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ABSTRACT 

Strength has been associated with reduced ACL incidence in sport but the specific mechanisms 

are less clear. The purpose of the investigation was to examine how strength may alter 

biomechanics to reduce injury risk during these manoeuvres, as well as explore how knee angle 

varies in response to different cutting conditions. Fourteen trained subjects were split into a 

stronger and weaker group (28.6 vs 17.5 N/kg
-1

), determined by relative peak isometric strength 

in a unilateral squat. Each participant was fitted with reflective markers, and lower limb, sagittal 

plane, kinetics and kinematics were evaluated using a tri axial force plate, and a 16 camera 

motion analysis system. Subjects performed 18 trials divided into six different cutting conditions, 

comprising of 2 cutting angles (45° and 90°), at 2, 4 and 6 m.s
-1

. A mixed design ANOVA 

(2x2x3) determined that between strength groups (n=7), significant increases in hip extensor 

moments (p ˂ 0.05), and reductions in knee extensor moment (p ˂ 0.05) during weight 

acceptance in the strong group were observed. In addition, knee angle at initial contact was more 

flexed in the strong group (p = 0.05). When group data was collapsed, significant peak knee 

flexion differences existed for cut angle (p ˂ 0.001), but not for velocity. Results suggest 

increasing lower extremity strength may reduce ACL loading by redistributing impact forces to 

the hip and alleviating stress at the knee, as well as reducing ACL strain directly by a more 

flexed knee position at ground contact. In addition, peak flexion posture is dependent on cut 

angle, not velocity, perhaps as a way to increase excursion to reduce ground reaction forces, and 

knee extensor moments, during movements with greater multi planar stresses.  
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CHAPTER 1: Introduction 

Cutting has been cited as a leading cause of non-contact anterior cruciate ligament (ACL) injury 

in a range of multi directional sports (1,2,3). These injuries have important implications for the 

sports performer, not only in the short-term through  loss of time engaged in sporting activity, 

but also from the long-term health risks posed by such an injury (4). Therefore, prevention 

strategies aimed to reduce the risk of injury are a crucial part of planning for the strength and 

conditioning coach. Sagittal plane biomechanics have an important role to play in the injury 

mechanism (5,6), and in particular, research has identified flexion angles below 30° during the 

first 50 milliseconds after initial ground contact as having high risk implications for injury 

incidence (3,7,8).  

Strength has often been reported as having a preventative effect on ACL injury occurrences, 

often as a part of more holistic training programmes (9,10,11,12,13), however, the specific 

mechanisms as to how greater strength may be of benefit remain elusive. Data from a number of 

studies with countermovement jumps (14,15), and cutting (16) have shown that greater strength 

affects sagittal plane kinematics at the knee, with deeper peak knee angles of ~4-5° reported. A 

more flexed knee has been shown to reduce ACL strain (17,18) however, it is within the first 50 

milliseconds of landing, during the impact phase, where risk of ACL rupture is highest when the 

knee is in a more extended position (3,7,8). Derrick (51) has reported significant correlations 

between peak knee angle, and contact angle and Wu et al. (37) showed that peak knee angles, 

and contact knee angles were significantly deeper in an experienced jumping group, who also 

happened to be stronger than the non-jump group, although there was no difference in range of 

motion at the knee. Only one study has investigated strength and knee flexion angle at initial 

contact in a stretch-shorten cycle movement, and report a significant correlation, suggesting 
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stronger subjects landed in a more flexed position (19), however, more research is needed in this 

area.  

Strength training has also been shown to increase hip contribution during the landing phase of a 

countermovement task (14) via larger hip extensor moments, which led to a change in the knee 

to hip ratio. It has been speculated that this change to a more hip dominant landing strategy could 

serve to alleviate extensor moments at the knee although no study has yet observed this (20,21). 

Stearns and Powers (14) demonstrated that knee adductor moments could be reduced, and hip 

moments increased when participants were subjected to only 4 weeks of hip focussed training, 

involving balance training, and plyometric tasks, however, they did not see significant reductions 

in knee extensor moments. Perhaps with greater strength changes, the subjects may have seen 

changes to knee extensor moments as well. Lower knee extensor values would be favourable for 

reducing ACL injury risk due to reduced pull on the patella tendon that would contributes to 

anterior tibial translation (22). Currently there is no data to suggest whether hip and knee 

extensor moments might be altered during higher risk manoeuvres such as cutting. 

In addition to the paucity of research into strength and cutting, the current literature fails to 

adequately address the changing nature of the sporting environment. Many of the current studies 

tend to use 45° cutting protocols, with a fixed approach speed (16,23,24,25,26,27,28), which 

does not give an indication of how motor control strategies adapt in response to environmental 

changes that the performer may face, such as sharper cutting angles, or different velocities into 

the cut. Having an understanding of how demands change may give insight into injury 

mechanisms, and how these might interact with performance.  
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Although approach velocities between studies vary considerably between, 3.5 - 5.8m.s
-1

, the 

peak knee angle is consistently measured at between 50 and 60° (16,23,24,25,26,27,28). This 

value is significant, as it falls within the range reported for optimal torque angle relationship of 

51° in a multi joint single leg press (29). Besier et al. (30) observed that peak knee angle during 

linear running is significantly more extended than a cutting manoeuvre at an equivalent approach 

velocity demonstrating that the skills are distinct. It could be that peak knee angle is fixed at as 

deep an angle as possible during this high risk manoeuvre, as deeper knee creates less strain on 

the ACL (18). Support for this within a different movement pattern is observed by Peng et al. 

(31), where peak knee angle remained unchanged during incremental single leg drop jumps. In 

this study it was contact angle that was adapted with increasing drop height to allow greater 

excursion to dissipate force (32,33). No clear pattern emerges within the cutting data, however, 

initial contact angle shows much greater variation compared with peak angle, with values 

ranging from 16°- 42° (23,24). It is possible that peak knee angle is maximised to a position 

where optimal performance can still occur, and at the same time allow initial contact to be as 

deep as possible to reduce injury risk at impact. With regards to cutting angle, only 2 studies 

have reported sagittal plane mechanics. Besier et al. (30) reported a 2.3° increase in peak knee 

flexion angle at 60° cuts compared to 30° but did not statistically report this difference. Arguably 

changes of this magnitude would have little functional significance on the knee. On the other 

hand, when comparing 45° and 90° manoeuvres, Havens and Sigward (34) reported a significant 

increase of 8°, perhaps indicating that deeper cutting angles have larger impact on knee 

biomechanics. It should be noted that this study did not control for approach velocity, making 

results difficult to interpret, therefore more research is required in this area. 
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There are two main aims within the study, firstly to try to identify how strength may reduce 

injury risk during cutting tasks. Greater strength may allow stronger subjects to achieve deeper 

peak knee angles, via having a greater ability to adjust to the larger force requirements as a result 

of an increasing moment arm at the knee. If force is still absorbed in a similar way during the 

cut, a similar excursion would allow an increased in knee flexion angle at contact. Therefore the 

first hypothesis is that the stronger group will have a deeper knee angle at initial contact.  

Strength also appears to affect hip dominance during landing, as the hip would have the capacity 

to absorb greater forces during a cut, therefore it is hypothesised that there will be an increased 

hip extensor moment causing a more hip dominant energy absorption strategy during the touch 

down phase. The second aim is observe how knee kinematics change in response to varying 

approach and cut angle conditions. The data suggests that peak knee angle remains similar, 

perhaps in a position that optimises torque production, in a low risk knee position. It is 

hypothesised peak angle will remain fixed as approach velocity changes; however, increasing the 

cutting angle will cause an increase in peak knee angle. 
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CHAPTER 2: Methods 

2.1 Experimental Approach to the problem  

Subjects were asked to take part in two testing sessions separated by at least 72 hrs, and no 

longer than 14 days. The first testing session involved the assessment of unilateral lower body 

strength with an isometric squatting task. The subject was then taken to the lab for 

familiarization of the cutting protocols which would be utilized during the second testing session, 

and consisted of performing a number of trials at different velocities and angles until the subject 

felt comfortable with the task. The second testing session measured the participant’s knee angle 

at ground contact, and peak flexion and hip and knee extensor moment, as well as ground 

reaction force data during 45° and 90° cutting manoeuvre at 3 different approach velocities. 

2.2 Subjects  

Fourteen physically active subjects with a history of team sports participated in the study. 

Subjects were recruited due to having a minimum of 5 years previous experience in their 

respective sports and be training in a multidirectional sport for at least 2 sessions per week. 

Exclusion criteria for the study included any lower extremity injury that has kept the subject out 

of training for 3 weeks or more in the 6 months prior to testing, or a previous ACL injury. 

Subjects were asked to abstain from lower body resistance or vigorous activity for 48hrs prior to 

each testing session. Only participants who were right leg dominant participated in the study. 

Strength groups were selected based on their normalized relative peak force values from an 

isometric strength test. Subjects above the 50
th

 percentile were assigned to the strong group 

(n=7), and those below assigned to the weak group (n=7). Subject characteristics for each group 

can be found in Table 1. The study was approved by the human research ethics committee at St 
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Mary’s University, as well as  internal review board at the Qatar anti-doping lab. Subjects were 

informed of the benefits and risks of the investigation prior to signing an institutionally approved 

informed consent document to participate in the study. 

Table 1: Mean (standard deviation) characteristics of subjects by strength 

 Strong (n=7) Weak (n=7) p 

Strength (N/kgbw) 28.6 (3.9) 17.5 (3.7) 0.001 

Age (years) 34 (3.8) 34 (5.6) 0.83 

Height (cm) 175 (6.3) 178 (8.7) 0.51 

Body Mass (kg) 76 (7.6) 78 (15) 0.71 

 

2.3 Procedures 

2.3.1 Isometric Strength Testing  

Lower body strength was measured in the dominant limb using a single leg isometric squat, 

performed on a portable 0.6m x 0.4m tri axial force plate (Kistler, Winterthur, Switzerland) with 

a sampling rate of 1000Hz. The squat was performed using a custom made, floor bolted squat 

rack with height adjustable bar supports (Figure 1). The subject warmed up by performing 10 

repetitions of a half squat with a 20kg barbell, followed by 2 sets at a weight they considered to 

be equal to 8-10 maximal repetitions (RM) for them. They were then moved to a Smith machine 

and asked to perform quarter squats with progressive intensity. One set at 6RM, one at 4 RM, 

and one at 2RM  followed by 2 familiarization trials at ~90% maximal exertion. Knee and hip 

angles of 40° were selected to ascertain peak force in the lower limb (35). Measurement of knee 

and hip angle were taken with a goniometer and joint centres were established by methods 

described in table 2. The angle recorded is relative to the position of the proximal to distal 

segment i.e 40° knee angle is measured as the angle of the shank in relation to the thigh. Subjects 
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were asked to place the heel of the dominant leg underneath the bar, with the hips back and apply 

as much force as possible upwards for 5 seconds on 3 occasions with 2 minutes recovery 

between each trial (36). Peak force was selected as the highest force achieved, but only if the 

second best trial was within 10% of the highest, if not a further trial was recorded. The subjects 

were then given a 10 minute rest during which anthropometric measurements were taken. 

Subjects then undertook a number of familiarization trials until they felt comfortable with the 

technique required. 

 

Figure 1: Adopted subject positioning for the unilateral isometric strength test. Squat rack 

was bolted to the floor, and had custom made stoppers connecting the barbell to the rack. 

 

2.3.2 Instrumentation 

To record three dimensional, lower extremity kinematics during the cutting manoeuvres, a 16 

camera motion system (Vicon MX, UK) was used with a sampling frequency of 250Hz. Sixteen 

14mm hard markers encased in retro-reflective tape were attached to anatomical landmarks of 
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the lower limb (Figure 2) in accordance with the Vicon clinical manager marker set (Table 2). 

Anthropometric measurements for leg length were taken from anterior superior iliac spine to 

medial malleoli, as well as and ankle and knee girth. These measurements together fully define  

the reference coordinate system for a three dimensional lower body coordinate system. The 

subject was asked to stand in the anatomical position in the centre of the force plate as a standing 

trial prior to data collection, to determine segment lengths.  Ground reaction force data during 

the cutting task was collected using a 0.6 x 0.9m force plate (Type 2812A, Kistler, Winterthur, 

Switzerland) embedded into the floor and sampled at a frequency of 1000Hz. Cameras were 

synchronised to the force platforms so that joint moments could be calculated.  

 

Table 2: Definitions of landmarks for identification of axis of rotation and segment 

coordinate frame 

Joint Centre 

or Segment 
Marker Site Description 

Hip L/R Greater Trochanter 
Axis of rotation at the hip. Palpate for bony 

prominence inferior to iliac crest. 

Knee 
L/R Lateral Femoral 

Condyle 

Axis of rotation at the knee. Palpate under patella 

and around to feel joint line. Palpate superiorly 

to find bony prominence just above joint line. 

Ankle L/R Lateral Malleoli Axis of rotation for ankle.  

Pelvis 

L/R ASIS 

 

L/R PSIS 

Most prominent point of left or right ASIS, and 

left and right PSIS. Defines segment frame 

Thigh L/R thigh on lateral aspect 

Midpoint between marker on lateral femoral 

condyle, and greater trochanter (higher on right 

side). To define segment length. 

Shank L/R shank on lateral aspect 

Midpoint of shin in line with lateral malleolus 

and lateral femoral condyle (higher on the right). 

Define segment length. 

Foot 
L/R 2

nd
 Metatarsal 

L/R Heel 

Heel level with 2
nd

 metatarsal placement and in 

line with achillies to define segment length 
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Figure 2: Subject positioned for standing calibration trial with retro-reflective marker 

placed at relevant sites (heel and PSIS are posteriorly positioned). This is to establish local 

coordinate system relative to global that is marked via static and dynamic calibration with 

the wand. 

 

2.3.3 Change of Direction Trials  

On the second day of testing, subjects reported to the biomechanics lab where they were given 

lycra shorts to wear and reflective markers were placed on their lower body (Figure 2). Subjects 

then performed a 10 minute standardized warm up including a short familiarisation at the various 

cutting protocols. For the trials subjects were asked to start on a marked line 15m from the centre 

of the force plate. To test the variations in lower body kinematics due to variations in the task, 3 

different velocities (2, 4, and 6m.s
-1

) were selected to be performed at cutting angles of 45° and 

90°. The subject was asked to perform 3 trials for each of the 6 conditions, making a total of 18 

manoeuvres in the session, however, if the subject failed to achieve an approach velocity within 

± 5% of the target, or they were perceived to be targeting the force plate, they were asked to 

repeat the trial. To negate the effects of fatigue a minimum of 1 minute recovery was given 

between each trial. To avoid potentially harmful and unnatural cutting movement, approach 
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velocity was measured for 3m, 8m from the force plate using light gates (Microgate Polifemo 

Light, Bolzano Bozen, Italy), this allowed greater realism to the task whilst providing a 

consistent measure for approach velocity. Subjects were asked to try to maintain their velocity 

through the second set of light gates and perform the cut as quickly as possible, however, they 

were told it was acceptable to slow down during the second approach phase in order to cut safely 

and allowed the movement to be pre-planned. A third and fourth light gate measured the 

completion time for the task but were mainly used to ensure the athlete was attempting maximal 

performance (Figure 3). To ensure the correct cutting angle was achieved, tape marking was 

applied to the floor to guide the athletes with the fourth set of photocells set up 2m from the 

force plate and spaced 50cm either side of the marker tape to ensure the actual cut angle for the 

45° and 90° trials would be between 35° and 55°, and 80° to 100° respectively. Subjects were 

asked to complete the movement as fast as possible. 

 

Figure 3: Experimental setup for the cutting task. Solid line arrow represents line of 

motion with two cutting angles at the end. The light was timer was triggered from 8m 

before force plate, and again 5m before the force plate.  
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2.3.4 Data Analysis 

The force platform was used to determine heel strike events to define the stance phase of the 

cutting (Figure 4). Within this time frame, from initial contact to the first force peak, impact knee 

(KEM1) and hip (HEM) extensor moment were recorded. Between the first force peak and when 

ground reaction force data reached its second peak, the highest value for knee extensor moment 

was reported (KEM2). In addition, contact time, peak braking force (GRFbr), and ground reaction 

force at the first (GRF1) and second peak (GRF2) were also extracted. Initial contact knee angle 

(KAic) was reported as the knee angle at foot strike, determined as the point at which ground 

reaction force exceeds 15N. Peak knee angle (KApe) was taken as the deepest knee angle based 

on the kinematic data. Relative contribution of the knee and hip during initial contact was 

calculated by dividing the KEM1 by HEM to get a knee to hip ratio. Scores larger than 1 indicate 

greater influence from the knee, whereas, scores below 1 indicate greater influence from the hip 

(20,21). To calculate joint kinetics inverse dynamics were utilised using kinematic data derived 

from the motion analysis, and force data and centre of pressure derived from the force plate. 

YXZ Cardan angles were compared using relative orientation of 2 segments, using data from 

previous studies (48,49). Newton Eular equations of motion were applied at the beginning of one 

end of the segment starting at the ground and calculating each segment up to the hip. The ‘Plug-

in gate’ model in Vicon was used to calculate joint kinetics. Positive angles represent flexion at 

the hip and knee.  Data was filtered using a Woltring filter quintic spline routine in mean square 

error mode with a smoothing factor of 10. 
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Figure 4: Diagram to show at which time the key variables were recorded in relation to the 

stance phase. 

 

2.4 Statistical Analysis 

A 3 way mixed design ANOVA was used with 1 between group condition (Strength) and 2 

within group conditions (Cut Angle*Velocity). Statistical significance was established at an 

Alpha level (α) < 0.05 with all data reported as mean and standard deviation (sd). Sidak post hoc 

analysis was utilised to observe where differences existed between different conditions. Partial 

Eta squared values (np
2
) were reported as a measure of effect size (48), where 0.01, 0.06 and 0.14 

represent small, moderate, and large effects respectively. All data analysis was completed using a 

statistical software package (SPSS, Version 22). 
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CHAPTER 3: Results 

The strong group had a significantly higher relative peak mean strength of 28.6 (3.9) N/kg
-1

, 

compared to the weak groups 17.5 (3.7) N/Kg
-1 

(p < 0.001). Subject characteristics were not 

significantly different between strength groups.  

In the final 3 meters of the approach, subjects slowed their approach run up significantly in both 

the 45° and 90° cutting conditions during the 6m.s
-1

 trial, whereas at 2 and 4m.s
-1

 approach 

velocity at this time point was still the same as the target velocity. In the 90° cut the subjects 

slowed to a greater extent compared to the 45° cut (5.26 vs 5.61 m.s
-1

). 

3.1 Strength Group Comparisons 

Knee and hip extensor moment comparisons between the strong and the weak group are 

presented in figure 5. Stronger subjects demonstrated significantly larger peak hip extensor 

moments, F(1,12) = 9.34, p = 0.01, and lower knee extensor moments, F(1,12) = 9.82, p = 0.009, 

during the impact phase of the manoeuvre. This significantly reduced the knee to hip ratio, 

F(1,12) = 11.58, p = 0.005, in the stronger group. Peak knee extensor moment was lower in the 

strong group and approached significance, F(1,12) = 4.30, p = 0.06, np
2 

= 0.264. Figure 6 

presents data for knee angle comparison between strength groups. Knee flexion angle at initial 

contact was significantly deeper, F(1,12) = 4.75, p = 0.05, np
2 

= 0.28, for the strong group. Peak 

flexion angle was also deeper in the strong group to a similar magnitude, however this was not 

significant, but did show a large effect size (66.7° vs 61°, p = 0.16, np
2 

= 0.16). No other 

differences between group variables were observed. 
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Figure 5: Demonstrates the overall mean difference of hip and knee extensor moment 

between the strong (black) and weak (grey) group during the cutting task. *indicates 

significant difference between groups (p<0.05).  
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Figure 6: Demonstrates the overall mean difference of knee angle at initial contact, and at 

peak flexion between the strong and the weak group during the cutting task. *indicates 

significant difference between groups (p≤0.05). **represents large effect size between 

groups (ϵ>0.14). 

 

3.2 Cutting Conditions 

3.2.1 Kinematic Variables 

An interaction between angle and velocity F(2,24) = 57.49, p = 0.001 for initial contact knee 

flexion angle was observed and is presented in figure 7a. Peak knee angle also observed an 

interaction between angle and velocity F(2,24) = 5.92, p = 0.008 (Figure 7b). An interaction 

between cut angle x velocity also existed, F(2,24) = 12.34, p = 0.001. There was a significant 
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main effect for cut angle (p = 0.001), but this was only seen at 2 m.s
-1

. Velocity demonstrated a 

significant main effect where 2 m.s
-1

 was different from 4 and 6 m.s
-1

 (p < 0.001). 
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Figure 7: Collapsed group data for knee flexion angle for the 2 different cutting angles. Graph A 

represent initial contact and graph B represents peak knee angle. * denotes significant difference in 

knee flexion angle between 45 and 90 degree cut (p<0.05), † denotes knee angle values at initial 

contact were significantly different from 2m.s
-1

 condition only (p<0.05). 
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3.2.2 Kinetic Variables  

Data for the kinetic variables can be found in Table 3. Data recorded during the first ground 

reaction force peak demonstrates that both knee extensor moment, F(2,24) = 6.93, p = 0.004, and 

resultant ground reaction force (GRF1), F(2,24) = 18.77, p = 0.001,  show a significant 

interaction between cut angle and velocity. Data recorded during the second peak shows that 

knee extensor moment demonstrated an interaction between cut angle and velocity, F(2,24) = 

42.39, p = 0.001. Ground reaction force at the second peak (GRF2) also demonstrated an 

interaction between angle and velocity, F(2,24) = 10.85, p = 0.001. 

Posterior ground reaction forces (GRFbr) displayed a velocity x cut angle interaction, F(2,24) = 

9.71, p = 0.001). GRFbr became significantly greater with increasing velocity in the 45° cut (p < 

0.01) whereas it did not change between approach velocities in the 90° cut. Between cut angle 

conditions GRFbr was significantly greater in the 90° cut at 2 m.s
-1

 (p < 0.001) and 4 m.s
-1

 (p < 

0.05), whereas at 6 m.s
-1

 braking was the same in both 45° and 90° manoeuvres. Contact time 

also showed an interaction between velocity and cut angle, F(2,24) = 3.44,  p = 0.049. In the 45° 

condition contact time was longest at 2 m.s
-1

 compared to 4 m.s
-1

 (p < 0.001) and 6 m.s
-1

 (p ≤ 

0.01). In the 90° condition, contact time remained the same at all 3 approach velocities. Between 

cutting angles, contact times were longer at all approach velocities in the 90° cut compared to the 

45° cut condition (p < 0.001). 
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Table 3: Collapsed group data for kinetics of cutting manoeuvres.  

 
CUT45 CUT90 Main Effects & 

Interactions 
p-value 

Effect 

Size V2 V4 V6 V2 V4 V6 

Extensor Moment (Nm/kg) 

   KEM1 1.19 (1.09) 1.68 (1.11) 3.03 (2.14)† 1.34 (1.25) 1.58 (1.66) 1.48 (1.57)
a
 

Group 

Velocity (2<6) 

Angle*velocity 

 =0.009 

<0.001 

=0.011 

0.450 

0.658 

0.366 

   KEM2 2.87 (0.77) 3.60 (1.09)* 5.02 (1.00)† 3.34 (0.92)
a
 3.74 (1.03)* 3.40 (0.70)

a
 

 

Velocity (2<4<6) 

Angle 

Angle*Velocity 

 

≤0.006 

=0.19 

<0.001 

 

0.869 

0.377 

0.779 

Ground Reaction Force (N/kg) 

   GRF1 205 (46) 299 (67)* 352 (83)* 283 (46)
a
 287 (75) 273 (59)

a
 

Velocity (2<4,6) 

Angle*Velocity 

≤0.005 

<0.001 

0.600 

0.610 

    GRF2 249 (43) 265 (37)* 261 (34) 248 (42) 244 (39)
a
 229 (30)

a
† 

Angle 

Angle*Velocity 

=0.001 

<0.001 

0.617 

0.475 

Note: Results are mean (sd). CUT45 = 45 ° cut condition, CUT90 = 90 ° cut condition, V2 = 2m.s
-1

 approach velocity, V4 = 4m.s
-1

 approach 

velocity , V6 = 6m.s
-1

 approach velocity, IC = Initial Contact, s = seconds   

*indicates a statistically significant difference from V2 condition (p<0.05) 

†indicates a statistically significant difference from V2 and V4 conditions (p<0.05) 
a
 indicates a statistically significant difference from CUT45 (p<0.05) 
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CHAPTER 4: Discussion 

4.1 Strength 

The first aim of the study was to identify whether stronger individuals present different lower 

extremity mechanics during a cutting manoeuvre in their plant leg. The  first hypothesis 

suggested the strong group would exhibit increases in knee flexion angle during the initial 

contact phase of stance during cutting. The results show that this hypothesis was correct, with an 

overall increase in knee flexion of 6.7° in the strong group compared to the weaker group. 

Deeper contact angles have been associated with strength in single leg jump task (19) and Wu et 

al. (37) observed significantly increased knee flexion at ground contact in a jump group vs non 

jump group, during bilateral landing tasks in which the jump group were significantly stronger. 

In terms of peak knee angle, Wu et al. (37) also reported increased flexion between groups, 

similar to Spiteri et al. (16) significant 5° increases during a 45° cutting protocol, and Stearns 

and Powers (14) significant 4° increases during bilateral drop jump after a 4 week plyometric 

training programme. The current study did not see significant changes, but the magnitude of 

change of 5.7° was similar to the literature and in line with the increases in knee flexion at initial 

contact, and carried a large effect size. The data may support a premise that stronger individuals 

are able to select a movement strategy that has both a deeper peak and initial contact angle. A 

potential mechanism that would enable a stronger athlete to achieve deeper peak knee angles 

might relate to their greater capacity to adjust to an increasing moment arm length. As the knee 

flexes, the moment arm between the axis of rotation at the knee, and the line of action of the 

performers mass will increase. An increase in moment arm will increase the force that is required 

by the muscle to maintain a deeper knee posture. This is of particular importance at peak flexion 

when the knee must be in a position from which it is able to extend quickly to perform the 
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manoeuvre efficiently. Greater strength would be able to offset the greater internal force 

requirements imposed by the lengthening moment arm. A deeper peak knee angle would allow 

for a deeper initial contact angle, whilst maintaining the same displacement. In this respect, 

stronger athletes can maintain the performance of the skill, whilst at the same time making it 

safer by reducing strain on the ACL. In terms of being beneficial for injury prevention, greater 

knee flexion has been shown to reduce ACL load by decreasing the patella tendon tibial shaft 

angle, which in turn reduces tibial translation in relation to the femur (18). In addition, ACL 

elevation angle is decreased with greater knee flexion, causing the ACL to have less tensile strain 

placed upon it at any given shear force (17). This would mean that as the foot contacts the floor 

at the start of the plant phase, a stronger individual would have an ACL that is under lower strain 

which may help it to tolerate the high impact forces to a greater extent. The weaker group are 

still able to manage the forces that are experienced during the contact phase in a similar fashion 

to the strong group, as knee excursion remains similar between the groups, it is just that the knee 

is in a less favourable position with regards to ACL load. 

The second hypothesis predicted that the strong group would have a lower knee to hip ratio than 

the weak group implying a greater contribution from the hip during the task. This was proved to 

be the case also, with a 0.55 lower knee to hip ratio in the strong group. The evidence that 

suggested this would arise via increased hip contribution to the movement pattern during cutting 

was only partly correct. In fact, the lower ratio was not only created by a significant increase in 

hip extensor moment, but importantly, that the stronger group also had a significantly lower knee 

extensor moment, and these differences were observed across all conditions.   

In a 4 week, hip focused plyometric and balance training programme, Stearns and Powers (14) 

reported similar hip dominant changes in the knee to hip extensor ratio. However, when 
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comparing the absolute values for hip and knee extensor moment, the 4 week intervention saw 

increases in hip extensor moment, but no change in knee extensor moment. However, knee 

adductor moments were reduced which the authors’ state may mitigate injury risk in women. The 

current study may add to the literature as it suggests strength can alter sagittal plane knee kinetics 

as well by directly reducing extensor moment. This distinction is an important one as extensor 

moments at the knee are associated with proximal anterior shear force (22) due to the quadriceps 

loading the patella tendon during deceleration. These anterior forces increase the load on the 

ACL (38) and thus place the ligament under greater strain in the sagittal plane. 

The lack of change reported in knee extensor moment within Stearns and Powers (14) work may 

be partly due to differences in how extensor moment was recorded. Measurement was taken as a 

mean for the whole of the deceleration phase, rather than just a peak value during the impact 

phase only, as was the case in the present study. The present study shows that values for knee 

extensor during the push off phase were higher than those reported at impact (Table 3), and so 

using a similar approach to Stearns and Powers (14) may have resulted in similar findings. 

Another reason for the differences may be in relation to the magnitude of strength differences 

between pre to post in the training study (7%), versus the strong and weak group difference of 

63% in the present study. Overall, this may imply that as the individual becomes stronger, the 

greater loading can be transferred to the hip, but as strength continues to increase, the hip can 

absorb so much of the force that lower contributions can be made at the knee, and ACL strain in 

the sagittal plane can be moderated.  
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4.2 Cutting Conditions 

The second part of the study aimed to establish how different conditions such as cutting angle 

and approach velocity into the cut would affect lower body biomechanics, specifically with 

regard to knee flexion angles. The first hypothesis was accurate in predicting there would be no 

difference in peak knee angle as a result of changing approach velocity. When cut angle data was 

collapsed, values were recorded at 64.1°, 63, and 64.6° at 2, 4 and 6m.s
-1

 respectively. These 

values are higher than those reported in the literature, however by splitting the current study’s 

data into 45° and 90° cutting tasks more comparable figures emerge. A number of studies used 

approach velocities between 4 and 5m.s
-1

 with a 45° cut, and peak knee angle in these were 

reported within a range of 55- 63° (16,23,25,24,26). In the equivalent conditions in the present 

study, values of 60.3° were observed and are comparable with that of the current literature. 

However, in general, the data values in the present study were higher than those seen in the other 

literature. It is speculated that subjects in the present study may have been stronger than in the 

papers, and were certainly much stronger than in Spiteri et al (16)  study who used a similar 

strength protocol. The strongest subjects in that study produced similar force to the weakest in 

the present study at 20.86 vs 17.5 N/Kg
-1 

respectively. This may go some way to explain the 

deeper differences. 

The second hypothesis was also correct, peak knee angle was significantly higher in the 90° cut 

condition with a 3.3° increase compared to the 45° task. Whether these increases would have any 

functional significance is hard to tell, but it is worth noting that at 4 and 6 m.s
-1

 there were 

increases of 5.3° and 4.4° respectively, which may have a more practical relevance. This 

supports the data of Havens and Sigward (34) however their data showed a greater difference 

between the two cuts with a value of 8° separating the 90° and 45° cuts. The difference may be 



33 
 

due to a difference in the approach, with subjects in that study only being given a 7.5m run up 

and were asked to perform the task as quickly as possible. Subjects may still have been 

accelerating by the time they reached the force platform which may change the mechanics of the 

movement. Additionally, approach speed was not controlled for in the study, and although the 

present study generally shows velocity to have no effect on peak knee angle, further analysis of 

the current studies data displays a significant difference between 2 m.s
-1

 and 4 m.s
-1

 in the 45° 

cut. It is possible that this lack of control confounded the data of Havens and Sigward (34) to 

some degree. Another study by Besier et al. (30) saw small increases of 2.3° in a 60° compared 

to 30° cut although significance was not reported, but may support a trend for increasing peak 

knee angle as cut angle becomes more obtuse.  

The movement strategy adopted appears to try to find a balance between minimising injury risk, 

whilst still trying to optimise performance. As mentioned, deeper peak knee angles can reduce 

ACL load significantly, at a time in the movement when ground reaction forces, and extensor 

moments are at their highest (Table 3). Studies show that tibial displacement is reduced until at 

approximately 60° knee flexion, when it reaches 0mm, at which point the ACL in under very low 

strain (40,41). It would appear that the movement strategy selected during cutting in all 

conditions in the present study, enable the knee to reach this flexion angle to reduce ACL strain. 

Greater levels of flexion continue to reduce ACL strain up to approximately 80° (42,43) 

however, the deepest average knee angle in the present study occurred at 66.8°. This might 

suggest a balance is struck where knee angle is deemed safe, and any further flexion would 

impair performance.  

On this note, one of the contributing factors to effective performance during a cut would be 

reaching optimal torque values in the quadriceps to help the athlete extend the knee efficiently 
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during the propulsive phase. The average peak values of around 63.9° in this study are in the 

vicinity of the values reported for the optimal peak torques- angle relationship. Using a isometric 

single leg press, peak torque was shown to occur at a 51°, with a highest  individual value of 62°, 

beyond which torque output diminishes at a steady rate, either as the length of the moment arm 

increases, or the force length relationship is altered negatively (29,50). Other studies have 

suggested the peak torque angle to be higher at between 65-70° (42,43) however the knee 

extensor protocol used has arguably less correspondence to the cutting manoeuvre. Taking the 

injury and performance data together, it would appear that injury prevention mechanisms dictate 

the depth of peak knee angle during cutting, but that when the movement is pre-planned and 

approach speed can be moderated, a depth is selected where performance can still be maximised. 

The disparity between the values of Hahn et al. (29) and the present study might be explained by 

the dynamic nature of the movement during cutting, compared to the static conditions in an 

isometric press. The elastic component of the passive tissues may allow a slightly deeper peak 

angle, which would allow the knee to return to a more efficient position supported by the stretch 

shorten cycle (52). 

Another consideration, other than achieving a safe peak knee angle, could be related to initial 

contact angle, as this is the time point during the stance phase when the knee is in a more 

extended position and injury risk is at its highest. From an ACL injury perspective, data from 

observational studies (3,7), and stochastic modelling (8) report contact angles of below 30° as 

having high injury risk. In addition, more extended contact angles below 20° also create 

conditions where the hamstring is unable to apply any substantial posterior force to the tibia and 

would prevent it from stabilising the knee if extensor force became too large (40).  A deeper 

peak knee angle may allow for a more flexed knee when contact with the ground is made. Initial 
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contact knee flexion values in the present study showed no significant differences across any of 

the conditions except at 2m.s
-1

 during the 45° cut (51.9°), where it was significantly deeper than 

any other velocity condition, or equivalent velocity at 90°. All other initial contact values ranged 

between 35.8° and 39.2° across the 5 other conditions. These values are noteworthy in that they 

all appear to be markedly above the 30° value that has been reported to be high risk for incurring 

an ACL injury. Initial contact knee angle values above 30° have also been observed in other 

similar protocols involving pre-planned manoeuvres (23,30). This might suggest that deeper 

knee angles at peak flexion are selected to ensure a safer knee angle can be achieved at contact. 

A key consideration here is the level of excursion that is required for a given movement. Greater 

excursions at the knee, and therefore, less stiff landings, have been shown to reduce extensor 

moments and ground reaction forces (32,33). It could be argued that a peak knee angle is set 

which allows the individual enough excursion to maintain knee extensor moments and ground 

reaction forces within safe limits during the task, but also ensure that initial contact knee angle 

safely exceeds the 30° high risk value. Although deeper knee positions might be safer, a balance 

must found in which performance is compromised as little as possible.  

When looking at the 45° condition in isolation, peak knee angles showed small differences, 

however, initial contact angle was significantly more flexed at the 2 m.s
-1

 velocities, with 4 and 6 

m.s
-1

 showing no difference from one another. This demonstrates that under conditions where 

task demands are low, it is initial contact angle that is altered to reduce the range of motion at the 

knee, and not peak knee angle. The reduced excursion results in a stiffer knee at ground contact 

which has been shown to increase knee extensor moments and ground reaction forces in landing 

tasks (50,9). This movement pattern is utilised to try to increase the rate of loading, and as a 

result, the impulse required to complete the task can be generated in a shorter time period 
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reducing time spent in contact with the floor. In addition, greater storage and return of elastic 

energy can be achieved which can aid performance during the propulsive phase (47).  

As velocity is increased in the 45° cut, initial contact angle becomes more extended to increase 

the excursion range and help to moderate extensor moments. It appears a minimum limit for 

initial contact exists as there no difference was observed for this variable between 4 and 6 m.s
-1

. 

With no change in initial contact or peak knee angle it seems a fixed bandwidth for excursion 

exists at faster velocities, and the subjects moderates approach velocity to ensure they can 

perform safely within these pre-set limits, evidenced by a reduction in speed in the 6 m.s
-1

 

condition at the second approach to 5.6m.s
-1

. This may suggest subjects moderated their speed 

leading into the cut to ensure they could fall between the bandwidths identified so that the 

demands of the tasks can be met safely and without losing efficiency. Greater speed may still 

have been carried into the manoeuvre at 6 m.s
-1

 compared to 4m.s
-1

, but with similar knee 

excursions, and larger braking requirements, initial and peak knee extensor moment were 

increased significantly as a result, and may imply the maximum safe limits that the structure of 

the knee can endure at this specific cut angle. 

As reported, 90° cutting task saw greater peak knee angles, yet the same initial contact angles 

compared to the 45° condition, meaning excursions were greater at 90°. Cutting tasks at 90° 

require larger braking forces as they subjects must come to a complete stop before redirection. 

To help mitigate these forces, higher joint excursions were utilised to help absorb these forces at 

impact and help to moderate extensor moments (32,33). However, when comparing the cutting 

angles at 6 m.s
-1

, the 45° cut generated the same braking forces, with higher GRF2, and much 

lower excursion than at 90°. This strategy resulted in significantly higher peak, and initial 

contact, knee extensor moments in the 45° condition. A reason knee extensor moment remained 
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lower in the 90° cut, compared to 45° may be due to the reduction in approach velocity observed 

at 90°, as well as an increased excursion, but why this strategy is utilised to keep extensor 

moment lower is less clear. Markolf et al. (44) observed that although ACL is the primary 

stabiliser for anterior sheer forces, the addition of valgus and rotational moments at the knee 

place the ACL under greater strain. Greater cutting angles have been shown in the literature to 

cause greater frontal and transverse plane stresses applied at the knee (30,34,46) which when 

combined with extensor forces create a combined stress load on the ACL. The present study 

demonstrates that the subjects tried to maintain, and in 6 m.s
-1

, even reduce sagittal plane 

extensor forces to a greater extent in the 90° condition, whereas at 45°, where less rotation and 

valgus movements would be experienced, extensor forces could be higher whilst applying a 

similar overall strain to the ACL and may result in continued performance benefits in this 

condition as contact times can be reduced. 

The increase in peak knee angle in the 90° as opposed to selecting a more extended leg during 

the contact phase, may suggest a strategy that is driven more by an injury prevention mechanism 

at the expense of performance as task demands are increased. Selecting a straighter knee at initial 

contact would place the knee closer to a high risk position around 30° of flexion, thereby 

increasing ACL strain. By increasing peak flexion, ACL load remains lower at contact, but the 

deeper knee angles observed in the 90° condition would put the knee in a more unfavourable 

position for performance, by increasing the distance of the active mass of the subject, to the axis 

of rotation at the knee. This increase to the moment arm would increase the force required by the 

quadriceps and, alongside the reduced stiffness of the knee, may explain the significantly 

increased contact times at all approach velocities in the 90° condition (0.23 vs 0.32s). The greater 
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contact time would allow greater opportunity for cross bridge formation to allow the muscle to 

overcome the inertia created by the deep knee position, and reduced elastic return of energy. 

Further evidence of an injury prevention mechanism at work in more demanding conditions 

relates to changes that occur at 6m.s
-1

 compared to 2 and 4m.s
-1

 in the 90° cut condition. A 

reduction in peak knee extensor moment, and GRF2 at observed which may indicate that in this 

high demand condition, the subject was unable to control velocity into the manoeuvre as 

effectively, resulting in forces that may pose risk to the integrity of the joint structures. Excessive 

forces are known to stimulate Golgi tendon organ into inhibiting efferent output to protect 

passive structures (40), and may impact performance efficiency as evidenced by lower GRF2. In 

a comparable study using incremental single leg drop jumps Peng et al. (31) reported reductions 

in performance in the final 60cm condition, which coincided with an increased peak knee angle, 

suggesting when velocity into contact phase cannot be controlled, peak knee angle is affected. It 

is worth noting initial contact angles became more extended at this time point also, however, did 

not go below 30° as seen in the present study. This was not seen in the present study, possibly 

because the subject was able to moderate their velocity to ensure successful and safe execution 

of the task, whereas in a drop jump this is not possible. This may further support the notion that 

knee angles are primarily selected with injury prevention mechanisms as a priority, rather than 

performance. 

In conclusion, neuromuscular programmes have demonstrated a reduction in ACL injury rates. 

The present study demonstrates the benefits that including strength may have in directly reducing 

ACL strain in dynamic movements such as cutting. Strength may have a protective effect on 

ACL by altering load distribution to the hip and alleviating stresses on the knee via reduced 

extensor moment, during initial contact with the ground. Additionally, strength may have a 
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favourable influence on knee angle at contact. Movement strategies adopted during the 

deceleration phase of the manoeuvre, at greater cutting angles, appear to select deeper peak knee 

angles. These changes allow larger excursions for the absorption of higher forces that result from 

the greater braking requirements at 90°. As the demand of the cutting task increases approach 

velocity is moderated to ensure a balance can still be met between successful execution of the 

task, whilst maintaining a safe knee posture. It would appear that even in higher demand 

activities, a flexion angle below 30° is avoided to reduce ACL loading suggesting a movement 

strategy that is driven by an injury avoidance mechanism. In lower demand movements, knee 

excursion is reduced to help increase the rate of loading that would aid optimal task performance, 

unfortunately a limitation of the study is that post stride velocity was not measured which may 

have demonstrated this. Taken as a whole, the data may suggest that a bandwidth exists for a 

given cutting angle, where, in a pre-planned movement where approach velocity can be 

modulated, initial contact, and peak knee angles have set limits to ensure efficient and safe 

execution of a task.  
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CHAPTER 5: Practical Recommendations  

Data from this study confirms the importance of strength as part of a neuromuscular injury 

prevention programme. The large strength differences between groups in the present study may 

indicate greater strength gains may be required to see the magnitude of changes during cutting, 

therefore a well-planned long term training programme may be necessary to see the magnitude of 

effects that were observed in the present study. Hip focussed strength programmes  would help to 

increase the likelihood of transfer to hip moments during performance. Greater quadriceps 

strength may also be beneficial to enable the performer to attain deeper knee positions, without 

affecting performance negatively. It might therefore be efficient to use compound exercises to 

achieve this goal. 
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Appendix 1 

Appendix 1.1 Signed Ethics Form St Mary’s University 
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Appendix 1.2 Subject information sheet 

 

 

 
To be filled by Principal Investigator (PI) 

 

1. Instructions 

Insert information specific for your study where the form says to “insert.” 

Delete all parenthesis and text that does not apply to your study. 

 

My name is Will Davies, and I am currently studying in my final year of a Masters in Strength and 

Conditioning at St Mary’s University in Twickenham. I am inviting you to participate in my major project 

which I must complete as part of the qualification. The topic that I have chosen to study is related to 

strength and how it might affect change of direction technique. I am also looking to explore the cutting 

maneuver at a range of approach speeds, and cutting angles, to see how these conditions affect knee 

posture.  

 

Participation in the study will involve two visits to the Aspire Academy biomechanics department facility 

in Doha, and will take about 60mins each. If you agree to participate, the first test session will require 

you to perform a maximal isometric, single leg squat movement at a 40deg knee  angle. You will then be 

taken to the lab where you will complete a number of change of direction tasks that will be used in the 

next testing session to familiarize you to the approach speeds, and angles used during session 2. The 

second session will involve a warm up, before having retroreflective markers applied to your lower body 

so that your movements can be tracked using 3d motion analysis. You will then complete a total of 18 

cutting trials at a range of velocities and angles, with a 1 min rest between each, and should take about 

45 mins to 1 hour.  

Cutting movements have been associated with anterior cruciate ligament injury and so some level of risk 

may be associated with the task. However, at the speeds encountered during this session this is unlikely. 

However, if you have had a previous injury to the knee in the previous 6 months you should make the 

researcher aware or are still in a rehabilitation protocol from a previous anterior cruciate ligament (ACL) 

injury, then you will be excluded from the study. The findings of this study may be reported in the final 

dissertation and may be in a scientific journal, but your name will remain confidential.   

1. Benefits 

 

Your participation in this study is likely to benefit you. We also hope that your participation in the study  

will  provide  us  with  information that will  benefit  others in  the  future.  

1. Your Rights 

Human Subjects Recruiting & Advertising Form   RO – F15 
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• We may contact you regarding studies you may be interested in participating.   

• We want to assure you that we will keep your information confidential.  

• You do not have to be in this study if you do not want to participate.   

• Your decision to be in any study is totally voluntary.   

• Your care at Aspetar Qatar Orthopaedic and Sports Medicine Hospital will not be altered by your 

decision to participate or not participate. 

• Your information will not be shared outside of this study team except to those groups inside and 

outside of Anti-Doping Lab Qatar, who are responsible for making sure studies are conducted 

correctly and ethically.  

 

If you are interested in learning more about the study, please. 

• Contact William Davies 

• Complete the attached questions and mail it back to us using the self-addressed and stamped 

envelope.  (the questions (related to your study) must be submitted with the advertisement 

to the IRB for review). 

• Review the attached consent form and call the numbers below so that a researcher can talk 

with you about the study and answer your questions. 

 

Sincerely, 

(Signature of PI) 

 
 

(William Davies)  

Principal Investigator 

IRB# 

 

Contact No: 66158064 

 

THIS STUDY HAS BEEN REVIEWED AND APPROVED BY ANTI-DOPING LAB QATAR 

INSTITUTIONAL REVIEW BOARD 
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Appendix 1.3 Subject consent form 

 

 

 

Participant Consent Form 

 

Project title:   

“The Effect of Approach Velocity and Cutting angle on Knee Position during and its 

association with peak torque angle” 

 

I have read the Letter of Information, have had the nature of the study explained to me, and I 

agree to participate.  All questions have been answered to my satisfaction. 

 

 

Subject Name (please print):         

         

 

Signature:        Date:     

   

 

 

 

Individual responsible for 

obtaining consent:            

 

Signature:        Date:     

   

 

 

 

    

   

 

Investigator:             

  

Signature:        Date:     
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Appendix 1.4 Strength protocol data collection sheet 

 

Test Session 1: Anthropometrics and Isometric Strength Name:  Date: 

           

           Anthropometrics: 
         

           

 
Measure 1 Measure 2 

 
Right Leg Measure 1 Measure 2 

 
Left Leg Measure 1 Measure 2 

Height     
 

Length     
 

Length     

Weight     
 

Knee width     
 

Knee width     

Leg Dom L / R 
 

Ankle width     
 

Ankle width     

           

           Strength: 
          

           

 
Joint Angle (°) Strength Score (N)  

Plate Adjustment 
Target Angle Knee angle Hip angle Trial 1 Trial 2 Trial 3 Trial 4 Highest Value 

40 Degrees 
                

 
*2nd highest value must be within 10% of highest 

      

           

           Notes: 
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Appendix 1.5 Cutting protocol data collection sheet 

 

Testing Session 2: Cutting Trials NAME: DATE: 
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90 Degree Cut 
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Notes:   
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(0.47 - 0.53s) 
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Trial 3                   

Notes:   
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Appendix 2 

 

Appendix 2.1 Aspetar Research Approval 
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Appendix 2.2 ADLQ ethics approval
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Appendix 2.3 Subject consent Form

 


