Title: Semi-professional rugby league players have higher concussion risk than professional or amateur participants: A pooled analysis

Running title: Concussion in rugby league

Authors: Doug King¹ Patria Hume¹ Conor Gissane² Trevor Clark³

- 1. Sports Performance Research Institute New Zealand School of Sport and Recreation Faculty of Health and Environmental Sciences Auckland University of Technology, New Zealand
- 2. School of Sport Health and Applied Science St Mary's University, Twickenham, Middlesex, United Kingdom
- Australian College of Physical Education Faculty of Human Performance Sydney Olympic Park NSW Australia

Correspondence to:

Doug King Emergency Department Hutt Valley District Health Board Private Bag 31-907 Lower Hutt New Zealand

Email: dking@aut.ac.nz

Submitted to: Sports Medicine

Abstract:	198 words
Manuscript:	2,964 words
References:	61
Tables:	3 + 1 online resource
Figures:	1

Title: Semi-professional rugby league players have higher concussion risk than professional or amateur participants: A pooled analysis

Running title: Concussion in rugby league

Abstract

A combined estimate of injuries within a specific sport through pooled analysis provides more precise evidence and meaningful information about the sport, whilst controlling for between-study variation due to individual subcohort characteristics. To review all published rugby league studies reporting injuries from match and training participation and report the pooled data estimates for rugby league concussion injury epidemiology. A systematic literature analysis of concussion in rugby league was performed on published studies from January 1990 to October 2015.Data were extracted and pooled from 26 studies that reported the number and incidence of concussions in rugby league match and training activities. Amateur rugby league players had the highest incidence of concussive injuries in match activities (19.1 per 1,000 match hours) while semi-professional players had the highest incidence of concussive injuries in training activities (3.1 per 1,000 training hours). This pooled analysis showed that during match participation activities amateur rugby league participants had a higher reported concussion injury rate than professional and semi-professional participants. Semi-professional participants had nearly a three-fold greater concussion injury risk than amateur rugby league participants during match participation. They also had nearly a 600-fold greater concussion injury risk than professional rugby league participants during training participation

Key Points:

- Semi-professional rugby league participants have a higher risk of concussions when compared with amateur and professional participants for both match and training activities.
- Amateur rugby league participants have the highest concussion injury rate when compared with junior, semi-professional and professional participants.
- There is a higher risk of a concussion during match participation when compared with training participation but this varies with the different participation levels.
- There are no studies published reporting on women and junior participants training injuries.

1. Background

Rugby league has a high incidence of injury, especially when compared with rugby union.^[1] Injury incidence in rugby league increases with higher participation level.^[2] In reviews of match and training injuries in rugby league,^[2, 3] match injuries varied from 1^[4] to 825^[2, 5] per 1,000 match hours while training injuries ranged from 12.2^[6] to 106^[7] per 1,000 training hours. These studies are limited by small sample sizes, few clubs or competitions, use of different injury definitions and methodological approaches, and short study duration.^[8] The generalizability of these individual studies for the identification of the injury incidence in rugby league is therefore restricted.^[9]

One strategy utilised^[9, 10] is to combine the information provided by epidemiological studies into a single estimate,^[11] termed a pooled analysis.^[12] Pooled analysis has been undertaken for professional rugby league studies^[9] (40 injuries per 1.000 player hr) and more recently^[10] by pooling all the published studies reporting match and training injury incidence (148 per 1,000 match hr and a training injury incidence of 12.6 per 1,000 training hr) at all levels of participation in rugby league. The key findings from these previous studies^[9, 10, 14] have been: (i) There was no difference between injury rates for first and reserve grade players;^[9] (ii) There were significant differences between injury rates for different sites of the body, with the lower limb having the highest injury rate;^[9] (iii) There was a small but not significant risk of injury when playing as a forward compared with playing as a back;^[9] (iv) More concussions were recorded in amateur than professional (RR: 2.4 [95% CI: 1.5 to 3.8]; p=0.0002), semi-professional (RR: 3.0 [95% CI: 1.8 to 5.1]; p<0.0001) and junior (RR: 2.5 [95% CI: 1.2 to 5.5]; p=0.0132) studies;^[10] (v) The lower limb was the most common injury recorded (5.7 [95% CI: 5.1 to 5.8] per 1,000 training hours) for all studies reporting training sessions;^[10] (vi) There were more concussions recorded in semi-professional than amateur (RR: 13.5 [95% CI: 4.2 to 43.9]; p<0.0001) training session studies;^[10] (vii) The non-time-loss (NTL) match injury rate was 5.6 (95% CI: 5.0 to 6.4) times higher than the time-loss (TL) injury rate;^[14] (viii) Lacerations to the head and neck accounted for 77% (95% CI: 70% to 83%) of all NTL lacerations;^[14] and (ix) NTL concussions accounted for 71% (95% CI: 58% to 80%) of all concussions.^[14]

A systematic qualitative review of concussions in rugby league^[15] identified that the incidence of concussion varied widely from 0.0 to 40.0 per 1,000 playing hours depending on the injury definition utilised (time loss vs. no time loss). The incidence rates varied between match and training activities, playing positions and the season (winter vs. summer).^[15] Of all concussive injuries, 29% were associated with illegal match activities.^[15]

1.1 Objective of the pooled analysis

The purpose of this pooled analysis was to review all published rugby league studies reporting injuries from match and training participation and report the pooled data estimates for rugby league concussion injury epidemiology. In addition this pooled analysis added estimates of concussion injury incidence for professional, semi-professional, amateur and junior levels of participation in both the match and training environments.

2. Methods

The methodology utilised in this pooled analysis was similar to previous pooled analysis studies reporting rugby league injuries^[9, 10] and followed the steps as described by Friedenreich.^[11, 16] An additional advantage to utilising a pooled analysis approach is that the same statistical model can be utilised with data from methodologically diverse studies.^[17]

2.1 Search strategy for identification of databases

Searches of PubMed, CINAHL, Ovid, Scopus and SPORTDiscus[™] databases were performed to identify studies published in English between 1990 and October 2015. The research databases provided access to sportsoriented and biomedical journals, serial publications, books, theses, conference papers, and related research published since 1948. Terms utilized for the search of relevant research studies included rugby league; football; league, in combination with athletic injur* concuss*; sport* related concuss*; brain injur*; brain concussion; mild traumatic brain injury; mTBI; head injury; TBI and brain damage. The '*' symbol was utilized as a 'wildcard' in the search strategy. Searches were limited to 'English language' only. The references of all relevant articles were searched for further articles. All publications identified were initially screened by publication title and abstract to identify eligibility. In cases of discrepancies of eligibility another author assessed the publication to screen for eligibility. All articles that met the inclusion criteria were entered in an EndNote X6.0.1 database.

2.2 Inclusion-exclusion criteria

To establish some control over heterogeneity of the studies,^[18] inclusion criteria were established. Published studies that reported the incidence of injury in rugby league match and training activities were collated and included in the analysis if they:

- (1) Reported the match or training time exposure enabling calculation of player time injury rates;
- (2) Reported concussions as a result of match or training injuries;
- (3) More than one study reporting injuries at the identified participation level.

Studies were excluded from this review if it was identified that the publication:

- (1) Was unavailable in English; or
- (2) Did not provide match or training exposure enabling calculation of player time rates; or
- (3) Did not report on concussions that occurred as a result of match or training activities; or
- (4) Combined male and female sex match or training exposure and did not differentiate; or
- (5) Was a case study; or

(6) Were a meta-analysis or systematic review of rugby league injuries.

2.3 Procedures

All of the studies included in the pooled analysis were observational in design. Two reviewers extracted the study characteristics, numerical data and assessed the quality, by adhering to the protocol for systematic review of observational studies, the Meta-analysis Of Observational Studies in Epidemiology (MOOSE)^[18] (see Table 1). This approach enabled a more precise estimate of effects of influential factors and took into account confounding factors (participation level and age) and the heterogeneity of the studies.^[17]

A total of 8,326 articles were initially identified using the identified search strategy. This consisted of 1,069 studies identified in PubMed, 4,920 in CINAHL, 679 in Ovid Medline, 486 in Scopus and 1,172 in SPORTDiscus[™] (see Fig 1). Utilising the term football in the search strategy resulted in over 7,500 citations. These were related to non-rugby league studies and were excluded. Of the abstracts reviewed, 495 were not rugby league related, five were self-reported injuries and 10 were review articles. These were also excluded from the study. A total of 52 articles were reviewed resulting in 25 articles being included in the study.

2.4 Assessment of publication quality

All studies meeting the selection criteria were assessed for quality based on modified previously published checklists.^[18] Heterogeneity of the studies included in the literature review was expected as there might be differences in the study design, population and outcomes.^[18] Quality was described as the confidence that the design, conduct and analysis of the study minimised bias in the estimation of the factors associated with injury on the outcome measures.^[19] Overall quality of the studies included in the pooled analysis was good (median 4.9/6.0; range 4-5) (see Online Resource 1). Not all studies were prospective and no study had a blinded outcome.

2.5 Statistical analysis

The data from the individual studies were combined to obtain more precise estimates of the rate of concussion utilising a fixed-effects model.^[9, 11] By utilising the fixed-effects model it is assumed that the true exposure effect in each study is the same.^[11] Tabulation of the studies included was undertaken incorporating the study level of participation, the number of reported concussions and the exposure hours reported. The pooled calculation of the incidence of concussion was undertaken to report the incidence per 1,000 hr and 95% confidence intervals (CI).^[20] To compare between injury rates, risk ratios (RRs) were used. To test for significant difference, chi-squared (χ^2) goodness-of-fit tests were utilised. Each concussion injury was treated as an independent event and the data were assumed to follow a Poisson distribution. All statistics were carried out using the SPSS (IBM SPSS Statistics for Windows, Version 22.0, Armonk, NY: IBM Corp) statistical software packages.

3. Results

3.1 *Literature review*

Twenty five studies met inclusion criteria for this review (see Table 1). Five review studies^[3, 9, 15, 21, 22] were included in the data collection but were not utilised for the pooled analysis. The studies selected for inclusion reported rugby league match^[7, 14, 23-39] (n=19) and training^[7, 14, 40-43] (n=6) concussion injuries within their datasets (see Table 1). Although one study^[44] reported concussions, it did not report total match and training exposure hours. As a result the incidence per 1,000 hours could not be calculated and the study was excluded from the pooled analysis. Data pertaining to the participation level were reviewed and the studies meeting the inclusion criteria were grouped into professional (including reserve grade and elite);^[14, 23-28] semi-professional (including sub-elite);^[7, 29-31, 40, 41] amateur^[32-37, 42, 43] and junior.^[4, 38, 39] One study^[45] reported on an amateur rugby league sevens tournament and was included into the amateur group. The studies varied widely for the incidence of concussions in rugby league from 0.01^[14] per 1,000 training hours to 27.2^[33] per 1,000 match hours. This large variation may be related to the different methodologies and sampling methods utilised in the conducting of the studies.^[5, 15]

Many of the identified studies did not include all the areas of interest for the pooled analysis. Specific information was extracted from individual studies on an 'as-required' basis throughout the analytical process. If there were fewer than two studies reporting on the same participation level, this data was excluded from the pooled analysis. Not all studies meeting the inclusion criteria^[1, 5, 6, 46-55] reported concussions limiting the evaluation of these areas to the total match and training injuries recorded.

3.2 Injury exposure

The studies reporting match injury concussion data were drawn from 35,070 match exposure hr (professional: 22,246 match hr; Semi-professional: 8,780 match hr; amateur: 2,612 match hr; junior: 1,432 match hr) (see Table 2). Studies reporting training injury concussion data were drawn from 188,983 training exposure hr (professional: 161,701 training hr; Semi-professional: 14,202 training hr; amateur: 13,080 training hr). There were no published studies that reported junior training injuries.

3.3 Concussion injury incidence

The pooled analysis concussion injury incidence for match injuries was 7.7 (95% CI: 6.8 to 8.7) per 1,000 match hr (see Table 2). More concussions were recorded in amateur than professional (RR 2.7: [95% CI: 2.0 to 3.7]; p<0.0001), semi-professional (RR: 1.2: [95% CI: 0.9 to 1.6]; p=0.2552) and junior (RR: 1.0: [95% CI: 0.5 to 1.9]; p=0.9578) match studies. The pooled analysis concussion incidence for training injuries was 0.3 (95% CI: 0.2 to 0.3) per 1,000 training hr (see Table 2). There were more concussions recorded in semi-professional than

amateur (RR: 43.3: [95% CI: 4.5 to 416.7]; p<0.0001) and professional (RR:585.5: [95% CI: 80.7 to 4,249.3]; p<0.0001) training session studies. Semiprofessional rugby league participants recorded a two-fold risk ratio (RR: 1.9: [95% CI 1.3 to 2.9]; p=0.0013) when comparing match and training concussion incidence (see Table 3).

4. Discussion

The aim of this review was to examine the incidence of concussion in rugby league match play and training, across all levels of play. While recent reviews^[15, 56] have reported concussion incidence in rugby league, no pooled analysis providing more precise data has been undertaken until now.^[11] The current pooled analysis encapsulates a broad spectrum of published rugby league studies and incorporates both match and training concussion injuries at professional, semi-professional, amateur and junior levels of participation. Studies reporting women's matches were limited to one study,^[32] and there were no published studies reporting on junior training rugby league injuries.

Our pooled analysis builds on three previous studies.^[9, 10, 14] The major findings from our pooled analysis for studies of concussion occurring in match and training activities were: (i) Semi-professional participants had a three-fold greater concussion injury rate than amateur and nearly a two-fold greater concussion injury rate than junior rugby league participants during match participation; and (ii) Semi-professional participants had nearly a 600-fold higher concussion injury risk than professional participants, and nearly a 14-fold higher concussion injury risk than amateur rugby league participants during training participants.

It was not unexpected to find that professionals had a 1,150-fold decrease and amateurs an 84-fold decrease in the incidence of concussion injuries occurring when comparing match and training injury incidence. In the case of professionals, this could be related to the higher number of training exposures they undertake, when compared with other levels of participation. While professional players may undertake more regular training sessions than amateurs, they likely moderate their training sessions so that injury does not limit their ability to appear in competition. Professional players have been reported to have higher skill levels and physiological attributes when compared with amateur and semi-professional players.^[5] Amateur players partake in fewer regular training activities but rely on other employment as their source of income,^[42] so any injuries that occur may have a direct impact on their financial income. As a result the number of training exposures would be fewer than semi-professional and professional participants, and the skill level is likely lower.

What was unexpected was the finding that semi-professional participants had a 2-fold decrease in the incidence of concussion when comparing the match and training injury incidence. Research suggests that semi-professional participants have superior physiological capabilities than amateur participants^[5] producing a higher playing intensity that may result in a higher injury incidence.^[5, 23, 26, 57] Semi-professional players have a mix of payment for playing and may also utilise another source of employment for income.^[5] Over-exposure to a diverse range of physical activities may place them at a higher risk of injury such as concussion. The differences in the decrease in the incidence of concussion injuries may be a result of the approach to training activities at the

different levels of participation. Further studies should explore the issues surrounding semi-professional players and the incidence of both match and training injuries such as; employment type, training hours and coaching styles and how these injuries can be reduced.

This pooled analysis showed that in match activities amateur rugby league participants had a higher reported concussion injury rate than professional and semi-professional participants. A limitation with using the pooled analysis for the identification of concussion injuries is that there are no data to further analyse where, when or what player positions are affected when the concussions occur during the match and training activities. Further studies could further explore the incidence of concussion injuries in all levels of rugby league participation and should include a more detailed analysis of the time, activity and player position to assist with injury prevention programmes.

The pooled analysis approach produces an overall estimate of the injuries recorded by combining the data provided by the selected studies.^[58] As shown by this pooled analysis the incidence of concussion in rugby league is 7.9 per 1,000 match hours but this varies from 5.9 to 19.1 per 1,000 match hours. The limitations with the use of a pooled analysis methodology have been previously described.^[11] Issues such as differences in study design (observation vs. self-reported injury);^[59] injury type, site and severity definitions; data collection methods and times; data recording medium and the maintenance of the data medium were considered and addressed through identification of the data utilised.^[9, 14] An important issue in concussion injuries is the definition utilised.^[60] Despite attempts to standardise the definition of concussion through the Concussion in Sports Group, there have been several variations produced.^[60] As there is no universal definition of concussion then the incidence of concussion may be more than reported. Other factors that may influence the reporting of concussion is the knowledge of the people making the assessment, the availability of medical services to the team, as this will vary at the different participation levels, and the willingness of the player to report the signs of concussion.^[60] Epidemiological studies conducted at the semi-professional and professional levels of participation involve medical personnel such as medical doctors and physiotherapists while amateur and junior level participation studies typically do not have these personnel available. The variation of the medical providers available at the side-line may also influence the assessment of concussion as what may be a concussion to one person may not be to another.^[61] Despite these limitations, the strength of a pooled analysis is that it provides more accurate estimates of injury rates than the individual studies that provided the data.^[9] It can be utilised as comparisons against other pooled studies and to obtain a combined estimator of the guantitative effect of the relative risk of injuries in rugby league match and training activities.^[11, 16]

5. Conclusion

The current pooled analysis examined a broad spectrum of published rugby league studies and incorporated both match and training concussion injuries at professional, semi-professional, amateur and junior levels of participation. Our pooled analysis provided combined estimates of concussion injuries for training and games within rugby league and showed differences in concussion injury rates at several levels in the game. This pooled analysis showed that during match participation activities amateur rugby league participants had a higher reported concussion injury rate than professional and semi-professional participants. Semi-professional participants had nearly a three-fold greater concussion injury risk than amateur rugby league participants during match participation. They also had nearly a 600-fold greater concussion injury risk than professional rugby league participants during training participation. Further studies could further explore the incidence of concussion injuries in all levels of rugby league participation and should include a more detailed analysis of the time, activity and player position to assist with injury prevention programmes.

Compliance with Ethical Standards

Funding

No sources of funding were used to assist in the preparation of this article.

Conflicts of Interest

Doug King, Patria Hume, Conor Gissane and Trevor Clark declare that they have no conflicts of interest relevant to the content of this review.

Tables and Figures

Tables:

- Table 1: Study, MOOSE scores, year of publication, country where research undertaken, level of participation,sex, match or training environment, number of concussions and concussion incidence rate per 1000hours with 95% confidence intervals.
- Table 2: Pooled analysis of concussions in rugby league for match and training exposure activities by participation level by number of concussions reported, total exposure hours and rate per 1,000 hours with 95% confidence interval (CI).
- Table 3: Risk ratio of match to training concussion injuries for professional, semi-professional and amateur rugby

 league participants with 95% confidence intervals.

Online Resource

 Table 1:
 Meta-Analyses and Systematic Reviews of Observational Studies (MOOSE)^[18] assessment of reviewed publications included in the pooled analysis

Figure:

Figure 1: Flow of identification, screening, eligibility and inclusion for the pooled analysis of match and training rugby league concussion injuries.

References

- Seward H, Orchard J, Hazard H, et al. Football injuries in Australia at the elite level. Med J Aust 1993; 159(5):298-301.
- Gabbett T. Incidence of injury in junior and senior rugby league players. Sports Med 2004; 34(12):849-59.
- 3. King D, Hume P, Milburn P, et al. Match and training injuries in rugby league: A review of published studies. Sports Med. 2010; 40(2):163-78.
- 4. Raftery M, Parker R, Stacey E, et al. Incidence of injury in junior rugby league in the Penrith and district junior rugby league area: A report submitted to the NSW sporting injuries committee and Australian rugby league: Children's Hospital Institute of Sports Medicine, Research and Development office, The New Children's Hospital, Westmead; 1999.
- Gabbett T. Incidence of injury in semi professional rugby league players. Br J Sports Med 2003; 37(1):36-44.
- Hodgson Phillips L, Standen P, Batt M. Effects of seasonal change in rugby league on the incidence of injury. Br J Sports Med 1998; 32(2):144-8.
- Gabbett T. Influence of training and match intensity on injuries in rugby league. J Sports Sci 2004; 22(5):409-17.
- King D, Gabbett T, Gissane C, et al. Epidemiological studies of injuries in rugby league: Suggestions for definitions, data collection and reporting methods. J Sci Med Sport 2009;12(1):12-9.
- 9. Gissane C, Jennings D, Kerr K, et al. A pooled data analysis of injury incidence in rugby league football. Sports Med 2002; 32(3):211-6.
- 10. King D, Gissane C, Clark T, et al. The incidence of match and training injuries in rugby league: a pooled analysis of published studies. Int J Sport Sci Coach. 2014;9(2):417-31.
- 11. Blettner M, Sauerbrei W, Schlehofer B, et al. Traditional reviews, meta-analyses and pooled analyses in epidemiology. Int J Epidemiol. 1999 February 1, 1999;28(1):1-9.
- 12. Checkoway H. Data pooling in occupational studies. J Occup Med. 1991; 33(12):1257-60.
- Wong O, Raabe G. Application of meta-analysis in reviewing occupational cohort studies. Occup Environ Med. 1996 December 1, 1996; 53(12):793-800.
- 14. Gissane C, Hodgson L, Jennings D. Time-loss injuries versus non-time-loss injuries in the first team rugby league football: A pooled data analysis. Clin J Sports Med. 2012; 22(5):414-7.
- Gardner A, Iverson G, Levi C, et al. A systematic review of concussion in rugby league. Br J Sports Med. 2014, 49(8):495-8.
- Friedenreich C. Methods for pooled analyses of epidemiologic studies. Epidemiology. 1993; 4(4):295-302.
- 17. Giacco D, McCabe R, Kallert T, et al. Friends and symptom dimensions in patients with psychosis: A pooled analysis. PLoS ONE. 2012; 7(11):e50119.

- Stroup D, Berlin J, Morton S, et al. Meta-analysis of observational studies in epidemiology: A proposal for reporting. JAMA. 2000;283(15):2008-12.
- 19. Loosemore M, Knowles C, Whyte G. Amateur boxing and risk of chronic traumatic brain injury: systematic review of observational studies. BMJ. 2007;335(7624):809-12.
- Twellaar M, Verstappen F, Huson A. Is prevention of sports injuries a realistic goal? A four-year prospective investigation of sports injuries among physical education students. Am J Sports Med 1996; 24(4):528-34.
- 21. Lythe M, Norton R. Rugby league injuries in New Zealand. NZ J Sports Med 1992; 20:6-7.
- 22. Hoskins W, Pollard H, Hough K, et al. Injury in rugby league. J Sci Med Sport 2006; 9(1-2):46-56.
- Stephenson S, Gissane C, Jennings D. Injury in rugby league: a four year prospective survey. Br J Sports Med 1996; 30(4):331-4.
- 24. Gissane C, Jennings D, Kerr K, et al. Injury rates in rugby league football: Impact of change in playing season. Am J Sports Med 2003; 31(6):954-8.
- 25. Gissane C, Jennings D, White J, et al. Injury in summer rugby league football: the experiences of one club. Br J Sports Med 1998; 32(2):149-52.
- 26. Gibbs N. Injuries in professional rugby league. A three-year prospective study of the South Sydney professional rugby league football club. Am J Sports Med 1993; 21(5):696-700.
- 27. King D, Hume P, Clark T. Nature of tackles that result in injury in professional rugby league. Res Sports Med. 2012; 20(2):87-105.
- Gardner AJ, Iverson GL, Quinn TN, et al. A preliminary video analysis of concussion in the National Rugby League. Brain Injury. 2015;29(10):1182-5.
- Gabbett T, Domrow N. Risk factors for injury in subelite rugby league players. Am J Sports Med 2005; 33(3):428-34.
- Gabbett T. Influence of playing position on the site, nature and cause of rugby league injuries. J Strength Cond Res 2005; 19(4):749-55.
- King D, Gabbett T. Injuries in the New Zealand semi-professional rugby league competition. NZ J Sports Med 2009; 36(1):6-15.
- King D, Gabbett T. Injuries in a national women's rugby league tournament: An initial investigation. NZ J Sports Med 2007; 34(2):18-22.
- King D, Gabbett T. Amateur rugby league match injuries in New Zealand. NZ J Sports Med 2009; 36(1):16-21.
- 34. King D, Gissane C. Injuries in amateur rugby league matches in New Zealand: A comparison between a division one and a division two premier grade teams. Clin J Sports Med. 2009; 19(4):277-81.
- 35. King D, Clark T, Gissane C. Use of a rapid visual screening tool for the assessment of concussion in amateur rugby league: A pilot study. J Neurol Sci 2012;320(1-2):16-21.
- King D, Clark T. Injuries in amateur representative rugby league over three years. NZ J Sports Med. 2012; 39(2):48-51.

- 37. King D, Gissane C, Hume P, et al. The King–Devick test was useful in management of concussion in amateur rugby union and rugby league in New Zealand. J Neurol Sci. 2015;351(1–2):58-64.
- Gabbett T. Incidence of injury in junior rugby league players over four competitive seasons. J Sci Med Sport 2008; 11(3):323-8.
- King D. Incidence of injuries in the 2005 New Zealand national junior rugby league competition. NZ J Sports Med 2006; 34(1):21-7.
- 40. Gabbett T. Reductions in pre-season training loads reduce training injury rates in rugby league players. Br J Sports Med 2004; 38(6):743-9.
- 41. Gabbett T, Domrow N. Relationships between training load, injury, and fitness in sub-elite collision sport athletes. J Sports Sci 2007; 25(13):1507-19.
- 42. King D, Gabbett T. Training injuries in New Zealand amateur rugby league players. J Sci Med Sport 2008; 11(6):562-5.
- 43. Clark T, King D. Incidence of training injuries in a New Zealand amateur rugby league team over three consecutive years. Unpublished data. 2012.
- 44. Orr R, Cheng HL. Incidence and characteristics of injuries in elite Australian junior rugby league players. J Sci Med Sport. 2015;doi:10.1016/j.jsams.2015.03.007.
- 45. King D, Gabbett T, Dreyer C, et al. Incidence of injuries in the New Zealand national rugby league sevens tournament. J Sci Med Sport 2006; 9(1-2):110-8.
- 46. Orchard J, Hoskins W. Rugby league injuries at state of origin level. Sport Health. 2007; 27(2):19-24.
- 47. Estell J, Shenstone B, Barnsley L. Frequency of Injuries in different age-groups in an elite rugby league club. Aust J Sci Med Sport 1995; 27(4):95-7.
- Gabbett T. Incidence, site, and nature of injuries in amateur rugby league over three consecutive seasons. Br J Sports Med 2000; 34(2):98-103.
- 49. Gabbett T. Incidence of injury in amateur rugby league sevens. Br J Sports Med 2002; 36(1):23-7.
- 50. Gabbett T. Training injuries in rugby league: An evaluation of skill-based conditioning games. J Strength Cond Res 2002; 16(2):236-41.
- Gabbett T. Influence of injuries on team playing performance in rugby league. J Sci Med Sport 2004; 7(3):340-6.
- 52. Gabbett T, Godbolt R. Training injuries in professional rugby league. J Strength Cond Res. 2010; 24(7):1948-53.
- Hodgson L, Standen P, Batt M. An analysis of injury rates after seasonal change in rugby league. Clin J Sports Med 2006; 16(4):305-10.
- 54. Killen N, Gabbett T, Jenkins D. Training loads and incidence of injury during the preseason in professional rugby league players. J Strength Cond Res. 2010; 24(8):2079-84.
- 55. Gabbett TJ. The development and application of an injury prediction model for noncontact, soft-tissue injuries in elite collision sport athletes. J Strength Cond Res. 2010; 24(10):2593-603

- 56. Kirkwood G, Parekh N, Ofori-Asenso R, et al. Concussion in youth rugby union and rugby league: a systematic review. Br J Sports Med. 2015;49(8):506-10.
- 57. Gissane C, Jennings D, Standing P. Incidence of injury in rugby league football. Physiotherapy 1993; 79:305-10.
- 58. Elwood M. Critical apprasial of epidemiological studies and clinical trials. 3rd ed. New York: Oxford University Press Inc.; 2007.
- 59. Dompier T, Powell J, Barron M, et al. Time-loss and non-time-loss injuries in youth football players. J Athl Train. 2007; 42(3):395-402.
- 60. King D, Brughelli M, Hume P, et al. Assessment, management and knowledge of sport-related concussion: Systematic review. Sports Med. 2014;44(4):449-71.
- 61. Orchard J. Concussion: How do we reconcile risk-averse policies with risk-taking sports? In: Khan K, editor. BJSM group Blogs; 2012.

Table 1: Study, MOOSE scores, year of publication, country where research undertaken, level of participation, sex, match or training environment, number of concussions and concussion incidence rate per 1000 hours with 95% confidence intervals.

Study	MOOSE score	Yr.	Country	Level	Sex	Match/training	Concussions (n)	IR/1000 hrs (95% CI)
Gibbs ^[26]	5/6	1993	Australia	Professional	Male	Match	5	1.6 (0.7-3.8)
Stephenson et al.[23]	5/6	1996	England	Professional	Male	Match	35	8.1 (5.8-11.3)
Gissane et al.[25]	5/6	1998	England	Professional	Male	Match (summer)	8	14.0 (7.0-28.1)
Gissane et al.[25]	5/6	1998	England	Professional	Male	Match (winter)	1	2.5 (0.4-17.9)
Raftery et al.[4]	5/6	1999	Australia	Junior	male	Match	20	0.8 (0.5-1.2)
Gissane et al.[24]	5/6	2003	England	Professional	Male	Match	18	3.7 (2.3-5.9)
Gabbett ^[40]	5/6	2004	Australia	Semi-professional	Male	Training	3	0.7 (0.2-2.3)
Gabbett ^[7]	5/6	2004	Australia	Semi-professional	Male	Match	1	1.0 (0.1-6.9)
Gabbett ^[7]	5/6	2004	Australia	Semi-professional	Male	Training	36	9.8 (7.1-13.6)
Gabbett ^[30]	5/6	2005	Australia	Semi-professional	Male	Match	27	13.1 (9.0-19.2)
Gabbett et al.[29]	5/6	2005	Australia	Semi-professional	Male	Match	10	3.0 (1.6-5.6)
King ^[39]	5/6	2006	New Zealand	Junior	Male	Match	5	14.7 (6.1-35.3)
King et al.[45]	5/6	2006	New Zealand	Amateur	Male	Match	1	6.5 (0.9-46.5)
King et al.[32]	5/6	2007	New Zealand	Amateur	Female	Match	2	6.1 (1.5-24.3)
Gabbett et al.[41]	5/6	2007	Australia	Semi-professional	Male	Training	5	0.8 (0.3-1.9)
King et al.[42]	5/6	2008	New Zealand	Amateur	Male	Training	1	0.7 (0.1-4.7)
Gabbett ^[38]	5/6	2008	Australia	Junior	Male	Match	5	4.6 (1.9-11.0)
King et al.[34]	5/6	2009	New Zealand	Amateur	Male	Match	16	16.8 (10.3-27.5)
King et al.[33]	5/6	2009	New Zealand	Amateur	Male	Match	8	27.2 (13.6-54.4)
King et al.[31]	5/6	2009	New Zealand	Semi-professional	Male	Match	14	6.0 (3.5-10.1)
King et al.[36]	5/6	2012	New Zealand	Amateur	Male	Match	8	19.3 (9.6-38.5)
King et al.[35]	5/6	2012	New Zealand	Amateur	Male	Match	5	35.3 (14.7-84.9)
Gissane et al. ^[14]	4/6	2012	England	Professional	Male	Training	1	0.01 (0.00-0.02)
Gissane et al. ^[14]	4/6	2012	England	Professional	Male	Match	61	7.0 (5.5-9.0)
King et al.[27]	5/6	2012	Australia	Professional	Male	Match	10	12.0 (6.5-22.4)
King et al.[37]	5/6	2015	New Zealand	Amateur	Male	Match	8	24.4 (12.2-48.7)
Gardner et al.[28]	4/6	2015	Australia	Professional	Male	Match	20	14.8 (9.6-23.0)

MOOSE = Meta-Analysis and Systematic Reviews of Observational Studies; Yr. = year of publication; CI = Confidence Interval. IR = incidence rate (related to either match or training exposure hours depending upon the study cohort)

-

 Table 2: Pooled analysis of concussions in rugby league for match and training exposure activities by participation level by number of concussions reported, total exposure hours and rate per 1,000 hours with 95% CI.

	Concussions (n) Hours		Rate (95% CI)	
Match reported concussions ^a				
Total	270	35,070	7.7 (6.8 to 8.7)	
Sex				
Male ^[4, 7, 14, 23-31, 33-36, 38, 39, 45]	268	34,741.2	7.7 (6.8 to 8.7)	
Female ^[32]	2	329.2	6.1 (1.5 to 24.3)	
Level of participation				
Professional ^[14, 23-28]	158	22,246.2	7.1* (6.1 to 8.3)	
Semi-professional ^[7, 29-31]	52	8,779.9	5.9* (4.5 to 7.8)	
Amateur ^[32-37, 45]	50	2,611.8	19.1 ^{#\$} (14.5 to 25.3	
Junior ^[4, 38, 39]	10	1,432.5	7.0* (6.8 to 8.7)	
Training reported concussions ^b				
Total	48	188,983.0	0.3 (0.2 to 0.3)	
Sex				
Male ^[7, 14, 40-43]	48	188,983.0	0.2 (0.2 to 0.3)	
Level of participation				
Professional ^[14]	1	161,700.5	0.01§* (0.00 to 0.04)	
Semi-professional ^[7, 40, 41]	44	14,202.4	3.1 ^{‡*} (2.3 to 4.2)	
Amateur ^[42, 43]	3	13,080.1	0.2 ^{‡§} (0.1 to 0.7)	

CI = Confidence interval; (a) = rate reported per 1,000 match hr.; (b) rate reported per 1,000 training hr. * p<0.05 vs amateur; † p<0.05 vs junior; ‡ p<0.05 vs professional; § p<0.05 vs semi-professional.

 Table 3: Risk ratio of match to training concussion injuries for total concussions, professional, semi-professional and amateur rugby league participants with 95% CI.

Participation level	RR (95% CI)	χ²; (df=1),	p value			
Total concussions ^[4, 7, 14, 23-43, 45]	30.3 (22.3 to 41.2)	1,155.6	<0.0001			
Professional ^[14, 23-28]	1,148.5 (160.8 to 8,203.4)	998.1	< 0.0001			
Semi-professional ^[7, 29-31, 40, 41]	1.9 (1.3 to 2.9)	10.36	0.0013			
Amateur ^[32-37, 42, 43, 45]	83.5 (26.1 to 267.4)	230.6	<0.0001			

RR = Risk Ratio; CI = Confidence interval; df = degrees of freedom

Online Resource

Study	Prospective	Groups comparable on confounding factors	Blinded outcome	Long enough follow up	Exposure response measured	Appropriate statistics	Overall quality (max =6)
Gibbs ^[26]	Yes	Yes	No	Yes	Yes	Yes	5
Stephenson et al.[23]	Yes	Yes	No	Yes	Yes	Yes	5
Gissane et al.[25]	Yes	Yes	No	Yes	Yes	Yes	5
Gissane et al.[25]	Yes	Yes	No	Yes	Yes	Yes	5
Raftery et al.[4]	Yes	Yes	No	Yes	Yes	Yes	5
Gissane et al.[24]	Yes	Yes	No	Yes	Yes	Yes	5
Gabbett ^[40]	Yes	Yes	No	Yes	Yes	Yes	5
Gabbett ^[7]	Yes	Yes	No	Yes	Yes	Yes	5
Gabbett ^[7]	Yes	Yes	No	Yes	Yes	Yes	5
Gabbett ^[30]	Yes	Yes	No	Yes	Yes	Yes	5
Gabbett et al.[29]	Yes	Yes	No	Yes	Yes	Yes	5
King ^[39]	Yes	Yes	No	Yes	Yes	Yes	5
King et al. ^[45]	Yes	Yes	No	Yes	Yes	Yes	5
King et al.[32]	Yes	Yes	No	Yes	Yes	Yes	5
Gabbett et al.[41]	Yes	Yes	No	Yes	Yes	Yes	5
King et al. ^[42]	Yes	Yes	No	Yes	Yes	Yes	5
Gabbett ^[38]	Yes	Yes	No	Yes	Yes	Yes	5
King et al.[34]	Yes	Yes	No	Yes	Yes	Yes	5
King et al.[33]	Yes	Yes	No	Yes	Yes	Yes	5
King et al.[31]	Yes	Yes	No	Yes	Yes	Yes	5
King et al.[36]	Yes	Yes	No	Yes	Yes	Yes	5
King et al.[35]	Yes	Yes	No	Yes	Yes	Yes	5
Gissane et al. ^[14]	No	Yes	No	Yes	Yes	Yes	4
Gissane et al. ^[14]	No	Yes	No	Yes	Yes	Yes	4
King et al. ^[27]	Yes	Yes	No	Yes	Yes	Yes	5
King et al.[37]	Yes	Yes	No	Yes	Yes	Yes	5
Gardner et al.[28]	No	Yes	No	Yes	Yes	Yes	4

Table 1: Meta-Analyses and Systematic Reviews of Observational Studies (MOOSE)^[18] assessment of reviewed publications included in the pooled analysis

Figure 1: Flow of identification, screening, eligibility and inclusion for the pooled analysis of match and training rugby league concussion injuries.