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Abstract 20 

Two-dimensional analyses of sprint kinetics are commonly undertaken but often ignore the 21 

metatarsal-phalangeal (MTP) joint and model the foot as a single segment. The aim of this 22 

study was to quantify the role of the MTP joint in the early acceleration phase of a sprint and to 23 

investigate the effect of ignoring the MTP joint on the calculated joint kinetics at the other stance 24 

leg joints. High-speed video and force platform data were collected from four to five trials for 25 

each of three international athletes. Resultant joint moments, powers and net work at the stance 26 

leg joints during the first stance phase after block clearance were calculated using three 27 

different foot models. Considerable MTP joint range of motion (>30°) and a peak net MTP 28 

plantar flexor moment of magnitude similar to the knee joint were observed, thus highlighting the 29 

need to include this joint for a more complete picture of the lower limb energetics during early 30 

acceleration. Inclusion of the MTP joint had minimal effect on the calculated joint moments, but 31 

some of the calculated joint power and work values were significantly (P < 0.05) and 32 

meaningfully affected, particularly at the ankle. The choice of foot model is therefore an 33 

important consideration when investigating specific aspects of sprinting technique. 34 

35 



 

 

Introduction 36 

Biomechanists often develop linked-segment rigid body models comprising the segments and 37 

joints deemed to be of sufficient importance to an activity of interest. When joint kinetics are also 38 

required, these models are typically incorporated within inverse dynamics analyses (IDA). The 39 

lower limb joint moments in sprinting have been widely investigated using IDA to understand the 40 

two-dimensional (2D) sagittal plane movements occurring in the primary plane (e.g. Mann, 41 

1981; Jacobs & van Ingen Schenau, 1992; Johnson & Buckley, 2001; Kuitunen et al., 2002; 42 

Hunter et al., 2004; Mero et al., 2006; Bezodis et al., 2008). These studies all used a three 43 

segment representation of the leg which included thigh, shank and foot segments. Whilst the 44 

thigh and shank segments were consistently modelled from hip to knee, and knee to ankle joint 45 

centres, respectively, some of these studies modelled the foot from the ankle to the distal hallux, 46 

and others to the metatarsal-phalangeal (MTP) joint. Kinematic 2D analyses of sprinting have 47 

revealed that rotation in excess of 20° occurs about the MTP joint (Stefanyshyn & Nigg, 1997; 48 

Krell & Stefanyshyn, 2006; Toon et al., 2009); by ignoring this motion any resultant joint 49 

moments generated about the MTP joint, and their consequent effects, are also ignored.  50 

 51 

Since Elftman (1940) proposed that the resultant moments about the MTP joint are large 52 

enough to warrant consideration in sprint analyses, it appears that only Stefanyshyn & Nigg 53 

(1997) have included an MTP joint when calculating 2D joint kinetics during sprinting. 54 

Stefanyshyn & Nigg (1997) observed peak resultant MTP plantarflexor moments of up to 55 

120 Nm (at the 15 m mark), and up to 70 J of energy was found to be absorbed at the MTP 56 

joint, accounting for around 32% of the total energy absorbed in the four leg joints (MTP, ankle, 57 

knee, hip) during ground contact. These results suggest that it could be important to include the 58 

MTP joint when conducting a sprint-related IDA, but the extent to which this would affect the 59 

calculated kinetics at the other joints in the leg model is not clear. Whilst using different distal 60 

endpoints for a single foot segment could slightly affect the magnitude of the calculated 61 



 

 

resultant joint moments in the stance leg, it is proposed that ignoring the MTP joint will have a 62 

more pronounced effect. The aim of this study was thus to investigate the effect of three 63 

different foot models on leg joint kinetics during a stance phase in sprinting. 64 

 65 

Methods 66 

A single-subject approach was adopted since the foot models may affect the joint kinetics on an 67 

individual basis. However, to widen the potential application of the findings, this within-subject 68 

analysis was repeated across three relatively heterogeneous trained athletes (Table 1). 69 

Following ethical approval and written informed consent, a high-speed digital video camera 70 

(Motion Pro®, HS-1, Redlake, USA; 200 Hz) was used to capture full body sagittal plane 71 

kinematic data during the first stance phase of maximal effort sprints to 30 m on an indoor track 72 

as a part of larger research study. The camera was positioned 25.00 m away from the centre of 73 

the running lane, perpendicular to the direction of the sprint, 0.95 m in front of the start line and 74 

with the lens centre 1.00 m above the ground. An area of 2.000 m horizontally × 1.600 m 75 

vertically was calibrated, and the camera collected images at a resolution of 1280 × 1024 pixels 76 

with a 1/1000 s shutter speed. A start line was positioned on the track such that the first foot 77 

contact would occur near the centre of a 0.900 × 0.600 m covered force platform (Kistler, 78 

9287BA, Kistler Instruments Ltd., Switzerland; 1000 Hz) embedded in the track. Each trial was 79 

initiated by a trigger button which activated a sounder (to which the athletes reacted), the force 80 

platform, and a series of 20 LEDs (Wee Beasty Electronics, UK) to allow synchronisation of the 81 

video and ground reaction force (GRF) data to the nearest 1 ms. 82 

 83 

****Table 1 near here**** 84 

 85 

From the video files, six points (shoulder, stance hip, knee, ankle and mid MTP joint centres, 86 

and distal hallux) were manually digitised and affine scaled from 10 frames prior to touchdown 87 



 

 

until 10 frames after toe-off (Peak Motus®, v. 8.5, Vicon, USA). It has previously been proposed 88 

that displacement and force data used for IDA should be subjected to the same level of 89 

smoothing to prevent artificial impact joint moments being introduced (van den Bogert & de 90 

Koning, 1996; Bisseling & Hof, 2006). The displacement and GRF data were therefore passed 91 

through a fourth-order Butterworth filter using the mean optimal cut-off frequency (24 Hz) 92 

determined from a residual analysis of all displacement data (Winter, 1990). 93 

 94 

To create the experimental conditions, the stance leg was represented using three different 95 

models (Figure 1). The thigh and shank segments were consistently modelled from hip to knee, 96 

and knee to ankle joint centres, respectively. For two of the models, the foot was modelled as a 97 

single segment, firstly from ankle to distal hallux (model 3segH) and secondly from ankle to 98 

MTP (3segM). The final model (4seg) included a two segment foot, comprising a rearfoot 99 

segment from ankle to MTP and a forefoot segment from MTP to distal hallux. Individual-100 

specific segmental inertia data were obtained using the model of Yeadon (1990), which 101 

provided appropriate data for the foot in all three models. To account for the spiked shoes, 102 

0.20 kg was added to the mass of the foot (e.g. Hunter et al., 2004). For model 4seg, this was 103 

divided between the segments based on the ratio of forefoot:rearfoot length. Joint angles were 104 

determined, and were subjected to second central difference calculations (Miller & Nelson, 105 

1973) to derive corresponding velocity and acceleration time-histories. 106 

 107 

****Figure 1 near here**** 108 

 109 

Prior to filtering, the raw GRF data were downsampled to 200 Hz, and centre of pressure data 110 

were calculated accounting for the thickness of the track surface. These downsampled GRF 111 

data were combined with the kinematic and inertia data in an IDA (Elftman, 1939; Winter, 1990). 112 

Since contact only occurred with the forefoot segment during this early part of a sprint for these 113 



 

 

three sprinters, all calculations started with the GRF being applied at the centre of pressure to 114 

the most distal segment and proceeded in a distal-to-proximal fashion (i.e. there was no need to 115 

share the GRF between the forefoot and rearfoot in model 4seg). Contact with only the forefoot 116 

was confirmed as a normal occurrence during the first stance phase of a sprint through an 117 

additional qualitative analysis of the 13 University-level sprinters studied by Bezodis et al. 118 

(2010). Joint power was calculated as the product of resultant moment and angular velocity, and 119 

net joint work was calculated as the time-integral of power. For all calculated variables, 120 

extension/plantarflexion was defined as positive. Mean and standard deviations were calculated 121 

for all variables for each athlete. Repeated measures ANOVA comparisons (SPSS 15.0 for 122 

Windows, SPSS Inc., USA) were run for dependent variables (peak resultant extensor joint 123 

moments and powers, and net joint work) for all three athletes separately. When a significant (P 124 

< 0.05) main effect was observed, Bonferroni post hoc tests were calculated to investigate the 125 

pairwise differences.  126 

 127 

Results 128 

The mean horizontal velocity of the athletes at touchdown was 3.29 ± 0.22 m/s, and during the 129 

first stance phase (mean duration = 0.188 ± 0.009 s), velocity increased by 1.27 ± 0.11 m/s. The 130 

MTP angle ranges of motion during stance for athletes A, B, and C were 34 ± 7°, 30 ± 7°, and 131 

31 ± 1°, respectively. Time histories for MTP joint angle, angular velocity, resultant moment, and 132 

power from model 4seg are presented in Figure 2. To illustrate the general temporal patterns of 133 

the joint kinetic data during stance when using each of the three leg models, Figure 3 presents 134 

the mean resultant moment and power time histories for the ankle, knee, and hip joints for 135 

athlete C. Differences between leg models were essentially non-existent when considering joint 136 

moment patterns at the ankle, knee and hip joints (some significant differences were observed 137 

due purely to the systematic nature of these small effects; Table 2). However, some significant 138 

and more meaningful differences were observed in joint power and work values due to 139 



 

 

variations in the calculated angular velocity data between leg models, particularly at the ankle 140 

joint. 141 

 142 

****Figures 2a-d near here**** 143 

****Table 2 near here**** 144 

****Figures 3a-f near here**** 145 

 146 

Discussion 147 

The MTP joint rotated through mean ranges of motion in excess of 30° for each of the three 148 

athletes (Figure 2a), similar to previous results (Krell & Stefanyshyn, 2006; Toon et al., 2009). 149 

The mean peak MTP resultant joint moments ranged from 67 to 143 N·m (1.1–1.7 N·m/kg; 150 

Figure 2c), and are due to both the biological structures crossing the MTP joint and to the 151 

spiked shoe (Oleson et al., 2005). Due to these moments and the observed angular velocities 152 

(Figure 2b), the MTP joint is clearly important in absorbing energy during the stance phase 153 

(Figure 2d), reaching magnitudes of up to 50 J for some trials of athlete C (Table 2). For 154 

athletes A and B in particular, the magnitudes of the resultant joint moments, power and net 155 

work at the MTP joint were comparable to those of the knee joint, and it therefore appears 156 

important to include this joint in analyses of the energetics of sprinting to obtain a more 157 

complete understanding of the internal kinetics. Although there were systematic and statistically 158 

significant differences in ankle and hip joint moment (Table 2), these were very small in 159 

magnitude (typically less than 1 Nm at the ankle joint). When placed in the context of the typical 160 

within-athlete variation based on the standard deviation data presented in Table 2, the practical 161 

significance of these differences due to the choice of leg model is clearly minimal, opposing the 162 

suggestion in our original paper (Bezodis et al., 2012). The observed significant differences in 163 

ankle joint work and power (Table 2 and Figure 3b) between the models which linked the ankle 164 

to the MTP joint (3segM and 4seg) and the model which linked the ankle to the distal hallux 165 



 

 

(3segH) are more practically meaningful. These differences can be attributed to contrasting 166 

ankle joint angular velocities between these two three-segment leg models, and they highlight 167 

that the choice of distal endpoint for a single segment foot could influence the results if absolute 168 

values of ankle joint power or work are of interest. 169 

 170 

The foot is clearly multisegmental and three dimensional, and while inclusion of the MTP joint 171 

reveals ‘within-foot’ energetics that would be overlooked if using a single-segment 172 

representation, it is acknowledged that it remains a simplification. However, coaches and 173 

biomechanists are often interested in the 2D mechanics of sprinting (e.g., Mann, 1981; Jacobs 174 

& van Ingen Schenau, 1992; Johnson & Buckley, 2001; Kuitunen et al., 2002; Hunter et al., 175 

2004; Mero et al., 2006; Bezodis et al., 2008) due to the largely planar nature of the skill in 176 

addition to time and equipment/instrumentation constraints. 177 

 178 

The results of the current study revealed that the resultant joint moments, power and net work at 179 

the MTP joint are large enough to warrant consideration in future kinetic analyses of early 180 

acceleration. Due to the increased requirement for energy absorption combined with the 181 

considerable motion previously observed at the MTP joint during maximum velocity sprinting 182 

(Krell and Stefanyshyn, 2006), it is likely that the MTP joint should be considered in kinetic 183 

analyses throughout all phases of a sprint. However, if the specific kinetics of just the ankle, 184 

knee and/or hip joint are the sole focus of a study, a three segment leg model will yield 185 

appropriate data providing that the MTP joint is used as the distal endpoint for the foot segment 186 

if ankle joint power or work data are of interest.  187 
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Table 1. Descriptive characteristics for the three athletes.                                                               261 

 A B C 

Age [years] 26 21 20 

Gender Female Male Male 

Mass [kg] 60.5 82.6 86.9 

Height [m] 1.76 1.81 1.78 

PB [s] 12.72# 10.14* 10.28* 

No. of trials 4 5 5 

# indicates personal best (PB) for 100 m hurdles; * indicates PB for 100 m; A: World Indoor 262 
Championships medalist; B: European Indoor Championships medalist; C: European Indoor 263 
Championships finalist 264 



 

 

Table 2. Peak resultant joint moments and powers, and net work, for each of the three athletes 265 
using each of the three leg models (mean ± s). 266 

 Athlete 3segH 3segM 4seg 

Peak resultant MTP joint extensor moment [N·m] 

A   67 ± 6 

B   107 ± 5 

C   143 ± 8 

Peak resultant ankle joint extensor moment [N·m] 

A* 210 ± 9
b,c 

210 ± 9
a,c 

210 ± 9
a,b 

B* 351 ± 19
b,c 

351 ± 19
a,c 

351 ± 19
a,b 

C* 363 ± 6
b,c 

364 ± 6
a,c 

364 ± 6
a,b 

Peak resultant knee joint extensor moment [N·m] 

A 75 ± 14
 

75  ± 14
 

75 ± 14
 

B 67 ± 21
 

66 ± 22
 

66 ± 22
 

C 172 ± 18
 

172 ± 18
 

172 ± 19
 

Peak resultant hip joint extensor moment [N·m] 

A 137 ± 14 136 ± 14 136 ± 14 

B* 237 ± 56
c
 245 ± 53 247 ± 53

a
 

C* 264 ± 33 266 ± 32 262 ± 31 

Peak positive MTP joint power [W] 

A   253 ± 106 

B   612 ± 418 

C   219 ± 109 

Peak positive ankle joint power [W] 

A 2177 ± 326
 

2228 ± 260
 

2221 ± 259
 

B* 2629 ± 236
b,c 

2970  ± 189
a,c 

2963 ± 188
a,b 

C* 3378  ± 83
b,c 

3891 ± 79
a,c 

3881 ± 79
a,b 

Peak positive knee joint power [W] 

A 423 ± 28
 

420  ± 33
 

425 ± 37
 

B 383 ± 200
 

350  ± 191
 

351 ± 191
 

C* 1053 ± 95
c 

1051  ± 96
c 

1062 ± 97
a,b 

Peak positive hip joint power [W] 

A 1292 ± 208 1295 ± 213 1268 ± 211 

B* 2980 ± 696
c
 3088 ± 651 3107 ± 647

a
 

C* 2853 ± 479 2868 ± 472
c
 2815 ± 469

b
 

Net MTP joint work [J] 

A   -22 ± 5 

B   -26 ± 10 

C   -46 ± 4 

Net ankle joint work [J] 

A* 49 ± 9
b,c 

68 ± 6
a,c 

68 ± 6
a,b 

B* 81 ± 13
c 

97 ± 16
c 

96 ± 16
a,b 

C* 91 ± 7
b,c 

127 ± 9
a,c 

126 ± 9
a,b 

Net knee joint work [J] 

A* 20 ± 13
b,c 

19 ± 12
a 

18 ± 12
a 

B* -5 ± 18
b,c 

-9 ± 17
a 

-9 ± 17
a 

C* 82 ± 17
b,c 

80 ± 17
a 

80 ± 17
a 

Net hip joint work [J] 

A* 76 ± 15
b,c 

78 ± 15
a,c 

80 ± 15
a,b 

B* 108 ± 20
b,c 

111 ± 19
a,c 

114 ± 19
a,b 

C* 111 ± 22
b,c 

113 ± 22
a,c 

115 ± 21
a,b 

* significant effect of leg model (P < 0.05); a significantly different from 3segH; b significantly 267 
different from 3segM; c significantly different from 4seg. 268 



 

 

 

Figure 1. The three models used to represent the stance leg. 

 269 
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 271 

 

Figures 2a-d. Time-histories (mean ± s) for joint angle (a), angular velocity (b), resultant 

moment (c) and power (d) at the MTP joint during stance for each of the three athletes 

calculated using the 4seg model (athlete A = solid line, athlete B = dotted line, athlete C = 

dashed line). MTP joint angle was calculated as the angle between the rearfoot and forefoot 

segments on the proximal side of the foot. 
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Figure 3. Mean time histories for ankle resultant joint moment (a) and power (b), knee resultant joint 

moment (c) and power (d), hip resultant joint moment (e) and power (f) for athlete C (model 4seg = solid 

line, 3segH = dotted line, 3 segM = dashed line). 
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