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Abstract (236 words) 24 

 25 

Blood test data were traditionally confined to the clinic for diagnostic purposes, but are now 26 

becoming more routinely used in many professional and elite high-performance settings as a 27 

physiological profiling and monitoring tool.  A wealth of information based on robust research 28 

evidence can be gleaned from blood tests including the identification of iron, vitamin or energy 29 

deficiency; the identification of oxidative stress and inflammation; and the status of red blood 30 

cell populations.  Serial blood test data can be used to monitor athletes and make inferences 31 

about the efficacy of training interventions, nutritional strategies or indeed the capacity to 32 

tolerate training load. Via a profiling and monitoring approach, blood biomarker measurement 33 

combined with contextual data has the potential to help athletes avoid injury and illness via 34 

adjustments to diet, training load and recovery strategies.  Since wide inter-individual 35 

variability exists in many biomarkers, clinical population-based reference data can be of 36 

limited value in athletes, and statistical methods for longitudinal data are required to identify 37 

meaningful changes within an athlete.  Data quality is often compromised by poor pre-analytic 38 

controls in sport settings.  The biotechnology industry is rapidly evolving, providing new 39 

technologies and methods, some of which may be well suited to athlete applications in the 40 

future.  This review provides current perspectives, limitations and recommendations for sports 41 

science and sports medicine practitioners using blood profiling and monitoring for nutrition 42 

and performance purposes. 43 

 44 

 45 

  46 
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1.0 Introduction 47 

 48 

Many professional and Olympic level athlete settings comprise comprehensive sports 49 

medicine and sports science support services, with an objective of: 1. achieving the highest 50 

possible level of performance with the lowest number of days lost to injury or illness [1]; and 51 

2. a duty of care to protect athletes from long term negative health consequences of their sport 52 

[2].  A wealth of measurable variables of task specific performance, training load, physiology, 53 

health and wellness exist to facilitate this which can be used to guide coaches and athletes.  In 54 

many cases this now includes blood profiling and monitoring yet there has been no recent 55 

review of the practical application of blood profiling and monitoring in sport aimed at this 56 

interdisciplinary team.  Here, we define ‘blood profiling’ as any blood testing where the data 57 

are applied beyond a medical diagnostic or anti-doping purpose.  This includes the use of 58 

biomarkers to assess the efficacy of training interventions, inform nutritional strategies, and 59 

assess the capacity to tolerate training load.  We define ‘blood monitoring’ as tests that are 60 

conducted frequently (e.g. once per micro-cycle) in order to describe the recovery status of the 61 

athlete.   62 

There are a host of positive and negative outcome indicators that can be found within 63 

the blood that may corroborate or contrast with subjective athlete reports of performance 64 

readiness and symptoms, or other objective test data.  These can help the practitioner decide 65 

whether an athlete is likely to be able to sustain or adapt to training/high performance or to 66 

assess the efficacy of an intervention.  For example, a high testosterone to cortisol ratio suggests 67 

greater anabolic drive and has been strongly associated with positive training and performance 68 

outcomes [3]; chronically low energy availability (evident in a reduction in triiodothyronine as 69 

an example) reduces the ability to adapt to training [4] while also being a risk factor for bone 70 

stress injuries [5]; low iron status compromises the erythropoietic effects of altitude linked to 71 
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endurance performance [6]; and vitamin D deficiency is known to compromise immunity, 72 

muscle repair and bone health [7, 8]. 73 

The aim of this review is to provide a useful practical guide to blood biomarker profiling 74 

and monitoring; it is not intended to be an exhaustive summary of the literature.  It is beyond 75 

the scope of the present review to discuss sampling of other body fluids such as saliva, urine 76 

and tear fluid [9] or to discuss advanced techniques emerging in sports science such as 77 

metabolomics and “athleticogenomics” [10-12].  This is not intended to diminish their future 78 

importance. 79 

Importantly, there are a number of considerations that are often overlooked in the 80 

application of blood biomarker measurement in sport including: 1. consideration given to what 81 

is ‘normal’ and what constitutes a meaningful deviation from normal for each individual 82 

athlete; 2. pre-testing considerations such as the time of day, posture, fasting/hydration status, 83 

transportation and storage of samples, the effects of recent training sessions (i.e. timeline for 84 

the restoration of homeostasis for each analyte); 3. sports specific expertise present to interpret 85 

and address actions arising from testing; 4. appreciation of plasma volume shifts where the 86 

biomarker is volumetric in nature, e.g. haemoglobin.   87 

1.1 Screening vs. Monitoring 88 

Depending on the frequency of measurement, essentially two approaches can be 89 

adopted. The first is screening, i.e. infrequent measurement of selected biomarkers (several 90 

months apart) to identify deficiencies or excesses; the second is monitoring, i.e. high frequency 91 

measurement of biomarkers (days or weeks apart) in order to assess ongoing adaptation or 92 

recovery (readiness) from disturbed homeostasis.  Once enough data have accumulated, sport- 93 

(and position-) and athlete-specific reference ranges can be applied.  In order to optimise the 94 

timing and application of these two approaches, detailed knowledge of the athlete’s training 95 

and competition programme is required.  96 
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While each biomarker provides information about one or more physiological systems, 97 

the insights gained are narrow if only a single data point is available.  Depending on the sport, 98 

sex, and the specific context, an appropriate biomarker or panel of biomarkers can be selected 99 

and measured at a suitable frequency.  The success of a biomarker screening/monitoring 100 

programme depends on a number of factors, including the financial cost, validity and 101 

sensitivity (see Tables 1. and 2.) 102 

The usefulness of screening and monitoring with blood biomarkers in providing 103 

information that might ultimately reduce injury and illness risk, or impact upon the rate of 104 

adaptation to training, is a complex subject.  The literature to date will not always provide a 105 

clear guide since large randomised controlled studies of the behaviour of each biomarker are 106 

unlikely to ever be possible in these specialised populations. A needs analysis is a logical 107 

starting point for undertaking blood biomarker profiling. Over 3 decades’ of applicable studies 108 

of biomarkers in sport, together with extensive medical literature, exist for practitioners to draw 109 

upon to enhance decision making. In addition, biomarker technology is rapidly evolving, 110 

driven by the colossal biotechnology industry.   111 

1.2 Interdisciplinary team approach 112 

The application of blood testing for sports performance often requires the 113 

complementary skillsets of the sports medicine doctor, sports scientists and biostatistician to 114 

work in collaboration.  For the purpose of this review the term sport scientist might include 115 

associated disciplines of physiology, nutrition/dietetics and strength and conditioning.  The 116 

importance of these collaborations cannot be overstated because clinical oversight is required 117 

for all blood tests that might be diagnostic of pathology and therefore due consideration must 118 

be given to medical liability.  For example, if a clinical/pathological abnormality is uncovered 119 

during routine blood profiling, action is required by the sports medicine doctor to ensure 120 

optimal duty of care.   121 
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Statistical best practice for the analysis of longitudinal data is needed in order to make 122 

informed decisions [13], with the contextual information provided by the sport scientist. Since 123 

athletes are often outliers, routine screening can create a high number of abnormal results for 124 

clinical diagnostic tests, albeit often of no clinical consequence (i.e. false positives[14]). 125 

Furthermore, on a practical level tests cannot typically be requested from a clinical laboratory 126 

without a medical doctor licence, although this varies considerably by location.   127 

Athlete health is recognised as being closely linked to sustained high performance, and 128 

unfortunately some sports are known to be strongly associated with disease continuums either 129 

during or post-career [15-17].  Reducing inflammation and oxidative stress (OS) [18] may be 130 

an important objective for protecting athletes from overt disease [19], or from sports specific 131 

medical problems such as tendinopathy in basketball [20] or the deleterious effects of 132 

concussion [21].  Looking ahead, it seems appropriate for sports science, sports medicine and 133 

biostatistics to work closely together towards athlete health goals, and blood biomarker 134 

analysis provides a prime opportunity for such collaboration.  Further studies are needed to 135 

demonstrate the effects of modifying biomarkers in competing athletes on career longevity and 136 

on post-career health.      137 

1.3 How much venous blood is reasonable to remove from an athlete?   138 

 139 

It is widely accepted that small blood losses via phlebotomy are naturally replenished 140 

rapidly in the hours following a draw, at least among non-athletes.  However, removing a 141 

significant quantity of blood on a regular basis could clearly be detrimental and therefore 142 

minimising the amount of blood removed is advised.  Red blood cells (RBC) are released from 143 

the bone marrow at an estimated rate of >2 million per second [22] to support a total blood 144 

volume of between approximately 4 and 8 litres depending on body size and sport.  Each cubic 145 

millilitre of blood contains 4-6 million RBCs, and over half of the sample is plasma comprising 146 
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>90% water.  Each 10ml of venous blood drawn, represents approximately 0.1-0.3% of total 147 

blood volume. To provide some context with regards to the impact of blood losses via 148 

phlebotomy, it is known that females are more susceptible to iron deficiency primarily due to 149 

menstrual blood loss, with loss estimated as light flow: <36.5ml, medium flow: 36.5 – 72.5ml 150 

and heavy flow: 72.5ml per cycle [23].  A 26 night simulated altitude research study which 151 

clamped total haemoglobin mass (tHbmass) in a subgroup of endurance athletes removed on 152 

average 180ml (range: 82-314 ml) of blood via phlebotomy to negate hypoxia induced 153 

erythropoiesis [24], resulting in a cancelling out of aerobic performance gains.  This illustrates 154 

that the environment- or training-induced gains in tHbmass can be reversed with blood loss.  155 

Blood draw volume and frequency should therefore be kept to a minimum with a clear and well 156 

justified purpose. 157 

 158 

2.0 Limitations of blood testing in athletes 159 

 160 

There are a number of practical limitations to blood testing, which are evolving as new 161 

technology emerges (see section 3.0).  Often the cost of testing can be prohibitive and therefore 162 

some kind of cost-benefit analysis is advised.  The cost of tests varies vastly by country (e.g. 163 

clinical laboratory panels are considerably more expensive in the USA than in Europe) and by 164 

the specific test panels selected.   The time between the blood draw and the arrival of results 165 

can vary considerably depending on the test, and mode of measurement.  Where delays occur, 166 

the analysis can only be retrospective, thus limiting the potential impact of the findings.   167 

The tests themselves also carry limitations. For example, measuring haemoglobin 168 

concentration in a sample does not provide a measure of the tHbmass, since that is dependent 169 

upon blood volume and is affected by shifts in plasma volume [25] (see section 8.0).  170 

Quantification of immune cell populations is also limited since it does not provide data on the 171 
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function of those cells, and cell populations have the propensity to migrate or translocate from 172 

the circulation [26].   Additionally, cells that reside outside of the circulation will not be 173 

detected with a blood test, for example, immune cells that reside in the skin [27].  174 

For monitoring purposes, blood samples are routinely drawn with the athlete in a rested 175 

state. However, incorporating blood tests before and after controlled physical testing (e.g. a 176 

maximal aerobic capacity test or controlled training sessions) can provide additional insights 177 

from an athlete monitoring perspective. For example, the measurement of endocrine hormones 178 

after submaximal and maximal exercise is more effective in characterising fatigued states in 179 

endurance athletes than measures at rest [28]; hormonal responses to a two-bout exercise 180 

protocol can diagnose overtraining syndrome [29]; inflammatory cytokine responses to 181 

controlled treadmill running may differ between healthy and illness prone athletes [30]; and 182 

the response in redox biomarkers to exercise is a well-established method used to assess OS  183 

[31] and more recently for predicting adaptation [32], with overloaded athletes displaying a 184 

diminished plasma antioxidant response to an exercise test [33].  Caution is warranted over 185 

applying an additional physical load purely for the purposes of monitoring, but carefully 186 

integrating specific monitoring variables around timed physical testing may be beneficial in 187 

managing athlete training load and recovery.  An example of this may be conducting a routine 188 

training session in a controlled manner and measuring heart rate, rating of perceived exertion 189 

and blood biomarker responses.   190 

 191 

3.0 Evolving biomarker technology available to practitioners in sport 192 

 193 

Anecdotally, convenience is a major consideration in the success of biomarker 194 

measurement in athletes.  Blood sample collection is now possible without traditional 195 

venepuncture via micro-filament needles inspired by mosquitoes [34, 35], although this 196 
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technology has not yet been widely deployed.  A continuum exists with comprehensive 197 

biomarker analysis via venous blood sampling at one extreme, and point of care tests for single 198 

biomarkers via capillary sampling at the other (lactate is the obvious example in sport, blood 199 

glucose is the most common point of care test globally). Additionally, some biomarkers can be 200 

assessed from a blood spot sample collected on filter paper, for example, red cell fatty acids. 201 

As the market for personalised medicine and the ‘quantified self’ has dramatically expanded 202 

with promise of a laboratory in one’s pocket [36], many companies have started offering 203 

extensive blood panels from small samples collected at home but often with compromised 204 

precision or accuracy.  One such company, Theranos, was not only found to be less accurate 205 

than high throughput laboratories [37] but was also recently exposed as fraudulent in the 206 

promise of comprehensive biomarker analysis from a finger prick sample [38]. In this context, 207 

caution is warranted when selecting appropriate technology for use in sport.  Table 2 provides 208 

a check list for assessing the suitability of new blood testing technology.     209 

 210 

4.0 Pre-analytic considerations       211 

 212 

The composition of blood is highly dynamic and never in a fixed state in vivo.  213 

Following collection, depending on the collection tube, blood cells continue to metabolise, the 214 

cells will begin to separate from the plasma, and the sample can coagulate.  Therefore, the pre-215 

analytic considerations are fundamental to achieving a suitable specimen and robust data.  216 

These are well established phenomena [39], yet often overlooked in the sport setting.   217 

Here we define pre-analytic as all factors that influence a blood specimen prior to 218 

analysis in the laboratory, displayed in Figure 1.  Posture (supine vs. seating vs. standing), 219 

duration of tourniquet application for venous samples, the separation of cells from plasma (i.e. 220 
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the time of centrifugation), time of day, psychological stress, fasting status, day of the 221 

menstrual cycle, hydration status and the duration, intensity and mode of prior exercise can all 222 

influence the data [40-42]. The relative impact depends on the test being conducted.  Flouting 223 

these procedures in sport is tempting for convenience but it can result in dramatic inaccuracies 224 

in the data with ‘knock on’ effects for subsequent data analysis. 225 

 226 

5.0 Statistical considerations 227 

 228 

Population based medical reference ranges are typically generated using a cross-229 

sectional sample from the general population and may not always be useful for interpreting 230 

athlete data.  Furthermore, a ‘baseline’ value can be challenging to obtain in athletes with 231 

congested training and competition schedules and ubiquitous global training stress.  In small 232 

samples with large between subject variability, population-based reference ranges are often too 233 

wide to be informative.  As examples, a recent study reported that male athletes with 234 

testosterone values in the lower quartile of the sample, but within the clinical range, had a 4.5 235 

fold higher stress fracture rate [5];  hypervolemia associated with endurance training can dilute 236 

cell counts giving a false impression of anaemia [43].  Published athlete data that could be used 237 

to create athlete reference ranges are generally absent with some exceptions [44-48].  A sport 238 

or governing body regularly collecting data on a specialised group of athletes might rapidly 239 

accumulate a suitable dataset in house, as published by the Australian Institute of Sport some 240 

two decades ago [48].  241 

Monitoring, by its nature, requires statistical methods for longitudinal data analysis.  242 

For example, a Bayesian approach considers prior information (i.e. knowledge about the 243 

biomarker distribution), to categorise new data and identify data points of interest. The 244 

reference range generated adapts dynamically as more information on the athlete’s within 245 
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subject variability is available. This is the approach employed to create the adaptive 246 

individualised ranges used in the athlete biological passport [49].  These individualised 247 

approaches are used to identify atypical measures by providing adaptive rather than static 248 

reference ranges and are of higher potential value to the sports science team [50-52].  Examples 249 

of the application of individualised ranges are provided in Figure 2a and 2b.   250 

A calculated critical difference threshold (CDT) may be useful in monitoring situations 251 

whereby the known variance due to biological variation and measurement error is quantified 252 

and applied to create an individual CDT for each analyte [50].  With the CDT, a greater degree 253 

of confidence can be achieved in understanding whether a “true” physiological change has 254 

occurred for the analyte in question [50, 53]; see Figure 2c. Ideally the CDT should be 255 

calculated in the athletic group of interest to minimise physiological differences as a source of 256 

error. Other methodological approaches (e.g. index of individuality) are available for assisting 257 

practitioners in evaluating the usefulness of population-based biomarker reference intervals for 258 

interpreting change in individuals [50].  259 

Modelling biomarkers jointly (and not marginally) over time using suitable multivariate 260 

statistical techniques in combination with training, wellness and other data sources has received 261 

little attention in sports science to date but could be of value in the future for the purposes of 262 

objectively managing training load, identifying injury and illness risk and predicting 263 

performance.   264 

6.0 Specific examples of blood testing for nutrition purposes 265 

 266 

6.1 Using blood profiling to inform nutritional recommendations 267 

The dietary habits of athletes are assessed in order to construct individualised dietary 268 

plans designed to optimise training responses, performance and health. There are limitations 269 

associated with the various commonly applied qualitative methodologies (i.e. dietary recall, 270 
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food frequency questionnaires, diet diaries) [54]. For example, in an individual male, in order 271 

to estimate his true average intake of iron with a degree of confidence, 68 days (range: 13 to 272 

130 days) of food intake records would be required; see Basiotis et al. 1987 [55]. Blood 273 

profiling, however, provides an efficient, reliable, quantitative means of assessing nutritional 274 

status (both deficiencies and excesses), which is not subject to reporting bias.   275 

Nutritional blood biomarker profiling may be used to assess compliance and a response 276 

to a given dietary intervention (e.g. serum carotenoids following an increase in fruit and 277 

vegetables consumption); and to ascertain whether timely nutritional adjustments are required 278 

to optimise recovery and adaptation (e.g. thyroid hormones with reference to energy 279 

availability during a period of intense training, see section 7.0).  Although many nutrients are 280 

well researched in sport, there are some exceptions, for example, iodine, which is well known 281 

to have an interaction with exercise and to be lost via sweat. [56]. 282 

Many nutritional markers are not well suited to blood profiling since their concentration 283 

in the blood is small in comparison to specific tissue compartments, for example, serum 284 

calcium, which does not reflect calcium status [57]; and serum magnesium (Mg); for which the 285 

gold standard is a 24-hour urine collection following an oral Mg loading dose [58].  Conversely, 286 

other nutrient blood tests such as measurement of fatty acids incorporated in RBC membranes 287 

[59], glycated haemoglobin (HbA1c) and red cell Mg reflect dietary exposure over the life of 288 

the RBC and therefore provide useful indices of global dietary habits.   289 

Since the measurement of biomarkers relating to nutrition is described in detail 290 

elsewhere [54] we instead will address other, more novel nutritional biomarkers that have not 291 

been described in detail elsewhere in the sports medicine literature including, RBC fatty acids, 292 

biomarkers of fruit and vegetable intake and biomarkers of amino acids. 293 
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6.2 Red blood cell fatty acids 294 

Dietary fats consumption can be assessed through the analysis of RBC fatty acids via a 295 

dried blood spot technique [60], although it should be acknowledged that endurance training 296 

alters skeletal muscle membrane phospholipid composition through an increase in 297 

docosahexaenoic acid (DHA) content [61].  Skeletal muscle phospholipid eicosapentaenoic 298 

acid (EPA) and DHA are strongly correlated to RBC phospholipid EPA and DHA (r=0.913) 299 

[62].  RBC fatty acids are responsive to changes in the intake of fish, olive oil and fish oil 300 

supplements [63, 64]. The omega-3 index (OM3I), a validated, reliable and reproducible 301 

biomarker for the assessment of omega-3 status, represents the percentage of the long chain 302 

marine fatty acids EPA and DHA as a proportion (%) of the total RBC fatty acids [59]. Data 303 

are now available in athletic populations: a mean (standard deviation) of 5.1 (1.0)% in Summer 304 

Olympians  [65], 4.9 (1.2)% in Winter Olympians [66] and 4.4 (0.8)% in National Collegiate 305 

Athletic Association Division 1 collegiate footballers [67], however, wide inter-athlete 306 

variability was consistently observed. These findings in athletes contrast with an average OM3I 307 

of 3.7 (1.0)% in a large cohort of vegans, 3.5 (0.7)% in U.S. military servicemembers, and a 308 

median OM3I of 7.1% in a Spanish cohort consuming a Mediterranean diet [68-70]. Currently, 309 

the recommended target range for OM3I in athletes is 8-11% [66]. However, there is no 310 

experimental evidence to date in athletes to substantiate such a precise claim for health or 311 

performance; further research in this area is warranted.  312 

Healthy college students with an OM3I above 4% experienced significantly lower post-313 

eccentric exercise muscle soreness (DOMS) at 72 and 96 hours, lower 24-hour C-reactive 314 

protein concentrations, and improved profile of mood states compared to the “low” OM3I 315 

group (<4%) [71]. Increasing the OM3I from ~4.5% to ~6% in endurance athletes through 316 

supplementation enhanced cycling economy [72], and in a military study, a relationship was 317 

observed between OM3I (within a narrow OM3I range of 2-5%) and cognitive flexibility and 318 
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executive function [70]. Together, these studies suggest that measuring and manipulating 319 

OM3I in athletes may be a useful endeavour to augment both health and performance, although 320 

further studies in well trained and elite athletes are needed to clearly establish cause and effect, 321 

particularly given the capacity for training to alter skeletal muscle phospholipid composition 322 

[61].   323 

6.3 Biomarkers of fruit and vegetable intake 324 

Fruits and vegetables (FV) contain an array of polyphenols, vitamins, minerals and fiber 325 

and are essential to athlete health, recovery and performance. The measurement of serum 326 

carotenoids constitutes a valid means for the assessment of FV intake [73]. Studies deploying 327 

a short-term (2-week) restriction of FV intake (i.e. a low antioxidant diet: restricted to 1 serving 328 

of fruit and 2 servings of vegetables per day) in athletes resulted in substantial decreases in 329 

resting serum carotenoid concentrations, along with increased exercise-associated lipid 330 

peroxidation with exercise, increased ratings of perceived exertion (RPE) and increased resting 331 

and exercise inflammatory responses [74, 75]. A comparable low anti-oxidant diet in 332 

asthmatics resulted in a decline in serum carotenoids and decreased lung function [76]. 333 

Moreover, increasing athlete phytonutrient (FV, nuts and seeds) intake has been observed to 334 

substantially increase serum carotenoid concentrations and contribute to enhanced recovery 335 

and performance in a world-class endurance athlete [53]. Specific training paradigms such as 336 

‘live-high, train-low’ may lead to decreases in serum antioxidant vitamins and carotenoids [77, 337 

78].  It follows that modifying these variables may support athlete recovery and health although 338 

further studies are needed.  These studies relate to dietary fruit and vegetable intake and for 339 

clarity it should be noted that this is not synonymous with high dose anti-oxidant 340 

supplementation where there is a well-established risk of blunting adaptation [79].        341 

OS is affected by a broad range of factors, such as diet, lifestyle, environment, and 342 

training, and OS biomarkers (of which there are many, and beyond the scope of this review) 343 
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have been extensively researched in athletes; see Lewis et al, 2015 [80] and Finaud et al. 2006 344 

[81].  OS biomarkers are modifiable through diet [74, 75], and vitamin insufficiencies (e.g. 345 

vitamin C) increase OS and decrease physical performance [82]. Recent studies have 346 

recognised the importance of identifying a blood redox profile for an individual (i.e. the 347 

existence of a low, medium or high level of oxidative stress, and/or antioxidant enzyme or 348 

nutrient) in order to identify those individuals in whom their physical performance may be 349 

enhanced through the correction of the redox “deficiency” with the appropriate treatment i.e. 350 

antioxidant [32, 83].  The administration of N-acetylcysteine (NAC) to a group with “low” red 351 

blood cell glutathione (GSH; a ubiquitous antioxidant enzyme) improved both aerobic and 352 

anaerobic capacity, whereas an adverse effect was observed for NAC on aerobic performance 353 

in the “high” GSH group  [83]. Similarly, vitamin C supplementation improved physical 354 

performance in those with low but not high plasma vitamin C concentrations [82].  Measuring 355 

biomarkers of redox status may therefore aid in the individualisation and frugal use of anti-356 

oxidant supplementation. 357 

6.4 Biomarkers of amino acids  358 

Exercise training is known to alter plasma blood amino acid concentrations, with 359 

chronically fatigued elite athletes reported to have significantly different resting concentrations 360 

to some healthy elite athletes [84]. Over the past 25 years, two amino acid biomarkers in 361 

particular, glutamine (GLN) and glutamate (GLU), have been researched as a method of 362 

monitoring for fatigued states in athletes, with noteworthy observations [84-89]. 363 

Briefly, prior to the 1992 Barcelona Olympics, both acutely fatigued and chronically 364 

fatigued elite athletes were screened and observed to have significantly lower plasma GLN 365 

than healthy non-fatigued elite athletes (a diet low in protein may have been a contributing 366 

factor [84]). The ratio of GLU to GLN consistently showed promise for monitoring training 367 

stress. Indeed, a number of authors in different locations [87-89] demonstrated significant 368 
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changes in the plasma GLU/GLN ratio in national and international athletes, well trained 369 

endurance cyclists, and team sport athletes during periods of intensified training.  370 

Unfortunately, from a practical standpoint, assays of any amino acid are not readily 371 

available in clinical or commercial laboratories which may explain the lack of recent research.  372 

Additionally, recent advances in approaches to periodising protein intake [90] around training 373 

load may serve to reduce the need for GLU/GLN monitoring. Metabolomic studies are 374 

emerging and may reinvigorate this field [91], although metabolomic data so far are currently 375 

sparse in sport.  376 

 377 

7.0 Assessing energy availability 378 

 379 

Assessing energy availability is desirable to avoid the risk of the female athlete triad or 380 

the broader relative energy deficiency in sport (RED-S) theoretical framework [17, 92]. We 381 

have previously documented the importance of measuring bioenergetic hormones in athletes 382 

in order to protect the athlete from the deleterious effects of unexplained underperformance 383 

syndrome (also known as overtraining syndrome), of which chronic low energy availability 384 

(LEA) is a major risk factor [93].  LEA was strongly associated with athlete illness in the lead 385 

up to a summer Olympic Games [94] and was associated with a 4.5 fold higher risk of bone 386 

injuries in both male and female distance runners with LEA [5]. There are a number of ways 387 

to estimate energy availability, such as monitoring changes in body mass, or by calculating 388 

energy availability as the difference between total energy intake and estimated energy output; 389 

however, the latter can be a time and resource consuming endeavour and there are a number of 390 

sources of potential inaccuracies associated with both these methods.  Screening for energy 391 

availability indirectly with blood profiling is therefore a recommended approach [95].   392 
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Endocrine biomarkers, including the male and female sex hormones, and thyroid 393 

hormones free triiodothyronine (free T3) and total triiodothyronine (TT3), offer insight into 394 

energy availability [96]. Although the benefits of using hormonal biomarkers as part of an 395 

athlete wellness/nutritional screening process are becoming more evident, tracking intra-396 

individual changes through various training and competition phases may provide more 397 

meaningful data (enabling a shift from the dependence on clinical ranges for interpretation; see 398 

section 5.0), and thus enabling physicians, sports practitioners and coaches to make timely 399 

adjustments to training and nutritional programs in order to optimise recovery and adaptation.  400 

In addition, it is recognised that experienced elite male and female athletes do not self-401 

adjust their energy intake during periods of intensified training, the outcome of which is a 402 

deterioration in performance [97]. A training study in female swimmers elegantly demonstrated 403 

the clear dependence upon sufficient energy availability for training success by monitoring a 404 

group of swimmers across a 12-week training block [4].  Five athletes with normal ovarian 405 

hormone cycles (estradiol and progesterone) were compared with 5 athletes with suppressed 406 

ovarian hormones and a significantly lower energy availability. Furthermore, 400m swimming 407 

performance (velocity) improved in the energy replete swimmers but not the energy deficient 408 

swimmers despite completing the same training distance. Both bioenergetic hormones (TT3 409 

and insulin-like growth factor-1) showed a significant decline in the energy deficient swimmers 410 

only.  While the absence of fluctuation in ovarian hormones is a useful marker of energy status 411 

in itself, the impact of the oral contraceptive pill can mask sex steroid differences, resulting in 412 

an advantage for measuring the bioenergetic hormones.   413 

Although published data are undeniably limited in male athletes, poor energy 414 

availability and hormonal suppression (hypogonadism) may occur with persistently excessive 415 

endurance exercise and/or inadequate energy intake and thus there is a parallel with the female 416 

athlete triad [98].  Significant changes over time in bioenergetic (free T3) and stress (cortisol) 417 
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hormones during intensified training have been reported in male rowers, albeit performance 418 

was not assessed [99]. Hypogonadism has been documented in male Ironman athletes attending 419 

the World Championships [100] and in a case study of an elite mixed martial arts athlete [101]. 420 

Such case studies provide for “real world” insight.  Kasper et al. succinctly captured the severe 421 

negative effects of making weight and the gross energy deficiency on endocrine function 422 

(testosterone, cortisol, IGF-1) across 8 weeks; both health and performance were negatively 423 

affected in conjunction with the hormonal disturbances.  Furthermore, military studies (in 424 

males) tracking bioenergtic and steroid hormones over periods of basic training clearly 425 

demonstrate the significant effects of a combination of stresses (intensified training, sleep loss 426 

and energy deficiency) on these hormonal systems [102].  Finally, carbohydrate restriction can 427 

significantly affect testosterone and cortisol responses to intense training in male athletes [103].   428 

Physiologically relevant changes in IGF-1, thyroid hormones, testosterone and cortisol 429 

are observed in short time frames (e.g. 1 week), with marked recovery when nutrition and 430 

energy status are restored, demonstrating the sensitivity of these hormones to nutritional 431 

interventions.   432 

 433 

8.0 Oxygen carrying capacity and red blood cells 434 

 435 

Haemoglobin is the oxygen carrying protein in the RBC, containing iron rich heme sub-436 

units.  A higher total tHbmass enables a greater maximal oxygen carrying capacity and 437 

therefore a higher aerobic power.  Endurance athletes have been reported to have around a 40% 438 

higher tHbmass than the general population [104] and many invest considerably in altitude 439 

training, aiming to further increase their tHbmass.  Unfortunately, haemoglobin concentration 440 

in a blood sample is poorly correlated with tHbmass since this is dependent upon blood volume 441 

and is susceptible to dilution from plasma volume expansion with heat acclimation or 442 
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prolonged exercise [104-106].  Carbon monoxide rebreathing has become the method of choice 443 

for measuring tHbmass in research settings and some sports institute settings, however, it 444 

requires specialist equipment and technical skills [25].   A recent attempt has been made to 445 

estimate plasma volume based on a host of biochemical markers and the results are promising 446 

[107].  68% and 69% of the variation in plasma volume was explained by 8 and 15 routinely 447 

measured biomarkers respectively, e.g. salts.  It remains to be seen if this approach will be 448 

verified by further studies, but the potential is enticing, since tHbmass could be estimated from 449 

plasma volume estimates and haematocrit measurements.  This opens the possibility of 450 

estimating aerobic capacity from a single blood test which would be ground breaking in both 451 

athlete monitoring and anti-doping.  452 

 Compromised iron status can affect both male and female athletes [45, 108] and can 453 

result in a sub-optimal tHbmass, with a recent study neatly demonstrating the effects of 454 

correcting an iron deficiency via supplementation [109] when using tHbmass as the outcome 455 

measure.  In severe iron deficiency (ferritin <12 ng.mL-1) dramatic increases in tHbmass were 456 

demonstrated via supplementation [109].  Using blood profiling data alone, the response to 457 

supplementation is more difficult to quantify.  RBC data including the mean corpuscular 458 

volume and the mean corpuscular haemoglobin provide an indication of compromised 459 

erythropoiesis due to iron deficiency [110].  Similar variables in the reticulocytes (depending 460 

on the analyser used [110]) can also provide evidence of compromised iron status.  461 

Measurement of the peptide hormone hepcidin, although not yet widely available, shows 462 

promise as a highly informative addition to an iron panel in athletes, since it can define an 463 

individual’s propensity to absorb iron and has an interaction with exercise, iron deficiency and 464 

iron overload [111, 112].  For a comprehensive review of the identification of iron deficient 465 

states, see Archer and Brugnara [113].  In athletes, altitude training represents a risk factor for 466 

iron deficiency and following a blood test iron supplementation should be considered in this 467 
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context where appropriate [6].  Other factors in athletes such as footstrike haemolysis, 468 

excessive sweating and dietary factors may also compromise iron status [108]. 469 

 470 

9.0 Using biomarkers to assess training capacity and manage workload 471 

 472 

Fine margins exist between the training dose necessary for adaptation and that which 473 

elicits maladaptation at the elite level, paralleling the theory of hormesis [114, 115] where a 474 

moderate dose of a stressor combined with effective recovery results in an adaptive response, 475 

but an excessive dose is maladaptive (synonymous with ‘overcooking it’).  There has been a 476 

great deal of attention on the acute:chronic workload as a predictor of injury, with recent 477 

thinking recognising that covariates such as stress, sleep, and age are potentially of equivalent 478 

importance [116]. Although more research is needed, blood profiling and in particular blood  479 

monitoring, in conjunction with workload and wellness data, can offer an objective tool for 480 

identifying capacity to train and recover in the context of a multiplicity of stressors, and can 481 

therefore be used to enhance the management of athlete workload schedules.  482 

The timely point of care measurement of capillary blood biomarkers of muscle damage 483 

(e.g. creatine kinase), OS (biomarkers of pro-oxidant and anti-oxidant activity), inflammation 484 

(e.g. C-reactive protein, pro-inflammatory cytokines) and anabolic or catabolic status (e.g. 485 

cortisol, testosterone, urea) can provide data that may help sport scientists to assess individual 486 

tolerance of training and therefore propensity for successful adaptation, and inform the 487 

recovery needs of the athlete.   488 

It is well known that intense exercise causes transient exercise induced muscle damage 489 

(EIMD) and this is proportional to the stress imposed, particularly eccentric muscle loading 490 

[117-119].  A transient increase in creatine kinase can be expected with EIMD which returns 491 

to baseline within 60 hours depending on the physical insult and training status.  Inflammation 492 
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may also occur with EIMD to varying degrees and there are many studies to support this [120, 493 

121].  Athletes therefore can be expected to routinely have higher concentrations of creatine 494 

kinase [44], and this may be more pronounced during intense or unaccustomed training, for 495 

example during pre-season training. 496 

Physiological stress, i.e. a disturbance in homeostasis, is a desired outcome of training 497 

in order to trigger adaptation.  OS has been termed a ‘molecular switch’ [122] for upregulating 498 

anti-oxidant systems for healthy adaptation and avoidance of disease [114, 115].  However, 499 

where an imbalance occurs between stress and recovery, negative outcomes can ensue, such as 500 

maladaptation (performance plateau) [123] and fatigue as several overload studies have 501 

demonstrated in endurance athletes [124, 125]. 502 

Other activities can cause augmented stress or reduce the rate of recovery, for example, 503 

long haul travel where biomarkers with a strong circadian effect can be influenced, for example 504 

testosterone and cortisol and the so called ‘sleep hormone’ melatonin [126].  Sleep quantity 505 

(and quality), a primary variable that influences recovery, can also impact upon a biomarker 506 

profile.  Sleep loss is associated with elevated cortisol [127] and inflammation markers that are 507 

reversed with extra recovery sleep [128]. 508 

 The team sport athlete (e.g. soccer player) is subject to various forms of stress (physical, 509 

psychological, lifestyle) over the course of a season that vary according to the professional 510 

league, player experience, position, fitness, and individual adaptability. The daily monitoring 511 

of elite players workloads through objective (e.g. global positioning systems) and subjective 512 

measures (e.g. daily readiness to train responses) is pervasive in elite soccer [129] with 513 

biomarkers predominately used for health and nutrition screening purposes. However, the 514 

weekly application of biomarker monitoring has gained increasing traction at the elite level in 515 

team sports. 516 
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Several studies have explored the effect of a single soccer match on the recovery time 517 

course of markers of muscle damage, inflammation, and OS, in which elevations may persist 518 

for 24-74 hours post-match depending on the biomarker, recovery time between matches 519 

(micro-cycle), playing standard, sex, and position [119, 130-133]. Others have recorded 520 

significant OS biomarker changes in relation to measures of workload (i.e. muscle damage; 521 

internal load) across various time points of the season in elite soccer players [134, 135]. In 522 

addition, biomarker investigations over a season in other team sports, such as professional 523 

rugby [136] and handball [137], corroborate observations in professional soccer, that periods 524 

of OS occur in association with periods of higher training loads and competition. 525 

 526 

10.0 Conclusions and future directions 527 

 528 

There are early signs of new ‘-omics’ science in sport [91, 138] but these are a long 529 

way from becoming the norm.  Similarly, new technology that analyses an athlete’s blood 530 

without the need for traditional venepuncture is in existence and could eventually become 531 

commonplace in sport.      532 

Blood biomarker science in elite and professional sports is rapidly evolving and can 533 

provide objective data for an interdisciplinary sports science and medicine team to support 534 

athlete health, nutrition and performance across a broad spectrum of physiological systems.  535 

Some nutritional biomarkers are well established (e.g. vitamin D and iron) whereas others need 536 

further research (e.g. fatty acids) to demonstrate their utility in sport.  A range of biomarkers 537 

can provide information relating to athlete readiness to train, including biomarkers of OS, 538 

inflammation, protein turnover and hormones.  New methods to estimate plasma volume using 539 

groups of biochemical markers show promise and may provide a new method for monitoring 540 

changes in an athlete’s aerobic fitness.   541 
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The success of a blood biomarker profiling or monitoring programme in sport is 542 

dependent not only on the selection of appropriate biomarkers, but also upon the timing of the 543 

testing, successful interdisciplinary collaboration, appropriate longitudinal statistical methods 544 

and pre-analytic protocols. 545 

 546 

Key points 

1. Some blood biomarkers can be used for profiling and monitoring purposes in 

athletes, and the biomarkers selected depend on the demands of the sport.  

2. Statistical methods for longitudinal data analysis are recommended to generate 

individualised thresholds to identify meaningful changes over time.  

3. The insights gained from blood profiling and monitoring can provide an objective 

means of assessing nutritional status and capacity to tolerate training load. 

4. Poor quality data will be generated if pre-analytic protocols are not carefully 

followed, for example, posture, time of day, recent food or exercise.  

 547 
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Figure captions.  573 

 574 

Figure 1. Pre-analytic considerations for the measurement of blood biomarkers from a venous 575 

blood sample. The recommendation regarding hydration is based on ACSM guidelines.  576 

[139] 577 

 578 

Figure 2.  Charts a. and b. illustrate biomarkers collected repeatedly over time (red lines), the 579 

rectangular shaded areas represent a population based clinical range for this biomarker; the 580 

blue shaded areas represent an individual Bayesian adaptive range.  Chart c. illustrates a 581 

biomarker of oxidative stress (hydroperoxides; black and orange squares) collected 582 

frequently with blue bars representing a global marker of training load for each microcycle.  583 

URTI = upper respiratory tract infection; CDT = critical difference threshold.     584 
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Table 1: Key factors for the success of biomarker profiling in sport 947 

Clinical oversight: collaboration between the sports doctor and the sports scientists 

Selection of appropriate actionable biomarkers for screening and monitoring (see Table 2.) 

Appropriate frequency of testing 

Sufficient financial resources to cover costs of collection, analysis, interpretation and 

feedback  

Contextual information available to be used in interpretation 

Implementing statistical best practice in data visualisation, modelling and translation 

Availability of expertise to interpret biomarkers 

Athlete and/or coach ‘buy-in’ and appropriate/effective feedback mechanisms 

 948 

Table 2. Check list of considerations for assessing biomarker suitability in sport 949 

Evidence Has prior research provided a satisfactory evidence base for the use of 

this biomarker (clinically, in public health or in sport), and for the 

specific target population and sex? 

Application Will the biomarker provide actionable data or serve as a useful positive 

or negative outcome indicator? 

Validity Has the biomarker been demonstrated to be valid? If this is a new 

technique, does it agree with established ‘gold standard’ technique?  

Variability  

(analytical and biological) 

Is the variability of this measurement technique acceptable (often 

reported as the coefficient of variation; CV). Has the analytical and 

biological variability of the biomarker been reported?  

Collection and analysis Is the collection procedure and analysis time fast enough to be useful? 

Is the amount of blood required appropriate? (i.e. minimal) 

Sample treatment and 

transportation 

Can the analysis take place in-situ, or does the sample have to be 

stored in a specific way and/or transported to a laboratory  

Diurnal variation Does the time of day, exercise, sleep, and fasting status influence the 

biomarker? 

Cost Is the full cost of the biomarker data justified? 

Covariates  Are there factors that are known specifically to influence the 

biomarker?  e.g. environmental impact such as warm weather camp, 

altitude, travel stress and jet lag  
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Figure 1 951 
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Figure 2 953 
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