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Abstract
Purpose  The purpose of this study was to determine the primary cues regulating perceived effort and exercise performance 
using a fixed-RPE protocol in severe and moderate hypoxia.
Methods  Eight male participants (26 ± 6 years, 76.3 ± 8.6 kg, 178.5 ± 3.6 cm, 51.4 ± 8.0 mL kg− 1 min− 1 V̇O2max) com-
pleted three exercise trials in environmental conditions of severe hypoxia (FIO2 0.114), moderate hypoxia (FIO2 0.152), and 
normoxia (FIO2 0.202). They were instructed to continually adjust their power output to maintain a perceived effort (RPE) 
of 16, exercising until power output declined to 80% of the peak 30-s power output achieved.
Results  Exercise time was reduced (severe hypoxia 428 ± 210 s; moderate hypoxia 1044 ± 384 s; normoxia 1550 ± 
590 s) according to a reduction in FIO2 (P < 0.05). The rate of oxygen desaturation during the first 3 min of exercise 
was accelerated in severe hypoxia (− 5.3 ± 2.8% min− 1) relative to moderate hypoxia (− 2.5 ± 1.0% min− 1) and normoxia 
(− 0.7 ± 0.3% min− 1). Muscle tissue oxygenation did not differ between conditions (P > 0.05). Minute ventilation increased 
at a faster rate according to a decrease in FIO2 (severe hypoxia 27.6 ± 6.6; moderate hypoxia 21.8 ± 3.9; normoxia 17.3 ± 3.9 
L min− 1). Moderate-to-strong correlations were identified between breathing frequency (r = − 0.718, P < 0.001), blood 
oxygen saturation (r = 0.611, P = 0.002), and exercise performance.
Conclusions  The primary cues for determining perceived effort relate to progressive arterial hypoxemia and increases in 
ventilation.
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Introduction

Exercise performance during an acute exposure to hypoxia 
is impaired via a reduction in arterial oxygen content 
(Fulco et al. 1996, 1998; Calbet et al. 2003a; Amann et al. 
2006b; Romer et al. 2006). In moderate hypoxia, where 
the oxygen fraction of inspired air is reduced to ~ 13–15% 
(FIO2 0.13–0.15), decrements in performance have been 
attributed to a rise in peripheral markers of muscle fatigue, 
which generate afferent feedback to down-regulate motor 
output from the central nervous system (CNS) (Amann 
et al. 2006b, 2007; Romer et al. 2007). A so-called ‘sen-
sory limit’ (Gandevia 2001), therefore, restricts the mani-
festation of peripheral fatigue to prevent catastrophic fail-
ure of any one system. In severe hypoxia (FIO2 < 0.115), 
larger reductions in exercise capacity have been described 
despite relatively less evidence of peripheral fatigue 
(Amann et al. 2007). Here, a hypoxia-sensitive ‘central’ 
component of fatigue mediates a reduction in central motor 
output via brain hypoxia (Subudhi et al. 2009; Vogiatzis 
et al. 2011; Millet et al. 2012; Goodall et al. 2012), thus 
limiting maximal exercise capacity. Indeed, in experiments 
where FIO2 is increased at the point of task failure, exer-
cise performance can be prolonged in severe and moderate 
hypoxia (Amann et al. 2007; Torres-Peralta et al. 2016).

Central processing of the perception of effort and its 
role in setting exercise intensity is heavily debated. The 
subjective rating of perceived exertion, termed RPE, is a 
psychophysiological concept (Borg 1982; Morgan 1994) 
that centrally integrates perceptual, peripheral, experi-
ential, and environmental sensory cues (Hampson et al. 
2001). Indeed, Borg (1982) described the RPE as a con-
scious representation of multiple inputs. To further under-
stand how perceived exertion modulates self-regulated 
exercise, a fixed-RPE protocol was developed, referred to 
as the RPE clamp (Tucker et al. 2006). Here, participants 
exercise at a pre-determined fixed level of perceived exer-
tion on the RPE scale (typically 16, < ‘very hard’) and 
modulate their workload according to the perceived mis-
matches between the expected and actual RPE (Tucker 
2009). In an eloquent design, a recent study controlled 
the rate of arterial hypoxemia (SpO2 98 to 70%) through 
manipulations in FIO2, demonstrating that the rate of 
decline in power output was reliant on the rate change of 
arterial oxygenation during self-regulated exercise perfor-
mance (Farra et al. 2017). Whilst this provides evidence 
of the relationship between SpO2 and the perception of 
exercise intensity in contrived ambient conditions, it over-
looks the responses under fixed reductions in FIO2, such as 
that commonly encountered at altitude. This is important, 
since exposure to steady-state FIO2 conditions provides 
an opportunity for physiological compensations, such as 

increased muscle oxygen delivery or extraction. Based on 
their findings, the rate of change in SpO2 under steady-
state FIO2 is likely to determine exercise perception and 
tolerance, yet this is not currently known. These collective 
organ-level changes could feasibly offset the deleterious 
effects of hypoxia or, more importantly, complicate the 
afferent feedback process. We hypothesized that, during 
exercise at a fixed RPE, power output would decrease in 
accordance with a reduction in FIO2. Therefore, we exam-
ined exercise performance using a fixed RPE protocol in 
severe and moderate hypoxia relative to normoxia, with 
the aim of determining the relationship between time 
to exhaustion and a combination of acute physiological 
responses.

Materials and methods

Participants

Eight male participants volunteered to take part in this study 
(mean ± SD: age 26 ± 6 years; body mass 76.3 ± 8.6 kg; 
stature 178.5 ± 3.6 cm; maximal oxygen consumption, V̇
O2max 51.4 ± 8.0 mL kg− 1 min− 1). All participants were 
sea-level residents and none had recently travelled to alti-
tude in the 3 months prior to the study. Written informed 
consent was obtained from each participant. Participants 
were instructed to avoid consumption of alcohol or caffein-
ated products for 24 h before each visit, as well as strenuous 
exercise 48 h before testing and to arrive fully hydrated. All 
participants gave written informed consent. Ethical approval 
was provided by the St Mary’s University ethics committee 
(ref: SMEC_2017-18_012), which was conducted in accord-
ance with the 1964 Helsinki declaration.

Study design

A randomized, single-blind, crossover design was adopted 
to examine the effect of breathing different oxygen fractions 
of air (FIO2) on exercise at a fixed level of perceived exertion 
using an RPE-clamp protocol (Tucker et al. 2006). A-priori 
sample size was calculated using G*Power (Version 3.1.9.3). 
This was determined according to cycling performance in 
moderate hypoxia (FIO2 = 0.13) relative to normoxia (FIO2 
= 0.20) at ~ 80% maximum work rate (mean difference 4.5; 
pooled SD 2.24) (Goodall et al. 2012). Eight participants 
per group were deemed sufficient to yield a power of 0.82 at 
α = 0.05. The three environmental conditions were rand-
omized by block randomization for groups of three partici-
pants at a time using online software (Urbaniak and Plous 
2015). Participants visited the laboratory on four separate 
occasions, each separated by 1 week. During visit 1, partici-
pants conducted baseline testing to establish V̇O2max and to 
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familiarise with exercising at an RPE of 16 on the 15-grade 
Borg scale (Borg 1982) in ambient air. During visits 2–4, 
participants completed the RPE-clamp protocol in variable 
FIO2 (severe hypoxia, FIO2 = 0.114; moderate hypoxia, FIO2 
= 0.152; ambient air, FIO2 = 0.202).

Experimental procedures

Preliminary testing and familiarisation

All cycling exercise was performed on an electronically 
braked cycle ergometer (Excalibur Sport, Lode, Groningen, 
The Netherlands). The cycling setup was recorded on the 
first visit and replicated for subsequent visits. Participants 
performed a 5-min warm-up at 100 W and a fixed cadence of 
80 r min− 1. The incremental ramp test began at 120 W and 
workload increased at a rate of 24 W min− 1 until volitional 
fatigue. Expired gases were collected and highest average 30 
s reported as V̇O2max. RPE was measured at the end of each 
1-min stage by pointing to a 6–20 RPE scale, which was held 
by an investigator. Following the incremental ramp test, two 
familiarisation exercises were conducted, which were used 
with the intention of calibrating the participant’s RPE-based 
selection of power output in the main trials. The first exer-
cise was replicated before every test and began at 120 W, 
with participants controlling resistance on the ergometer, 
whilst being blinded to actual power output. The aim was 
to achieve an RPE that they perceived as equalling RPE-16 
over a period of 3–5 min. The test was stopped when par-
ticipants indicated that they had reached the desired work 
intensity. The second test began at 20% below the power 
output selected in test 1 and participants were asked to regu-
late resistance on the ergometer, by manually toggling up or 
down on the ergometer’s controls, to maintain an RPE of 
16. Participants were also given significant time to discuss 
and understand the RPE protocol with the researchers both 
before and after these initial familiarisation trials.

Fixed‑RPE protocol

Participants performed three randomized experimental trials, 
separated by 1 week in a hypoxic chamber (Sporting Edge, 
Basingstoke, UK). For each participant, the experimental 
trials were conducted at the same time of day to eliminate 
the effect of circadian variation. Participants performed a 
5-min warm-up at 100 W and a fixed cadence of 80 r min− 1. 
During experimental testing, the cycling ergometer was in 
hyperbolic mode, whereby the participant could adjust their 
power output. No visual feedback was provided, except for 
cadence. After being fitted with a near-infrared spectroscopy 
(NIRS) optode, a heart rate chest strap, and facemask, the 
participants entered the chamber. Participants immediately 

completed the standardised RPE-ramp protocol to establish 
setting of RPE over a 3–5-min period. Participants then 
rested for 5 min to collect baseline data. Finally, they began 
the fixed-RPE protocol, freely regulating their power output, 
starting 20% below their self-selected RPE, as determined in 
the standard ambient air during their first visit. Participants 
were instructed to cycle at a power output that was perceived 
to represent an RPE of 16 on the 15-grade Borg scale (Borg 
1982) and to adjust their power output, such that an RPE of 
16 was maintained. An RPE of 16 represents a verbal cue of 
between ‘hard’ and ‘very hard’ on the Borg Scale. During 
the fixed-RPE trial, the highest power output achieved dur-
ing a 30-s period in each condition was recorded and partici-
pants exercised until their power output declined to 80% of 
this initial value. The trial was stopped when power output 
fell below this value for > 10-s. Verbal feedback was deliv-
ered in a standard format to remind participants to maintain 
an RPE of 16 at 1 min intervals throughout the trial. Par-
ticipants were encouraged to constantly reassess whether 
they were still exercising at RPE-16. They were blinded to 
distance covered, elapsed time, heart rate, and power output.

Environmental chamber

Oxygen fraction was controlled by an environmental 
hypoxic chamber (Sporting Edge, Basingstoke, UK). 
The three conditions were maintained across all trials 
as follows: severe hypoxia (FIO2 = 0.114; PIO2 = 82 ± 
1 mmHg), moderate hypoxia (FIO2 = 0.152; PIO2 = 109 
± 1 mmHg), and ambient air (FIO2 = 0.202; PIO2 = 144 
± 2 mmHg). Temperature and humidity were controlled 
throughout at 19.4 ± 0.6 °C and 39 ± 4.3%, for all sessions 
and barometric pressure was recorded as 1013 ± 4 hPA.

Cardiorespiratory measures

Expired gases were measured breath-by-breath to assess 
oxygen consumption ( V̇O2), minute ventilation, breathing 
frequency, tidal volume and end-tidal oxygen (PETO2), 
and carbon dioxide (PETCO2) continuously throughout the 
test (Vyntus CPX; CareFusion; Hochberg, Germany) and 
averaged into 15-s epochs across all the trials. The gas 
analyzer was calibrated before every trial with the gases 
of known concentration (15.95 O2, 4.97% CO2, BAL. N2) 
and the turbine volume transducer was calibrated auto-
matically by the system at flow values of 2 L s− 1 and 0.2 
L s− 1. Heart rate was recorded continuously throughout 
the trials (Polar Heart Rate Monitor V800, Warwick, UK). 
SpO2 was sampled at 1 Hz using a finger pulse oximeter 
(Vyntus CPX; CareFusion; Hochberg, Germany) attached 
to the right index finger.
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Near‑infrared spectrometry

Participants were instrumented with an NIRS optode over 
the right vastus lateralis to monitor the absorption of light 
in the muscle tissues (Portamon, Artinis Medical Systems, 
Zetten, The Netherlands). The optode was affixed over the 
muscle belly of the right vastus lateralis muscle along the 
vertical axis of the thigh, 2/3 between the greater trochanter 
and the lateral epicondyle of the femur. The optode was 
secured with tape and covered with an optically dense cloth 
to minimize the possibility that extraneous light could influ-
ence the NIRS signal. The placement position was marked 
with indelible ink to ensure accurate placement for future 
visits. The system is a two-wavelength continuous wave sys-
tem that simultaneously uses the modified Beer–Lambert 
law and spatially resolved spectroscopy methods. Changes in 
tissue oxyhaemoglobin (O2Hb), deoxyhaemoglobin (HHb), 
and total haemoglobin (tHb) were measured using the dif-
ferences in the absorption characteristics of infrared light 
at 760 and 850 nm. Differential path factor (DPF) of 4 was 
used throughout. NIRS data were connected to a computer 
by Bluetooth for acquisition at 10 Hz. Tissue oxygenation 
index (TSI) represents the ratio of O2Hb-to-tHb concentra-
tion and was reported in response to exercise and used to 
assume changes in intramuscular oxygen status (Ferrari et al. 
2004).

Rating of perceived exertion (RPE)

Participants were thoroughly briefed on the RPE scale before 
commencing the fixed-RPE trials. In line with the ACSM 
guidelines (American College of Sports Medicine 2000), 
participants were instructed to pay close attention to how 
difficult the exercise felt, combining total exertion, fatigue, 
and physical stress in hypoxia, without considering one 
particular factor, such as leg pain, shortness of breath, or 
anticipation of how they might feel several minutes later. 
We attempted to anchor the RPE scale by highlighting the 
self-reported RPE during the early stages of the incremen-
tal ramp test (RPE ~ 10–11) and the final stages of the test 
(RPE ~ 19–20). To further the enable visualisation of the 
intensity, participants were provided with associations 
between the RPE and intensity–duration relationships. An 
example of this was the guidance that an RPE of 13 was akin 
to a 2-h cycle, whilst holding a conversation; RPE-15 being 
close to a 1-h steady-state maximal effort, where sustained 
conversation would be difficult; and RPE-16 being a maxi-
mal effort that they could only sustain for around 25–35 min.

Statistical analysis

All statistical analyses were performed using SPSS (IBM 
SPSS statistics 22 Inc, USA). A two-way analysis of variance 

(ANOVA) for repeated measures was used to test for within-
group effects across time in and conditions. If sphericity 
was violated a Greenhouse–Geisser correction was applied. 
When a significant difference was found for a main effect 
(condition or time), post hoc pairwise comparisons were 
made, incorporating a Bonferroni adjustment. Magnitude 
of the effect was calculated with partial eta-squared (ηp2) 
according to the following criteria: 0.02, small; 0.13, mod-
erate; 0.26 large, or using Cohen’s d (d) for pairwise com-
parisons using: 0.2, small; 0.5, moderate; 0.8, large (Cohen 
1988). Differing trial durations meant that power data were 
normalized with respect to time. Cardiovascular data were 
analyzed by averaging 30-s data at start, middle, and end 
points, across each trial. Correlations were performed to 
examine the relationship between the rate change over the 
first 3 min of exercise in oxygen saturation, muscle oxygena-
tion, minute ventilation, tidal volume, breathing frequency, 
oxygen consumption, PETCO2, and heart rate to variance 
in exercise time in severe hypoxia, moderate hypoxia, and 
normoxia. Data are presented as mean ± SD (n = 8). Signifi-
cance was set at P < 0.05.

Results

Upon entering the hypoxic chamber and prior to the main 
experimental trial, participants conducted a short self-
selected ramp to an RPE of 16 over 3–5 min. The achieved 
power output associated with an RPE of 16 was differ-
ent between conditions (F(1.180,8.262) = 9.558, P = 0.012, 
ηp2 = 0.577) (Table 1), with pairwise analysis, confirm-
ing that the power output achieved in severe hypoxia was 
reduced relative to moderate hypoxia and normoxia. There 
were no differences between the peak power achieved in 
the ramp protocol and the peak power achieved during the 
experimental trial (Table 1).

Exercise in hypoxia

During the exercise trial at a fixed RPE of 16, peak power 
output was achieved between 10 and 20% of the trial 

Table 1   Peak power output during a short ramp to RPE 16 and the 
peak power achieved during the main experimental exercise trial

Values are means ± SD for eight participants
*P < 0.05 relative to moderate hypoxia
# P < 0.05, relative to normoxia

Severe hypoxia Moderate hypoxia Normoxia

Peak power ramp 
(W)

170 ± 30*# 204 ± 44 207 ± 35

Peak power trial (W) 183 ± 29*# 201 ± 35 208 ± 25
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duration (Fig. 1a). Exercise time was reduced in accord-
ance with a reduction in FIO2 (severe hypoxia = 428 ± 210 s; 
moderate hypoxia = 1044 ± 384 s; normoxia = 1550 ± 590 s) 
(F(2,14) = 24.526, P < 0.001, ηp2 = 0.778) (Fig. 1b). Modula-
tion of power output across the exercise trial decreased with 
time (F(10,70) = 32.950, P = 0.000, ηp2 = 0.825) and was dif-
ferent between condition (F(1.555,15.55) = 60.432, P = 0.000, 
ηp2 = 0.858) (Fig. 1a). However, the rate of decrease in power 
output identified from 20% into the trial until exercise ces-
sation (100%) was not significantly different between condi-
tions (P < 0.05).

Blood oxygen saturation

At baseline, SpO2 in the 30 s prior to exercise was 
reduced in both severe (85 ± 2.7%) and moderate 
hypoxia (94 ± 2.0%) relative to normoxia (98 ± 0.7%) 

(F(2,14) = 132.501, P < 0.0001, ηp2 = 0.950). During 
exercise, SpO2 decreased with time (F(2,14) = 55.871, 
P < 0.0001, ηp2 = 0.889) and decreased relative to FIO2 
(F(2,14) = 197.899, P < 0.0001, ηp2 = 0.966), demonstrat-
ing an interaction effect (F(4,28) = 18.255, P < 0.0001, 
ηp2 = 0.723). Follow-up pairwise analysis confirmed that 
all conditions were different from each other (P < 0.05). 
End-exercise levels were decreased in severe hypoxia 
(72 ± 5%) and moderate hypoxia (87 ± 3%) relative to 
normoxia (96 ± 2%). The rate of oxygen desaturation the 
first 3 min of exercise was accelerated in severe hypoxia 
(− 5.3 ± 2.8% min− 1) relative to moderate hypoxia 
(− 2.5 ± 1.0% min− 1) with both being faster than nor-
moxia where the change was small (− 0.7 ± 0.3% min− 1) 
(F(2,14) = 18.571, P < 0.0001, ηp2 = 0.726) (Table 1). At the 
point of exercise cessation relative to baseline measures, 
SpO2 was decreased by ~ 14% in severe hypoxia and ~ 
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8% in moderate hypoxia and maintained within ~ 3% in 
normoxia (Fig. 2a).

Muscle oxygenation

Muscle oxygenation at rest was similar across all the condi-
tions (severe hypoxia, 70 ± 3%TSI; moderate hypoxia, 72 
± 3%TSI; normoxia, 72 ± 3%TSI). TSI decreased with time 
(F(1.122,7.855) = 122.771, P = 0.000, ηp2 = 0.946) falling rapidly 
during the first few seconds of exercise in each FIO2 and 
reaching a steady state that was not different between each 
condition (F(2,14) = 0.906, P = 0.426, ηp2 = 0.115). Indeed, 
the rate of change in muscle oxygenation in each FIO2 was 
not different (P < 0.05). At the point of withdrawal from the 
task, TSI was remarkably similar between conditions (severe 
hypoxia, 52 ± 7%TSI; moderate hypoxia, 48 ± 5%TSI; nor-
moxia, 51 ± 6%TSI) (Fig. 2b).

Ventilatory measures

M i n u t e  ve n t i l a t i o n  i n c r e a s e d  w i t h  t i m e 
(F(1.107, 7.750) = 233.333, P < 0.0001, ηp2 = 0.971) and 
was different between FIO2 (F(2,14) = 25.166, P = 0.001, 
ηp2 = 0.782) with an interaction effect (F(4, 28) = 5.767, 
P = 0.002, ηp2 = 0.452). Follow-up pairwise analysis 

confirmed that minute ventilation across the entire trial 
was increased in severe hypoxia (P = 0.002, d = 1.83) and 
moderate hypoxia (P < 0.001, d = 1.51) relative to normoxia 
(Fig. 3a). The rate at which minute ventilation increased 
over the first 3 min of exercise was accelerated relative to 
reducing FIO2 (F(2,14) = 22.868, P < 0.001, ηp2 = 0.766), with 
severe hypoxia (27.6 ± 6.6 L min− 1) and moderate hypoxia 
(21.8 ± 3.9 L min− 1) showing faster changes than in nor-
moxia (17.3 ± 3.9 L min− 1). To understand the changes in 
minute ventilation, breathing frequency and tidal volume 
were further analyzed. Breathing frequency increased with 
time (F(2,14) = 128.123, P < 0.0001, ηp2 = 0.948), but was 
not different between condition (P > 0.05), but showed an 
interaction effect (F(4,28) = 45.859, P = 0.005, ηp2 = 0.405) 
(Fig. 3c). The rate of increase across the first 3 min of exer-
cise was different in each FIO2 (F(2,14) = 25.458, P < 0.001, 
ηp2 = 0.784) with breathing frequency increasing by 4.4 ± 1.9 
breaths min− 1 in severe hypoxia (P = 0.008, d = − 1.45) and 
3.5 ± 1.4 breaths min− 1 in moderate hypoxia (P < 0.001, d 
= − 1.16) relative to normoxia (1.9 ± 1.5 breaths min− 1). 
Tidal volume increased with time (F(2,14) = 12.798, 
P < 0.001, ηp2 = 0.921) and condition (F(2,14) = 23.586, 
P < 0.001, ηp2 = 0.771). Follow-up pairwise analysis con-
firmed tidal volume was increased in severe hypoxia 
(P = 0.002, d = 1.65) and moderate hypoxia (P = 0.014. 
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d = 1.03) relative to normoxia (Fig. 3b). However, the rate 
of change in tidal volume between condition was not dif-
ferent (P < 0.05) (Table 2). There were main effects of time 
for PETCO2 (F(2,14) = 3.725, P = 0.05, ηp2 = 0.347) and 
condition (F(2,14) = 9.768, P = 0.002, ηp2 = 0.583), with an 
interaction effect (F(4, 28) = 4.258, P = 0.008, ηp2 = 0.378). 
Pairwise comparisons confirmed that PETCO2 was reduced 
in severe hypoxia relative to normoxia (P = 0.015, d = 
− 0.98) (Fig. 4a). There was no effect of time for PETO2 
(F(2,14) = 1.267, P = 0.312, ηp2 = 0.153), but a main effect 
of condition (F(2,14) = 1210.515, P < 0.001, ηp2 = 0.994), 
with an interaction effect (F(2.014, 14.096) = 4.129, P = 0.039, 
ηp2 = 0.371). Pairwise comparisons confirmed that PETO2 
was reduced in severe hypoxia relative to normoxia 
(P < 0.001, d = − 17.75) and moderate hypoxia (P = 0.002, 
d = − 17.82) (Fig. 4b).

Cardiorespiratory measures

There  were  main  e f fec t s  o f  t ime  fo r  V̇ O 2 
(F(1.073, 7.510) = 467.663, P < 0.0001, ηp2 = 0.985) and 

condition (F(2,14) = 35.680, P < 0.001, ηp2 = 0.836), 
with an interaction effect (F(4, 28) = 15.531, P = 0.002, 
ηp2 = 0.689). Pairwise comparisons confirmed that V̇O2 
was reduced in severe hypoxia relative to both moderate 
hypoxia (P < 0.001, d = − 1.52) and normoxia (P = 0.001, 
d = − 1.32) (Fig. 5a). The rate of change in V̇O2 from base-
line to 3 min into exercise was different according to FIO2 
(F(2,14) = 8.800, P = 0.003, ηp2 = 0.557) with a slower rate 
change in severe hypoxia (0.6 ± 0.1 L min− 1) relative to 
moderate hypoxia (0.8 ± 0.1 L min− 1) (P = 0.024, d = 1.42) 
and normoxia (0.7 ± 0.1 L min− 1) (P = 0.015, d = 1.05). 
V̇CO2 showed main effects for time (F(2,14) = 281.038, 
P < 0.001, ηp2 = 0.976), but no differences between con-
dition or rate of change (P > 0.05). Heart rate increased 
with time during exercise (F(2, 14) = 806.597, P < 0.001, 
ηp2 = 0.991) and plateaued at a similar point, with no dif-
ferences between conditions (P > 0.05). Descriptively, 
heart rate appeared to increase and reach steady state 
faster in severe hypoxia (Fig. 5b); however, there was no 
significant change in rate during the first 3 min of exercise 
between conditions (P > 0.05).

Table 2   Rate of change in 
physiological variables during 
the first 3 min of exercise in 
severe hypoxia, moderate 
hypoxia, and normoxia

Values are means ± SD for eight participants
SpO

2
 oxygen saturation, TSI tissue saturation index, V̇O2 oxygen consumption

*P < 0.05 relative to normoxia; #P < 0.05, relative to moderate hypoxia

Severe hypoxia Moderate hypoxia Normoxia

Time (s) 428 ± 210*# 1044 ± 384* 1550 ± 590
Power (W% min− 1) − 0.4 ± 0.1 − 0.3 ± 0.1 − 0.4 ± 0.1
SpO2 (% min− 1) − 5.3 ± 2.8*# − 2.5 ± 1.0* − 0.7 ± 0.3
TSI (% min− 1) − 3.1 ± 0.7 − 3.4 ± 1.2 − 3.6 ± 1.5
Heart rate (bpm min− 1) 23.6 ± 4.7 22.0 ± 6.5 22.4 ± 2.2
Minute ventilation (L min− 1) 27.6 ± 6.6*# 21.8 ± 3.9* 17.3 ± 3.9
Breathing frequency (breaths min− 1) 4.4 ± 1.9*# 3.5 ± 1.4* 1.9 ± 1.5
Tidal volume (L min− 1) 0.5 ± 0.1 0.6 ± 0.2 0.6 ± 0.2
V̇O2 (L min− 1) 0.6 ± 0.1* 0.8 ± 0.1* 0.7 ± 0.1
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represented as severe hypoxia (black circle), moderate hypoxia (grey 
circle), and normoxia (white circle)



1220	 European Journal of Applied Physiology (2019) 119:1213–1224

1 3

Rate change effects on exercise performance

Moderate-to-strong correlations were identifed between the 
rate of change during the first 3 min of exercise in breath-
ing frequency (r = − 0.718, P < 0.001) and SpO2 (r = 0.611, 
P = 0.002) and exercise duration at a fixed RPE in differing 
FIO2.

Discussion

The purpose of the study was to investigate the effect of 
severe and moderate hypoxia on exercise performed at a 
fixed RPE in reference to normoxia. As anticipated, our 
findings demonstrate that performance time was diminished 
when exposed to decreasing FIO2, meaning that participants 
down-regulated their work load as a result of increasing 
levels of hypoxia. Increases in breathing frequency and 
blood oxygen desaturation during the early stages of exer-
cise were correlated with reductions in task performance. 
Despite these changes, oxygen extraction at the muscle (as 
indicated by NIRS) appeared to be tightly regulated to match 
the metabolic demand, suggesting that muscle oxygenation 
is not involved in determining perception during the early 
stages of setting exercise intensity. Together, the early rate 
of change in ventilation and arterial hypoxemia appears to 
drive the selection of exercise intensity associated with a 
fixed RPE in hypoxia.

Reductions in exercise performance in hypoxia have been 
attributed to depleted arterial oxygen content (Fulco et al. 
1996, 1998; Calbet et al. 2003a; Amann et al. 2006b; Romer 
et al. 2006). Breathing hypoxic gas leads to a decrease in 
the arterial partial pressure of oxygen, oxygen saturation 
of haemoglobin, and the amount of oxygen dissolved in the 
plasma. Consequently, arterial oxygen content is reduced. 
Here, a reduction in FIO2 decreased exercise time by ~ 72% 

in severe hypoxia (FIO2 < 0.115) and by ~ 33% in moderate 
hypoxia (FIO2 ~ 0.15), relative to normoxia. There was some 
evidence of inter-individual responses with two participants 
showing a reduced sensitivity to hypoxia. Whilst a num-
ber factors have been presented to explain responders and 
non-responders to hypoxia and altitude (Fulco et al. 1998), 
these individuals performed relatively poorly in normoxia 
and recorded low aerobic capacity, suggesting that this may 
be related to fitness status. Across the group, SpO2 was 
maintained within 3% of resting levels during normoxia; 
however, upon acute exposure to moderate hypoxia, resting 
SPO2 was reduced by ~ 4% and decreased by a further 8% 
across the exercise trial. In severe hypoxia, these reductions 
in SpO2 were much greater, decreasing by ~ 14% at rest, 
with a further decrease of 14% (SPO2 ~ 72%) observed at 
end-exercise. Reductions in exercise performance in mod-
erate hypoxia have largely been attributed to peripheral 
mechanisms, where a decrease in arterial oxygen content 
and impaired oxygen delivery to the working muscle leads 
to a subsequent metabolic perturbation (Hogan et al. 1999). 
This work has been advanced by studies describing compa-
rable levels of peripheral muscle fatigue via evoked maxi-
mal contractions following exhaustive exercise in normoxia 
and hypoxia despite a substantial reduction in exercise time 
(Amann et al. 2006b; Romer et al. 2006, 2007; Goodall 
et al. 2012). Greater reductions in performance described 
in severe hypoxia have been attributed to greater impair-
ments in pulmonary gas exchange, reduced limb blood 
flow, and reductions in cardiac output (Calbet et al. 2003a). 
However, experiments demonstrate rapid improvements in 
exercise performance and cerebral oxygenation following a 
fast transition from breathing gas that is severely hypoxic to 
hyperoxic, at the point of exhaustion, supporting a central 
role (Amann et al. 2006a).

We examined how the initial exposure to a hypoxic 
environment would impact determination of the exercise 
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intensity associated with 16 on the Borg RPE scale (Borg 
1982). Changes in perceived exertion may be determined 
during the beginning stages of exercise via a range of per-
ceptual, peripheral, experiential, and environmental sensory 
cues to enable task completion within the physiological lim-
its of the body (Hampson et al. 2001; St Clair Gibson et al. 
2006). In both normoxic and moderate hypoxic conditions, 
the selected power output achieved within several minutes 
was comparable; however, in severe hypoxia, power output 
was reduced by ~ 18%. Whilst the ability to generate maxi-
mal power is unaffected by severe levels of hypoxia (Calbet 
et al. 2003b), supporting the argument that motor drive is 
unaffected upon acute exposure, the heightened perception 
of effort observed here may reflect a detrimental effect on 
decision-making processes (Niedermeier et al. 2017), cogni-
tion (McMorris et al. 2017), or a teleoanticipatory reduction 
in power output to maintain homeostasis (St Clair Gibson 
et al. 2006). During exercise in hypoxia, cerebral vascular 
conductance is continually adjusted to maintain oxygen 
delivery when a reduction in arterial oxygen concentration 
occurs (Curtelin et al. 2018). However, reductions in cer-
ebral oxygenation have been described at rest and during 
exercise in hypoxia (Subudhi et al. 2009). Whilst the brain 
can compensate by increasing oxygen extraction (Gonzalez-
Alonso et al. 2004), neuronal function can also be inhibited 
(Neubauer et al. 1990) which may impact higher cognitive 
functions. Whilst we did not directly measure cerebral oxy-
genation or cerebral blood flow, we did observe a reduc-
tion end-tidal carbon dioxide (PETCO2) in severe hypoxia 
relative to normoxia. A close relationship exists between 
PETCO2 and cerebral blood flow (Ide et al. 2003), suggest-
ing that cerebral blood flow may have been reduced dur-
ing exercise in severe hypoxia. Hypocapnia reduces cer-
ebral blood flow by as much as ~ 3% for every ~ 1 mmHg 
change in PETCO2 (Ringelstein et al. 1992). Based on an 
observed ~ 8 mmHg difference during exercise in normoxia 
and severe hypoxia (Fig. 4a), this could equate to a ~ 24% 
reduction in cerebral blood flow. It should also be noted 
that PETCO2 sensitivity is increased by acute exposure to 
hypoxia (Jensen et al. 1996; Poulin et al. 2002) and the effect 
on PETCO2 sensitivity has shown differential effects (For-
tune et al. 1992; Vovk et al. 2002). Therefore, these observa-
tions should be further explored.

At submaximal exercise intensities when arterial oxy-
genation is reduced, it is probable that oxygen delivery to 
exercising muscles is compromised. However, compensa-
tory mechanisms increase oxygen extraction or blood flow to 
maintain muscle oxygen supply (Amann and Calbet 2008). 
Remarkably, vastus lateralis oxygen saturation assessed 
via NIRS, did not differ, irrespective of the level of arterial 
hypoxemia experienced, suggesting comparable oxygena-
tion in the primary exercising muscles during cycling. This 
has been previously observed during submaximal exercise 

in both severe and moderate hypoxia (Millet et al. 2012). 
Here, it was reasoned that afferent signalling, emanating 
from the metabolic environment at the muscle, is unlikely 
to have changed between conditions and, therefore, could 
not explain the reductions in exercise performance. On 
this basis, it was postulated that tissue deoxygenation was 
unlikely to play a role in determining exercise intensity. 
However, the metabolic adaptations and changes in blood 
flow to maintain constant tissue oxygenation may have con-
tributed to afferent signalling. In the current study, the rate 
of change in TSI% during the first 3 min of exercise did not 
differ according to FIO2, yet it transitioned to a lower steady 
state from the onset of exercise across all the conditions. 
Therefore, working muscles were able to match oxygen 
delivery and extraction to meet the metabolic demand dur-
ing submaximal exercise, despite an increasing physiological 
perturbation.

Reductions in FIO2 also corresponded with increases in 
minute ventilation. End-exercise minute ventilation was aug-
mented by 41% and 24% in severe and moderate hypoxia, 
respectively, compared to normoxia. Ventilation during exer-
cise is controlled via a balance of centrally mediated feed-
forward commands and peripheral feedback that increases 
the rate and depth of breathing according to the demands 
imposed by the exercise intensity (Kaufman and Forster 
1996). Changes in the partial pressure of blood gases are 
sensed by both central and peripheral chemoreceptors. In 
the brain, chemoreceptors respond to changes in brain tissue 
CO2/[H+] (Nattie and Li 2009; Tipton et al. 2017). Peripher-
ally, chemoreceptors located in the carotid artery respond to 
low arterial O2 and high arterial CO2. The increased ventila-
tory response during the majority of the exercise trial was 
achieved by an increased tidal volume, which is typically 
the most efficient mechanical way to increase minute venti-
lation commensurate with metabolic needs and decreasing 
arterial blood gas tensions (Tipton et al. 2017). During the 
early stages of exercise, the rate of increase in breathing 
frequency was inversely related to the reductions in ambi-
ent FIO2 and was the strongest predictor of exercise time in 
hypoxia. The sensations of ventilation and breathing discom-
fort are consciously monitored during exercise (Robertson 
1982). Indeed, the relationship between RPE and ventilation 
is well established (Cafarelli and Noble 1976; Robertson 
1982; Killian 1998; Nicolo et al. 2016). In hypoxia, it is, 
therefore, possible that the rapid change in ventilation during 
exercise may have potentiated a greater conscious awareness, 
contributing to both the initial setting of exercise intensity 
and the modulation of perceived exercise intensity thereafter.

In an attempt to further examine the acute effects of 
hypoxia, we determined the rate change of the physiologi-
cal measures taken during the first 3 min of exercise when 
an approximate steady state was obtained. We found that 
rate changes in breathing frequency and blood oxygen 
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desaturation showed moderate-to-strong correlations with 
performance time. A recent study by Farra et al. (2017) ele-
gantly demonstrated that, when the rate of SpO2 was altered 
via FIO2, faster arterial deoxygenation resulted in a greater 
decline in perceptually controlled exercise performance 
(Farra et al. 2017). They suggested that RPE was sensitive 
to both the rate of change and absolute magnitude of arte-
rial deoxygenation, which we can partially support based 
on a fixed hypoxic environment. Interestingly, in contrast 
to our findings, they reported no difference in breathing fre-
quency between the experimental conditions (fast, medium 
and slow desaturations). This may reflect the gradual reduc-
tion in SPO2 controlled by Farra et al. (2017), which may 
have masked the relative contributions of the other candi-
date sensory cues, such as breathing rate, that combine to 
inform higher brain centres of the homeostatic disturbances. 
Indeed, these early cues appear to influence the selection 
of the initial exercise intensities and the subsequent power 
output that is sustainable for the entire exercise trial. Future 
work should explore the relationship between breathing fre-
quency and exercise time in hypoxia and practical solutions 
to reduce breathing frequency may facilitate improvements 
to performance.

The relationship between exercise regulation, pacing, and 
RPE is still heavily debated. A three-dimensional frame-
work has recently been proposed as a multidimensional 
model of volitional self-regulatory control and perceived 
fatigability (Venhorst et al. 2018). The model combines a 
sensory-discriminatory dimension (peripheral and central 
sensations), an affective-motivational dimension (arousal 
and motivation), and a cognitive-evaluative dimension (exer-
tion and task aversion) (Venhorst et al. 2018). Importantly, 
this model accounts for both external and internal mediating 
factors in the generation of RPE. These multiple inputs are, 
therefore, continually processed, integrated, and interpreted, 
consciously or otherwise, to alter pacing behaviour in antici-
pation of potential threats to homeostasis (Hampson et al. 
2001; Noakes 2004; Tucker 2009; Venhorst et al. 2018). 
Such complex psychophysiological interactions, therefore, 
provide a construct for the observed behavioural differences 
in pacing in severe and moderate hypoxia when exercis-
ing according to a fixed RPE. As we reported, the rate of 
decrease in power output did not differ between conditions 
once peak power was achieved; hence, the early setting of 
an acceptable perceived exercise intensity appears crucial 
to exercise performance. Whilst it is likely that the exer-
cising template is updated as exercise ensues (Brick et al. 
2016), the interplay between such dimensions in generating 
RPE when challenged with reduced FIO2 will require further 
investigation. Therefore, we propose that the early setting of 
task intensity in a hypoxic environment is chiefly based upon 
two primary physiological cues of ventilation and SpO2, thus 
determining performance.

Limitations

Attenuated perceptual responses after hypoxic training 
have been described (Brocherie et al. 2017), suggesting an 
improved tolerance or acclimation to hypoxia after only one 
session. The subsequent effects of prior exposure on per-
ception and exercise intensity using the fixed-RPE protocol 
are unknown and warrant further investigation. Whilst the 
measures of blood oxygen saturation and muscle tissue oxy-
genation were recorded in this study, we did not measure 
cerebral oxygenation. Our speculation regarding the greater 
reduction in exercise during exposure to severe hypoxia is 
largely supported by a theoretical reduction in brain oxy-
genation. In comparable levels of hypoxia, others (Amann 
et al. 2007; Subudhi et al. 2007, 2009; Goodall et al. 2012) 
have reported such changes, therefore, despite this being a 
limitation to our findings, it is plausible that comparable 
levels of cerebral oxygenation may have occurred. We also 
were able to examine PETCO2 data which closely align with 
change in cerebral blood flow as previously discussed. In 
addition, whilst we noted the comparable levels of muscle 
tissue oxygenation during exercise in hypoxia, further analy-
sis will be required to determine if a stable oxygen condition 
was met by increases in blood flow or reduced metabolic 
demand, which may give further insight into the afferent pro-
cesses that may underlie this observation. Finally, measures 
of peripheral muscle fatigue would have been useful to quan-
tify the level of fatigue experienced and further support our 
conclusions regarding peripheral and central mechanisms.

Conclusions

In conclusion, severe and moderate hypoxia elicited reduc-
tions in exercise when controlled at a fixed RPE. The pri-
mary cues for determining perceived effort related to the 
decrease in arterial hypoxemia and increase in ventilation, 
which was largely driven by an increase in breathing fre-
quency. The strong relationships found between exercise 
time and both ventilation and SpO2 support the role of 
these physiological cues in setting the early intensity of 
perceptually controlled exercise.
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