**Motion of the Paediatric Foot during Gait: Associations with Obesity**

*Mahaffey RD, Morrison SC, Cramp MC, Drechsler WJ*

*School of Health, Sport & Bioscience. University of East London*

**Introduction**

Childhood obesity is associated with altered gait characteristics. Three-dimensional (3D) motion analysis of the lower limbs has revealed that obese children walk with less hip flexion and more knee valgus implicating structural changes to the lower limb. However, little is understood about the impact of obesity on 3D motion of the paediatric foot. The aim of this study was to examine the associations between foot motion during gait and obesity in 7 to 11 year boys.

**Method**

Fifty five boys (mean age 9.56 ± 1.13 years, and range 7 – 11 years) were recruited. Percentage body fat (%BF) was measured by air displacement plethysmography (mean %BF 23.78 ± 9.33%, and range %BF 9.57 - 42.06%) using child specific regression equations. Three-dimensional foot motion was measured using an 8-camera motion capture system (Vicon Motion Systems Ltd, Oxford, UK). Two force plates (Bertec, Model MIE Ltd, Leeds, UK) recorded ground reaction force to define gait cycle events and phases. Three-dimensional angular motion was tracked for the calcaneus, midfoot, metatarsals and hallux.

Principle component analysis was utilised to reduce angular data to components. The relationships between these components and %BF was assessed by multiple regression, accounting for confounding variables. Only foot motion that was significantly \( (p<0.05) \) associated with %BF was reported.

**Results**

Principle component analysis revealed 11 components composed of 3D foot motion data. Of these components 3 were significantly associated with %BF after accounting for confounding variables.

**Discussion**

Findings from this study support the view that obesity is associated with altered motion of the foot during gait. The motion of the calcaneus and midfoot during the gait cycle (Figure 1) suggests a pronated foot in boys with higher %BF. Excessive pronation of the subtalar joint leads to a flattening of the medial longitudinal arch and a precursor to altered function and pathology in later years. Further work is required to understand the long term impact of altered foot motion during gait associated with childhood obesity.

**References**
