radiographic measures may not compare directly with dynamic motion of 

the foot, both the calcaneus and midfoot sagittal plane orientation gives more evidence of a pronated 

foot [27]. 

Midfoot eversion found throughout the gait cycle in participants with higher body fat could also 

indicate a lowering of the medial longitudinal arch.  This finding is consistent with previous studies 

evaluating dynamic plantar pressure in obese children.  Mickle et al., [10] found higher peak pressures 

under the midfoot segment of obese children compared to their non-obese counterparts. Weakening 

or laxity of the arch supporting structures, due to excessive force incurred by the carriage of greater 

loads, may flatten the arch leading to the pronated foot-type [26].  These findings further support the 

view that obese children have a pronated foot during gait.       

This study was limited in that the determination of predictor variables associated with intersegment 

foot motion was based on the findings from previous studies [26,29,30].  Although significant, the 

predictor variables generally explained a low percentage of variance in intersegment foot motion.  This 

finding suggests that other factors (e.g. foot type) may influence the relationship between body fat 

and foot segment motion.  A second limitation was the use of multiple PCAs to examine variation in 

the foot kinematic data.  Ideally a single PCA with all variables of interest should be run, however little 

data was available on which specific foot segments at certain points gait cycle to enter into the 

analysis.  Therefore, PCA was utilised to reduce the total number of kinematic and temporal variables.  



8 
 

Future research should focus on the specific foot segmental kinematics at certain points of the gait 

cycle.   Furthermore, the findings from PCA demonstrated that several foot segment angular 

waveforms were considered as one component due to the small variation across the gait cycle versus 

variation between participants.  These results suggest excessive body fat relates to a rotational offset 

in foot segment’s structure rather than an alternative pattern of angular motion.  Despite these 

limitations, this work offers novel data about the impact of obesity on the kinematics of the foot which 

may have impact of the rehabilitation strategies for children with obesity. Future studies should 

consider the relationships between measures of foot structure and function with obese children and 

if changes are associated with reduced pain, discomfort and decreased physical activity.   

5. Conclusions 

This study presents novel information on the relationships between body fat and angular motion of 

foot segments during gait.  The findings identified a more pronated foot type throughout the gait cycle 

in obese boys.  The pronated foot type may have implications for the onset of pain and discomfort 

during weight bearing activities.  
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