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Abstract 

This study investigated the effects of oral taurine supplementation on cycling time to 

exhaustion at a fixed-intensity and thermoregulation in the heat. In a double-blind, randomised 

crossover design, 11 healthy males participated in a time to exhaustion test in the heat (35 °C, 

40% RH), cycling at the power output associated with ventilatory threshold, 2-h after ingesting: 

Taurine (50 mg·kg-1) or placebo (3 mg·kg-1 maltodextrin). Core and mean skin temperature, 

mean sweat rate, heart rate, rating of perceived exertion (RPE), thermal comfort and thermal 

sensation were measured during exercise and blood lactate concentration (B[La]) was measured 

after exercise. Taurine supplementation increased time to exhaustion by 10% (25.16 min vs. 

22.43 min, p = 0.040), end sweat rate by 12.7% (687 nL∙min-1 vs. 600 nL∙min-1, p = 0.034) and 

decreased B[La] by 16.5% (5.75 mmol∙L-1 vs. 6.85 mmol∙L-1, p = 0.033). Core temperature was 

lower in the final 10% of the time to exhaustion (38.5 °C vs. 38.1 °C, p = 0.049). Taurine 

supplementation increased time to exhaustion and local sweating, while decreasing RPE and 

core temperature in the later stages of exercise, as well as reducing post-exercise B[La]. This 

study provides evidence of taurine’s role in thermoregulatory processes. These findings have 

implications for the short-term preparation strategies of individuals exercising in the heat. 

Based on these findings, a single dose of taurine 2-h prior to training or competition would 

provide an ergogenic and thermoregulatory effect.  

 

Keywords amino acids; sweating; cooling; ergogenic aids.  
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Introduction  

 

Taurine, a sulphur containing amino acid, is abundantly expressed in mammalian tissue, 

accounting for 50–60% of the free amino acid pool (Huxtable, 1992). In human skeletal 

muscle, taurine concentration is approximately four times higher in type I compared to type II 

fibres (Harris, Dunnett & Greenhaff, 1998). Taurine is widely reported to facilitate a number of 

biological processes, such as sarcoplasmic reticulum Ca2+ handling in both type I and II fibres 

(Hamilton, Berg, Easton & Bakker, 2006; Dutka, Lamboley, Murphy & Lamb, 2014) and 

regulation of cell fluid volume (Cuisinier et al., 2002). Perhaps less well known are the anti-

oxidative properties of taurine, elicited though a mitochondrial buffering action (Hansen, 

Andersen, Birkedal, Cornett & Wibrand, 2006; Hansen, Andersen, Cornett, Gradinaru & 

Grunnet,  2010), as well as its capacity to act as a neuromodulator, with a suggested influence 

on the thermoregulatory control centres in animal models (Frosini et al., 2000).  

 

There is a lack of consensus regarding taurine’s mechanisms of ergogenic action in humans, yet 

this semi-essential amino-acid (Huxtable, 1992) is responsible for improvements in endurance 

performance (Zhang, Izumi, Kagamimori, Sokejima, & Yamagami, 2004; Balshaw, 

Bampouras, Barry & Sparks, 2012; Ahmadian, Roshan & Ashourpore, 2017; Warnock, 

Jeffries, Patterson & Waldron, 2017; Waldron, Knight, Tallent, Patterson & Jeffries, 2018a) 

and is actively carried into most major organs via taurine transporters (TauT) (Ito et al., 2010). 

While oral taurine supplementation may not increase resting muscle content, increased plasma 

taurine levels following oral supplementation (Galloway, Talanian, Shoveller, Heigenhauser & 

Spriet, 2008) are likely to hinder its normal extrusion from skeletal cells (thus supressing 

intracellular release) as part of an osmoregulatory function during exercise (Cuisinier et al., 

2002). Therefore, it is feasible that a combination of mechanisms explain the recent meta-

analytic findings, demonstrating taurine’s ergogenic effect on endurance performance in 

humans (Waldron, Patterson, Tallent, & Jeffries, 2018b). 

 

Thermal strain is exacerbated by a combination of prolonged exercise and high environmental 

temperatures or humidity, which can cause a continuous rise in core temperature beyond 

homeostatic ranges (Nybo, 2008). The net effects of thermal strain are characterised by the heat 

balance equation, where heat energy is gained or dissipated via evaporation, conduction, 

convection and radiation (Gagge & Gonzalez, 1996). In thermally-strained humans, heat is 



4 
 

chiefly dissipated via evaporative and convective processes, as governed by the 

thermoregulatory centre in the hypothalamus (Gagge & Gonzalez, 1996). Cutaneous 

vasodilation and sweating (among other processes) support these avenues of heat loss by 

attenuating the rate of rise in core temperature during exercise (Marino et al., 2000; Sawka, 

Leon, Montain & Sonna, 2011). In relation to the current study, smaller increases in core 

temperature have been observed in heat-stressed rabbits compared to thermoneutral controls 

after intrathecal infusion of taurine (Frosini et al., 2000). It is possible that oral ingestion, rather 

than central infusion, could elicit similar effects in humans. Furthermore, taurine has a number 

of peripheral actions, particularly as a vaso-relaxant (Sun et al., 2016), which could facilitate 

convective and evaporative cooling processes. Taurine’s inotropic effects on the heart (Satoh & 

Sperelakis, 1998) and possible influence on stroke volume (Baum & Weiß, 2001) might also 

offset the deleterious effects of heat stress on cardiac efficiency and subsequent endurance 

performance (Gonzalez-Alonso, 2012). However, none of these questions have been addressed 

in exercising, thermally-stressed humans.   

 

The purpose of this study was to investigate the effects of acute oral taurine supplementation on 

thermoregulation during cycling exercise of a fixed intensity in the heat (35 °C; 40% relative 

humidity). It was hypothesised that taurine would extend time to exhaustion in the heat and 

delay the rate of rise in core temperature by enhancing convective or evaporative cooling 

potential.    

 

Materials and methods 

Participants  

Eleven non-heat acclimated healthy males volunteered for this study (age 23 ± 2 years, stature 

180 ± 60 cm, body mass 83.0 ± 9.5 kg, maximal oxygen uptake (V̇O2max) 46.0 ± 6.3 ml·min-

1·kg-1, maximal aerobic power output 305 ± 29 W). Given the typical effect sizes (Cohen’s d = 

0.4) reported using taurine to improve endurance performance (Waldron et al., 2018b) in 

thermoneutral environments, G*Power (Version 3.0.10; Universität Düsseldorf, Germany) was 

used to calculate an a-priori sample size of 11, which was sufficient to identify differences 

between groups with a statistical power of 0.80. Participants were asked to refrain from alcohol 

and caffeine consumption for 24-h and avoid strenuous exercise for 48-h prior to testing. All 
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participants gave written informed consent. Ethical approval was provided by the institutional 

ethics committee, which was conducted in accordance with the 1964 Helsinki declaration. 

 

Design 

The study adopted a double-blind, randomised crossover design. All participants reported to the 

laboratory on three separate occasions, each separated by a maximum of 96-h and minimum 

72-h to minimise acclimation effects. The first visit comprised preliminary testing and 

familiarisation. On visits two and three, the participants completed the experimental trials, 

where they ingested taurine or placebo 2-h before exercise. Randomisation was conducted by 

generating random numbers for all participants, across each condition using online software. 

Each laboratory visit was conducted at the same time of day.  

 

Preliminary testing 

During visit one, participants undertook an incremental exercise test to volitional exhaustion on 

a mechanically-braked cycle ergometer (Monark Exercise AB, Ergomedic 874E, Varberg, 

Sweden) in thermoneutral conditions (19.2 ± 0.8 °C) to determine �̇�O2max and the power output 

at ventilatory threshold. Participants cycled for 5-min at 80 W to warm-up and rested for 5-min 

before starting the test. The test started at a workload of 120 W and increased 24 W·min-1 at a 

fixed cadence of 80 rev·min-1 until volitional exhaustion or when cadence dropped below 70 

rev·min-1 for more than 10-s. Oxygen uptake (�̇�O2) was measured using breath-by-breath 

expired air analysis (Jaeger Vyntus CPX, Hoechberg, Germany). The gas analyser was 

calibrated before every trial with gases of known concentration (15.95% O2, 4.97% CO2, BAL. 

N2) and the turbine volume transducer was calibrated automatically by the system at flow 

values of 2 L·s-1 and 0.2 L·s-1. Heart rate (HR) was recorded throughout the trial (Polar Heart 

Rate Monitor M400, Warwick, UK). �̇�O2max was calculated by measuring the highest 30-s 

average �̇�O2 peak power was measured as the highest power output recorded during the test for 

a full minute. After 20-min of rest, participants conducted a familiarisation, comprising 

maximal constant load exercise at the power output associated with ventilatory threshold in an 

environmental chamber (Sporting Edge UK, Basingstoke, UK) set to experimental conditions 

(35 ± 0.3 °C, 40 ± 0.3 % RH). Breath-by-breath �̇�O2 and �̇�CO2 data from the incremental 

cycling test was used to plot ventilatory threshold, using the simplified v-slope method 

(Scheider, Phillips & Stoffolano, 1993). The mean power output at thermoneutral ventilatory 

threshold was 203 ± 23 W, which was fixed for all experimental trials. This threshold was 
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selected as it was deemed appropriate to evaluate endurance capacity at a repeatable, sub-

maximal fixed intensity, while increasing the rate of metabolic heat production sufficient to 

induce thermoregulatory responses.         

 

Experimental trials  

All subsequent tests were conducted in the heat (35 ± 0.3 °C, 40 ± 0.6 % RH). Upon arrival at 

the laboratory, 1-h prior to testing, participants were instructed to insert a rectal thermistor 

(Edale Instruments Ltd, Cambridge, UK) 10 cm past the anal sphincter to measure core 

temperature (Tcore). Tcore was recorded every 1-min via a scanning thermometer type CDS 1.0 

(Edale Instruments Ltd, Cambridge, UK). A urine sample was also provided to determine 

hydration status using a refractometer (Pocket Osmochek, Vitech Scientific Ltd, West Sussex, 

UK). A reading of  > 600 mOsm·kg-1·H2O
-1 indicated the threshold of hypohydration, in which 

case the participant consumed 500 ml of water and waited 30-min before testing.  

 

The participants’ body mass was recorded wearing cycling shorts and rectal thermistor inserted. 

The participants were instructed to abstain from drinking fluids until the end of the test. Skin 

thermistors (Grant Instruments Ltd., Cambridge, UK) were then attached to four sites on the 

participants’ right side: upper chest, mid humerus, mid-calf and mid-thigh. Skin temperature 

was recorded continuously via a Squirrel data logger (SQ2010, Grant Instruments Ltd., 

Cambridge, UK) and reported every 1-min. Mean skin temperature (Tskin) was calculated using 

Ramanathan’s equation (Ramanathan, 1964): Tskin = 0.3 x (Tchest + Tarm) + 0.2 x (Tthigh + Tcalf). 

Prior to fitting skin thermistors, the skin was cleaned with soap and water and dry shaved, 

before being thoroughly dried. Local sweat rate was measured using a Q-Sweat system (WR 

Medical Electronics Co., Stillwater, MN). Ventilated capsules were fixed proximal to the skin 

thermistors on the right-side of the body. Dry air was continuously delivered through Teflon-

lined tygon tubing at a fixed flow rate of 60 sccm·min-1 between four separate sweat capsules 

mounted on the skin’s surface and the Q-sweat device. Fluid released from the sweat glands is 

transiently incorporated into the dry air, with the change in temperature and relative humidity 

monitored by the Q-Sweat device. The capsule size was 0.781 cm2. Sweat rate was calculated 

using standard vapour pressure equations and expressed in nL·min-1. Mean sweat rate was 

calculated by averaging the four sweat sites and reported every 1-min.  

 

Participants then entered the environmental chamber and completed a 3-min warm-up at 80 W, 

followed by 2-min of rest. Participants were instructed to maintain a pedal cadence of 80 
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rev·min-1 at an intensity equivalent to thermoneutral ventilatory threshold until complete 

exhaustion. Exhaustion was defined as voluntary withdrawal or when pedal cadence dropped 

below 70 rev·min-1 for more than 10-s. The coefficient of variation for this test in our 

laboratory is 3.8% while cycling in the heat. Ratings of perceived exertion (RPE) were 

recorded on a 6 to 20 point Borg scale. Thermal comfort (TC) was recorded on a 7-point scale 

where -3 = “much too cool”, 0 = “comfortable”, and 3 = “much too warm” (Bedford, 1936). 

Thermal sensation (TS) was recorded on a 9-point scale where -4 = “very cold”, 0 = “neutral”, 

and 4 = “very hot”. RPE, TC and TS were recorded every 3-min and at completion. One-min 

post exercise, a blood lactate sample was taken from the right ear lobe using a lancet and 

analysed by an automated analyser (Biosen C_Line, EKF diagnostic GmbH, Barleben, 

Germany). Skin thermistors and sweat capsules were also removed post-exercise, before being 

towel-dried and re-weighed to indicate fluid losses during exercise. 

 

Supplementation  

All supplements were prepared in powder form, which were measured using an analytical 

balance (Precisa 125A, Precisa Gravimetrics AG, Zurich, Switzerland) and ingested in a 

gelatine capsule. The capsules contained one of the following: taurine (T) (50 mg∙kg-1 BM) or a 

placebo (P) (maltodextrin) (3 mg∙kg-1 BM) and were administered to participants 2-h prior to 

exercise. The 2-h timing was chosen as it captures the likely range of peak plasma availability 

of taurine after oral administration (Galloway et al., 2008; Ghandforoush-Sattari, Mashayekhi, 

Krishna, Thompson & Routledge, 2010). Participants’ body mass was taken prior to each trial 

to measure the correct dose and the supplements were balanced such that an equal number of 

capsules were ingested between conditions. The taurine dosage followed published 

recommendations (Warnock et al. 2017; Waldron et al., 2018a). The supplements were sourced 

from the company (My Protein, Manchester, UK).  

 

Statistical analysis 

A two-way repeated measures analysis of variance (RM-ANOVA) was conducted, with 

condition (taurine or placebo) and time (10% epochs across the trials) as the independent 

variables. A Greenhouse-Geisser correction was applied when the assumption of sphericity was 

violated. Where interaction effects were found, post-hoc analysis was performed with 

Bonferroni tests to identify pairwise differences. Two-tailed paired samples t-test identified 

significant differences between the performance trials. A Wilcoxon Signed-Rank test was 

performed on non-parametric data across time points. Statistical significance was accepted at P 
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< 0.05 and all analyses were performed on IBM SPSS Statistics (Version 21, IBM Corp., 

Armonk, NY, USA). The magnitude of effect was calculated with partial eta-squared 

(ηp
2) according to the following criteria: 0.02, a small difference; 0.13, a moderate difference; 

0.26 a large difference (Cohen, 1988). Cohen’s d was calculated to interpret the effect of 

pairwise changes. 

 

Results 

Time to exhaustion at the power output associated with ventilatory threshold in 35 °C/40% RH 

was increased by ~ 10% with nine out of the eleven participants extending their performance 

after taurine supplementation (Taurine = 25.16 ± 5.25 min; Placebo = 22.43 ± 4.28 min) (t(10) = 

2.353, p = 0.040, Cohen’s d = 0.70) (Figure 1). There were also no trial order effects of the 

time to exhaustion (P = 0.203). 

 

*** Insert Figure 1 here *** 

 

Core temperature increased with time (F(19,190) = 174.954 , p < 0.001, ηp
2 = 0.946), with no 

main effect for condition (F(1,10) = 0.035 , p = 0.855, ηp
2 = 0.004); however, there was a 

condition × time interaction  (F(19,190) = 3.715 , p < 0.001, ηp
2 = 0.271). Pairwise analysis 

confirmed that core temperature was reduced in the taurine condition only at the 100% epoch 

(Placebo = 38.5 ± 0.4 °C; Taurine = 38.1 ± 0.4 °C) (t(10) = 2.241, p = 0.049) (Figure 2 A). 

Mean skin temperature increased with time in both conditions (F(19,190) = 77.692 , p < 0.001, ηp
2 

= 0.886), without condition effects (F(1,10) = 1.235 , p = 0.293, ηp
2 = 0.110) or an interaction 

with time (F(19,190) = 1.562, p = 0.069, ηp
2 = 0.135) (Figure 2 C). 

 

*** Insert Figure 2 here *** 

 

Mean sweat rate increased with time in both conditions (F(19,190) = 51.921 , p < 0.001, ηp
2 = 

0.839) and was increased in the taurine condition relative to placebo (F(1,10) = 23.218 , p = 

0.001, ηp
2 = 0.699). There was also a large condition × time interaction effect (F(19,190) = 3.654, 

p < 0.001, ηp
2 = 0.268) (Figure 3). Post-hoc analysis revealed that mean sweat rate was higher 
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at all stages beyond 20 % into the exercise test (p < 0.05). At the end of the exercise trial, mean 

local sweat rate was ~13% higher in the taurine condition (Taurine = 687 ± 144 nL·min-1; 

Placebo = 600 ± 194 nL·min-1) (t(10) = 9.624, p = 0.034). Pre-to-post changes in body mass 

were also increased ~ 42 % in the taurine condition (Taurine = 786 ± 232 g; Placebo = 455 ± 

281 g) (t(10) = 5.434, p = 0.024).  

 

*** Insert Figure 3 here *** 

 

Heart rate increased with time in both conditions (F(1.743,17.432) = 166.847, p < 0.001, ηp
2 = 

0.943); however, there were no main effects for condition (F(1,10) = 0.410, p = 0.536, ηp
2 = 

0.039), nor was there an interactions (F(1.706,17.062) = 0.512, p = 0.863, ηp
2 = 0.049). A Wilcoxon 

Signed-Rank test indicated differences in RPE at 18-min (Taurine = 18 ± 1; Placebo = 19 ± 1; Z 

= -2.264, p = 0.024) and end exercise (Taurine = 19 ± 1; Placebo = 20 ± 1; Z = -2.449, p = 

0.014) (Figure 4 A). There were no differences between conditions for thermal comfort or 

thermal sensation (p > 0.05) (Figure 4 B&C).  

 

*** Insert Figure 4 here *** 

 

Post-test B[La] was reduced by 16.5% following taurine supplementation (Taurine = 5.75 ± 

2.15 mmol·L-1; Placebo = 6.85 ± 1.77 mmol·L-1) (t(10) = -2.470, p = 0.033). 

 

Discussion 

We investigated the effects of taurine supplementation on thermoregulation and time to 

exhaustion in the heat. The key findings were that time to exhaustion in the heat (35 °C) 

increased by ~ 10% and sweat rate by ~ 12.7% at end exercise following taurine 

supplementation. The 10% increase in time to exhaustion surpassed the CV% of 3.8%, thus 

denoting a true change in performance. Whilst there were no consistent differences in core 

and skin temperature between conditions during the earlier stages of the time to exhaustion, a 
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lower core temperature was found during the final 10% of the trial and there was a trend for 

‘small’ reductions in skin temperature based on effect sizes. Collectively, these 

thermoregulatory changes might partly explain the observed improvement in performance.  

 

There is growing evidence to support the efficacy of taurine as an ergogenic aid for exercise 

performance (Souza, Del Coso, Casonatto & Polito, 2016; Waldron et al., 2018b). These 

changes are commonly attributed to improved mechanical efficiency (Paulucio et al., 2017) or 

improved efficiency of ATP turnover in the muscle cell (Hansen et al., 2010). Here, we 

extend these observations to report an increase in performance of 10% in the heat (35 °C). 

This change was larger than the typical 2-6% increases in performance reported following 

oral taurine administration in thermoneutral environments (Zhang et al., 2004; Balshaw et al., 

2012; Waldron et al., 2018a). Given that taurine’s capacity to elicit changes in time to 

exhaustion is markedly larger in the heat, our findings naturally infer a role for taurine in 

thermoregulatory control processes.  

 

Endurance exercise in the heat ceases for number of physiological reasons (Tucker & Noakes, 

2009). For example, during exhaustive, fixed-resistance exercise in hot conditions, reductions 

in cycling power output have been reported, alongside declines in cardiac output and stroke 

volume, thus impairing muscle blood flow and oxygenation (Gonzalez-Alonso & Calbet, 

2003). Taurine has a well-established inotropic action on cardiac muscle fibre (Satoh & 

Sperelakis, 1998) and has been shown to increase stroke volume when consumed as part of an 

energy drink (Baum & Weis, 2001). Given the established effects of taurine on cardiac 

myocytes, this might have been anticipated to offset fatigue-induced reductions in cardiac 

efficiency during performance. However, there were no changes in heart rate, which are likely 

to have been lower in the taurine condition if this mechanism were to explain the change in 

performance. As such, the increased performance and delayed fatigue in the taurine condition 

most likely occurred for different reasons.  

 

The changes observed in local sweat rate, total body fluid losses and core temperature were 

remarkable and highlight, for the first time, a significant role for taurine in human 

thermoregulation. Sweat response from eccrine glands is governed by the thermoregulatory 

centre in the hypothalamus, which directs the sympathetic nervous system to increase sweat 

secretion (Shibasaki & Crandall, 2010). These changes in sweat response occurred from the 

early stages of the exercise bout, prior to excessive exercise or external thermal stimulus, and 
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appear to have influenced skin temperature, which was also lower in the taurine condition. 

Core temperature is the net result of heat gain and dissipation, with sweating contributing > 

70% to heat loss during exercise in hot conditions (Marino et al., 2000). Thus, 

thermoregulation is increasingly dependent upon evaporative cooling as an avenue of heat 

loss during exercise. Taurine ingestion appears to augment the local sweating responses, such 

that the rate of rise in core temperature at the later stages of the trial was reduced compared to 

placebo, culminating in a lower core temperature at the end-point of the trial. The cooler skin 

temperature also generates a greater core-shell gradient, thus facilitating convective heat loss. 

The increased thermal stress observed during the placebo condition is most likely responsible 

for the earlier cessation of exercise. Indeed, hyperthermia may cause sub-conscious 

anticipatory reductions in skeletal muscle recruitment and subsequent force production of the 

lower limbs prior to the attainment of the hypothesised ‘critical’ (~ 40 °C) core temperature 

(Tucker, Rauch, Harley & Noakes, 2004). Others have reported relationships (r2 = 0.98) 

between core temperature and electroencephalographic 𝛼 − 𝑡𝑜 − 𝛽  wave ratios, which 

indicate supressed arousal levels and can be used to infer a reduction in central drive (Nielsen, 

Hyldig, Bidstrup, Gonzales-Alonso & Cristoffersen, 2001). Therefore, hyperthermic fatigue is 

mostly commonly ascribed to centrally-acting mechanisms (Nybo, 2008). 

 

Taurine acts as a neuromodulator in various brain areas and is a GABAA receptor agonist (Jia 

et al., 2008). Heat stress induces the release of both GABA and taurine from the 

hypothalamus into the cerebrospinal fluid (CSF), indicating their activity in response to 

temperature changes in the domain of thermoregulatory control (Frosini et al., 2000). 

Similarly, patients with heat stroke, who exhibit an array of neurological disorders, 

demonstrate increases in urinary taurine concentrations following cellular release, that are 

subsequently reduced following recovery from hyperthermic states (Bouchama, El-Yazigi, 

Yusuf & Al-Sediary, 1993). Whilst we did not intend to directly measure central mechanisms 

in this study, the marked increase in autonomic sudomotor responses demonstrated across 

most stages of the trials in the taurine condition strongly infers a change in the centrally-

mediated thermoregulatory set-point. More specifically, we postulate that the resulting 

increase in the onset and volume of sweating in the taurine condition was sufficient to delay 

the progression of core temperature, thus delaying hyperthermic fatigue and extending time to 

exhaustion. Interestingly, plasma taurine can readily cross the blood-brain barrier via a TauT 

(Kang, 2000) and infiltrate hypothalamic regions of the brain, albeit more slowly than central 
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infusions. The accumulation of taurine in these central locations presumably reduces core 

temperature via taurine binding sites or antagonism of GABA receptors, which are established 

effectors of hypothermia via distinct neural pathways (Quéva et al., 2003; Frosini et al., 

2003). Higher plasma availability following oral ingestion is likely to drive the transport of 

taurine across the blood-brain barrier into these central areas, where it can interact with target 

receptors and instigate thermoregulatory responses, such as increasing sudomotor function. 

The changes found in local sweating and core temperature in the taurine condition have 

implications beyond sports and exercise, which could include the application to occupations 

requiring routine heat exposure, such as the emergency or military services. Supplements that 

augment the sweating response could also be useful to counteract milder forms of 

hyperhidrosis. Further work is needed to corroborate these findings and investigate the 

application to other populations.      

 

Owing to its molecular structure, taurine is an endogenously free sulfonic acid and acts to 

control the movement of fluids via osmosis (Cuisinier et al., 2002). Indeed, it is this function 

that explains its extrusion from intra-cellular compartments during exercise, where it is 

transported into the extra-cellular space to prevent cell swelling (Stutzin et al., 1999). It is not 

yet apparent how exogenous supply of taurine effects this process and it has been speculated 

that high plasma concentrations observed after oral ingestion could supress its normal release 

from the cell (Ishikura, Song-Gyu & Ohmori, 2013). It is also possible that higher plasma 

taurine concentrations could attract fluid to the vascular space, thus contributing to plasma 

volume expansion; however, plasma taurine’s relationship with plasma volume is weaker than 

other osmolytes (Cuisinier et al., 2002). It is unlikely that these osmoregulatory effects would 

alter sweat production but there are possible cardiovascular implications that require further 

investigation in the heat.         

   

The similarity in thermal perception between conditions across the relative stages of the 

protocol was surprising, given the improved thermoregulation in the taurine condition. The 

trend for a lower thermal sensation at the end stages of the trial in the taurine condition 

indicates a possible improved perception, yet this didn’t reach significance. On the other 

hand, RPE was reduced at end stages of the trial in the taurine condition. While the power 

output was fixed between conditions and HR was similar, the increased sweat rate, subsequent 

reduction in body temperatures and post-exercise B[La] appear to have collectively 

contributed to the lower RPE. The lower B[La] in the taurine condition was unanticipated, 
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particularly given the longer time to exhaustion. Whilst changes in B[La] have not typically 

reported in thermoneutral environments following taurine supplementation (Waldron et al., 

2018a; Warnock et al., 2017), it is possible that the reduced thermal strain of the taurine group 

lowered the rate of glycolytic flux (Febbraio, 2001). This finding is also worthy of further 

investigation, as it might indicate an indirect influence of taurine on glycolytic metabolism.   

 

A limitation of this study was the absence of plasma or muscle taurine measurements, which 

would confirm the presence of taurine during the exercising period. However, the timing and 

availability of plasma taurine following oral ingestion has been established using identical 

procedures to those adopted here, albeit at lower doses (1.66 g; Galloway et al., 2008), thus, it 

was assumed that the 50 mg/kg would provide adequate delivery of taurine to exert an 

ergogenic effect.    

 

Conclusion 

This is the first study to examine the effect oral taurine ingestion on thermoregulation during 

cycling in the heat. Compared to placebo, taurine supplementation of 50 mg·kg-1 body mass 

increased time to exhaustion (~ 10%) and local sweating (~ 12.7%), while decreasing RPE 

and core temperature in the later stages of exercise, as well as reducing post-exercise B[La]. 

Therefore, this study also provides the first evidence of taurine’s role in thermoregulatory 

processes. Notably, the profound influence of taurine on sudomotor function was an important 

finding of the current study and indicates a potential central mechanism, as previously 

described in animal models. These findings have implications for short-term preparation 

strategies of individuals exercising in the heat. Based on our findings, a single dose of taurine 

2-h prior to training or competition would provide an ergogenic and thermoregulatory effect. 

Given that this is the first study to report on this topic, future research should attempt to 

corroborate our findings across different populations and investigate the potential explanatory 

mechanisms.       
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List of Figures 

Figure 1. Time to exhaustion at the power output associated with ventilatory threshold fol-

lowing taurine supplementation or placebo (n = 11) in a hot environment (35 °C), (* p < 

0.05). 

 

Figure 2. Core and skin temperature during exercise at the power output associated with 

ventilatory threshold following taurine (black) supplementation or placebo (white) in a hot 

environment (35 °C). (A) Core temperature expressed as a proportion of the exercise trial (* p 

< 0.05), (B) Core temperature in real time, (C) Skin temperature expressed as a proportion of 

the exercise trial (* p < 0.05) and (D) Skin temperature in real time (n = 11). 

 

Figure 3. Sweat rate during exercise at the power output associated with ventilatory threshold 

following taurine (black) supplementation or placebo (white) in a hot environment (35 °C). 

(A) expressed as a proportion of the exercise trial (* p < 0.05) and (B) in real time. (n = 11). 

 

Figure 4. Perceptual measures of (A) effort (RPE), (B) thermal comfort (TC) and (C) thermal 

sensation (TS) during exercise at the power output associated with ventilatory threshold 

following taurine (black) supplementation or placebo (white) (n = 11) in a hot environment 

(35 °C), (* p < 0.05).
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