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ABSTRACT

Strength has been associated with reduced ACL incidence in sport but the specific mechanisms
are less clear. The purpose of the investigation was to examine how strength may alter
biomechanics to reduce injury risk during these manoeuvres, as well as explore how knee angle
varies in response to different cutting conditions. Fourteen trained subjects were split into a
stronger and weaker group (28.6 vs 17.5 N/kg™), determined by relative peak isometric strength
in a unilateral squat. Each participant was fitted with reflective markers, and lower limb, sagittal
plane, kinetics and kinematics were evaluated using a tri axial force plate, and a 16 camera
motion analysis system. Subjects performed 18 trials divided into six different cutting conditions,
comprising of 2 cutting angles (45° and 90°), at 2, 4 and 6 m.s*. A mixed design ANOVA
(2x2x3) determined that between strength groups (n=7), significant increases in hip extensor
moments (p < 0.05), and reductions in knee extensor moment (p < 0.05) during weight
acceptance in the strong group were observed. In addition, knee angle at initial contact was more
flexed in the strong group (p = 0.05). When group data was collapsed, significant peak knee
flexion differences existed for cut angle (p < 0.001), but not for velocity. Results suggest
increasing lower extremity strength may reduce ACL loading by redistributing impact forces to
the hip and alleviating stress at the knee, as well as reducing ACL strain directly by a more
flexed knee position at ground contact. In addition, peak flexion posture is dependent on cut
angle, not velocity, perhaps as a way to increase excursion to reduce ground reaction forces, and

knee extensor moments, during movements with greater multi planar stresses.
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CHAPTER 1: Introduction

Cutting has been cited as a leading cause of non-contact anterior cruciate ligament (ACL) injury
in a range of multi directional sports (1,2,3). These injuries have important implications for the
sports performer, not only in the short-term through loss of time engaged in sporting activity,
but also from the long-term health risks posed by such an injury (4). Therefore, prevention
strategies aimed to reduce the risk of injury are a crucial part of planning for the strength and
conditioning coach. Sagittal plane biomechanics have an important role to play in the injury
mechanism (5,6), and in particular, research has identified flexion angles below 30° during the
first 50 milliseconds after initial ground contact as having high risk implications for injury

incidence (3,7,8).

Strength has often been reported as having a preventative effect on ACL injury occurrences,
often as a part of more holistic training programmes (9,10,11,12,13), however, the specific
mechanisms as to how greater strength may be of benefit remain elusive. Data from a number of
studies with countermovement jumps (14,15), and cutting (16) have shown that greater strength
affects sagittal plane kinematics at the knee, with deeper peak knee angles of ~4-5° reported. A
more flexed knee has been shown to reduce ACL strain (17,18) however, it is within the first 50
milliseconds of landing, during the impact phase, where risk of ACL rupture is highest when the
knee is in a more extended position (3,7,8). Derrick (51) has reported significant correlations
between peak knee angle, and contact angle and Wu et al. (37) showed that peak knee angles,
and contact knee angles were significantly deeper in an experienced jumping group, who also
happened to be stronger than the non-jump group, although there was no difference in range of
motion at the knee. Only one study has investigated strength and knee flexion angle at initial

contact in a stretch-shorten cycle movement, and report a significant correlation, suggesting
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stronger subjects landed in a more flexed position (19), however, more research is needed in this

area.

Strength training has also been shown to increase hip contribution during the landing phase of a
countermovement task (14) via larger hip extensor moments, which led to a change in the knee
to hip ratio. It has been speculated that this change to a more hip dominant landing strategy could
serve to alleviate extensor moments at the knee although no study has yet observed this (20,21).
Stearns and Powers (14) demonstrated that knee adductor moments could be reduced, and hip
moments increased when participants were subjected to only 4 weeks of hip focussed training,
involving balance training, and plyometric tasks, however, they did not see significant reductions
in knee extensor moments. Perhaps with greater strength changes, the subjects may have seen
changes to knee extensor moments as well. Lower knee extensor values would be favourable for
reducing ACL injury risk due to reduced pull on the patella tendon that would contributes to
anterior tibial translation (22). Currently there is no data to suggest whether hip and knee

extensor moments might be altered during higher risk manoeuvres such as cutting.

In addition to the paucity of research into strength and cutting, the current literature fails to
adequately address the changing nature of the sporting environment. Many of the current studies
tend to use 45° cutting protocols, with a fixed approach speed (16,23,24,25,26,27,28), which
does not give an indication of how motor control strategies adapt in response to environmental
changes that the performer may face, such as sharper cutting angles, or different velocities into
the cut. Having an understanding of how demands change may give insight into injury

mechanisms, and how these might interact with performance.
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Although approach velocities between studies vary considerably between, 3.5 - 5.8m.s?, the
peak knee angle is consistently measured at between 50 and 60° (16,23,24,25,26,27,28). This
value is significant, as it falls within the range reported for optimal torque angle relationship of
51° in a multi joint single leg press (29). Besier et al. (30) observed that peak knee angle during
linear running is significantly more extended than a cutting manoeuvre at an equivalent approach
velocity demonstrating that the skills are distinct. It could be that peak knee angle is fixed at as
deep an angle as possible during this high risk manoeuvre, as deeper knee creates less strain on
the ACL (18). Support for this within a different movement pattern is observed by Peng et al.
(31), where peak knee angle remained unchanged during incremental single leg drop jumps. In
this study it was contact angle that was adapted with increasing drop height to allow greater
excursion to dissipate force (32,33). No clear pattern emerges within the cutting data, however,
initial contact angle shows much greater variation compared with peak angle, with values
ranging from 16°- 42° (23,24). It is possible that peak knee angle is maximised to a position
where optimal performance can still occur, and at the same time allow initial contact to be as
deep as possible to reduce injury risk at impact. With regards to cutting angle, only 2 studies
have reported sagittal plane mechanics. Besier et al. (30) reported a 2.3° increase in peak knee
flexion angle at 60° cuts compared to 30° but did not statistically report this difference. Arguably
changes of this magnitude would have little functional significance on the knee. On the other
hand, when comparing 45° and 90° manoeuvres, Havens and Sigward (34) reported a significant
increase of 8°, perhaps indicating that deeper cutting angles have larger impact on knee
biomechanics. It should be noted that this study did not control for approach velocity, making

results difficult to interpret, therefore more research is required in this area.
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There are two main aims within the study, firstly to try to identify how strength may reduce
injury risk during cutting tasks. Greater strength may allow stronger subjects to achieve deeper
peak knee angles, via having a greater ability to adjust to the larger force requirements as a result
of an increasing moment arm at the knee. If force is still absorbed in a similar way during the
cut, a similar excursion would allow an increased in knee flexion angle at contact. Therefore the
first hypothesis is that the stronger group will have a deeper knee angle at initial contact.
Strength also appears to affect hip dominance during landing, as the hip would have the capacity
to absorb greater forces during a cut, therefore it is hypothesised that there will be an increased
hip extensor moment causing a more hip dominant energy absorption strategy during the touch
down phase. The second aim is observe how knee kinematics change in response to varying
approach and cut angle conditions. The data suggests that peak knee angle remains similar,
perhaps in a position that optimises torque production, in a low risk knee position. It is
hypothesised peak angle will remain fixed as approach velocity changes; however, increasing the

cutting angle will cause an increase in peak knee angle.
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CHAPTER 2: Methods
2.1 Experimental Approach to the problem

Subjects were asked to take part in two testing sessions separated by at least 72 hrs, and no
longer than 14 days. The first testing session involved the assessment of unilateral lower body
strength with an isometric squatting task. The subject was then taken to the lab for
familiarization of the cutting protocols which would be utilized during the second testing session,
and consisted of performing a number of trials at different velocities and angles until the subject
felt comfortable with the task. The second testing session measured the participant’s knee angle
at ground contact, and peak flexion and hip and knee extensor moment, as well as ground

reaction force data during 45° and 90° cutting manoeuvre at 3 different approach velocities.
2.2 Subjects

Fourteen physically active subjects with a history of team sports participated in the study.
Subjects were recruited due to having a minimum of 5 years previous experience in their
respective sports and be training in a multidirectional sport for at least 2 sessions per week.
Exclusion criteria for the study included any lower extremity injury that has kept the subject out
of training for 3 weeks or more in the 6 months prior to testing, or a previous ACL injury.
Subjects were asked to abstain from lower body resistance or vigorous activity for 48hrs prior to
each testing session. Only participants who were right leg dominant participated in the study.
Strength groups were selected based on their normalized relative peak force values from an
isometric strength test. Subjects above the 50" percentile were assigned to the strong group
(n=7), and those below assigned to the weak group (n=7). Subject characteristics for each group

can be found in Table 1. The study was approved by the human research ethics committee at St
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Mary’s University, as well as internal review board at the Qatar anti-doping lab. Subjects were
informed of the benefits and risks of the investigation prior to signing an institutionally approved

informed consent document to participate in the study.

Table 1: Mean (standard deviation) characteristics of subjects by strength

Strong (n=7) Weak (n=7) p
Strength (N/kgbw) 28.6 (3.9) 17.5 (3.7) 0.001
Age (years) 34 (3.8) 34 (5.6) 0.83
Height (cm) 175 (6.3) 178 (8.7) 0.51
Body Mass (kg) 76 (7.6) 78 (15) 0.71

2.3 Procedures

2.3.1 Isometric Strength Testing

Lower body strength was measured in the dominant limb using a single leg isometric squat,
performed on a portable 0.6m x 0.4m tri axial force plate (Kistler, Winterthur, Switzerland) with
a sampling rate of 1000Hz. The squat was performed using a custom made, floor bolted squat
rack with height adjustable bar supports (Figure 1). The subject warmed up by performing 10
repetitions of a half squat with a 20kg barbell, followed by 2 sets at a weight they considered to
be equal to 8-10 maximal repetitions (RM) for them. They were then moved to a Smith machine
and asked to perform quarter squats with progressive intensity. One set at 6RM, one at 4 RM,
and one at 2RM followed by 2 familiarization trials at ~90% maximal exertion. Knee and hip
angles of 40° were selected to ascertain peak force in the lower limb (35). Measurement of knee
and hip angle were taken with a goniometer and joint centres were established by methods
described in table 2. The angle recorded is relative to the position of the proximal to distal

segment i.e 40° knee angle is measured as the angle of the shank in relation to the thigh. Subjects
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were asked to place the heel of the dominant leg underneath the bar, with the hips back and apply
as much force as possible upwards for 5 seconds on 3 occasions with 2 minutes recovery
between each trial (36). Peak force was selected as the highest force achieved, but only if the
second best trial was within 10% of the highest, if not a further trial was recorded. The subjects
were then given a 10 minute rest during which anthropometric measurements were taken.
Subjects then undertook a number of familiarization trials until they felt comfortable with the

technique required.

Figure 1: Adopted subject positioning for the unilateral isometric strength test. Squat rack
was bolted to the floor, and had custom made stoppers connecting the barbell to the rack.

2.3.2 Instrumentation

To record three dimensional, lower extremity kinematics during the cutting manoeuvres, a 16
camera motion system (Vicon MX, UK) was used with a sampling frequency of 250Hz. Sixteen

14mm hard markers encased in retro-reflective tape were attached to anatomical landmarks of
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the lower limb (Figure 2) in accordance with the Vicon clinical manager marker set (Table 2).
Anthropometric measurements for leg length were taken from anterior superior iliac spine to
medial malleoli, as well as and ankle and knee girth. These measurements together fully define
the reference coordinate system for a three dimensional lower body coordinate system. The
subject was asked to stand in the anatomical position in the centre of the force plate as a standing
trial prior to data collection, to determine segment lengths. Ground reaction force data during
the cutting task was collected using a 0.6 x 0.9m force plate (Type 2812A, Kistler, Winterthur,
Switzerland) embedded into the floor and sampled at a frequency of 1000Hz. Cameras were

synchronised to the force platforms so that joint moments could be calculated.

Table 2: Definitions of landmarks for identification of axis of rotation and segment
coordinate frame

Joint Centre

or Segment Marker Site Description
Hip L/R Greater Trochanter AXis pf rotation at the hl_p. Palpate for bony
prominence inferior to iliac crest.
L/R Lateral Eemoral Axis of rotation at _th_e kn_ee. Palpate under_patella
Knee and around to feel joint line. Palpate superiorly
Condyle . . . SRR
to find bony prominence just above joint line.
Ankle L/R Lateral Malleoli Axis of rotation for ankle.
L/R ASIS . : :
. Most prominent point of left or right ASIS, and
Pelvis . .
L/R PSIS left and right PSIS. Defines segment frame

Midpoint between marker on lateral femoral
Thigh L/R thigh on lateral aspect condyle, and greater trochanter (higher on right
side). To define segment length.

Midpoint of shin in line with lateral malleolus

Shank L/R shank on lateral aspect and lateral femoral condyle (higher on the right).
Define segment length.
Foot L/R 2" Metatarsal Heel level with 2" metatarsal placement and in
L/R Heel line with achillies to define segment length
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Figure 2: Subject positioned for standing calibration trial with retro-reflective marker
placed at relevant sites (heel and PSIS are posteriorly positioned). This is to establish local
coordinate system relative to global that is marked via static and dynamic calibration with
the wand.

2.3.3 Change of Direction Trials

On the second day of testing, subjects reported to the biomechanics lab where they were given
lycra shorts to wear and reflective markers were placed on their lower body (Figure 2). Subjects
then performed a 10 minute standardized warm up including a short familiarisation at the various
cutting protocols. For the trials subjects were asked to start on a marked line 15m from the centre
of the force plate. To test the variations in lower body kinematics due to variations in the task, 3
different velocities (2, 4, and 6m.s™) were selected to be performed at cutting angles of 45° and
90°. The subject was asked to perform 3 trials for each of the 6 conditions, making a total of 18
manoeuvres in the session, however, if the subject failed to achieve an approach velocity within
+ 5% of the target, or they were perceived to be targeting the force plate, they were asked to
repeat the trial. To negate the effects of fatigue a minimum of 1 minute recovery was given

between each trial. To avoid potentially harmful and unnatural cutting movement, approach
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velocity was measured for 3m, 8m from the force plate using light gates (Microgate Polifemo
Light, Bolzano Bozen, Italy), this allowed greater realism to the task whilst providing a
consistent measure for approach velocity. Subjects were asked to try to maintain their velocity
through the second set of light gates and perform the cut as quickly as possible, however, they
were told it was acceptable to slow down during the second approach phase in order to cut safely
and allowed the movement to be pre-planned. A third and fourth light gate measured the
completion time for the task but were mainly used to ensure the athlete was attempting maximal
performance (Figure 3). To ensure the correct cutting angle was achieved, tape marking was
applied to the floor to guide the athletes with the fourth set of photocells set up 2m from the
force plate and spaced 50cm either side of the marker tape to ensure the actual cut angle for the
45° and 90° trials would be between 35° and 55°, and 80° to 100° respectively. Subjects were

asked to complete the movement as fast as possible.
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——
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Figure 3: Experimental setup for the cutting task. Solid line arrow represents line of
motion with two cutting angles at the end. The light was timer was triggered from 8m
before force plate, and again 5m before the force plate.
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2.3.4 Data Analysis

The force platform was used to determine heel strike events to define the stance phase of the
cutting (Figure 4). Within this time frame, from initial contact to the first force peak, impact knee
(KEM;) and hip (HEM) extensor moment were recorded. Between the first force peak and when
ground reaction force data reached its second peak, the highest value for knee extensor moment
was reported (KEMy). In addition, contact time, peak braking force (GRFy,), and ground reaction
force at the first (GRF;) and second peak (GRF,) were also extracted. Initial contact knee angle
(KAic) was reported as the knee angle at foot strike, determined as the point at which ground
reaction force exceeds 15N. Peak knee angle (KAy:) was taken as the deepest knee angle based
on the kinematic data. Relative contribution of the knee and hip during initial contact was
calculated by dividing the KEM; by HEM to get a knee to hip ratio. Scores larger than 1 indicate
greater influence from the knee, whereas, scores below 1 indicate greater influence from the hip
(20,21). To calculate joint kinetics inverse dynamics were utilised using kinematic data derived
from the motion analysis, and force data and centre of pressure derived from the force plate.
YXZ Cardan angles were compared using relative orientation of 2 segments, using data from
previous studies (48,49). Newton Eular equations of motion were applied at the beginning of one
end of the segment starting at the ground and calculating each segment up to the hip. The ‘Plug-
in gate’ model in Vicon was used to calculate joint kinetics. Positive angles represent flexion at
the hip and knee. Data was filtered using a Woltring filter quintic spline routine in mean square

error mode with a smoothing factor of 10.
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Figure 4: Diagram to show at which time the key variables were recorded in relation to the
stance phase.

2.4 Statistical Analysis

A 3 way mixed design ANOVA was used with 1 between group condition (Strength) and 2
within group conditions (Cut Angle*Velocity). Statistical significance was established at an
Alpha level (o) < 0.05 with all data reported as mean and standard deviation (sd). Sidak post hoc
analysis was utilised to observe where differences existed between different conditions. Partial
Eta squared values (npz) were reported as a measure of effect size (48), where 0.01, 0.06 and 0.14
represent small, moderate, and large effects respectively. All data analysis was completed using a

statistical software package (SPSS, Version 22).
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CHAPTER 3: Results

The strong group had a significantly higher relative peak mean strength of 28.6 (3.9) N/kg™,
compared to the weak groups 17.5 (3.7) N/Kg™ (p < 0.001). Subject characteristics were not

significantly different between strength groups.

In the final 3 meters of the approach, subjects slowed their approach run up significantly in both
the 45° and 90° cutting conditions during the 6m.s™ trial, whereas at 2 and 4m.s™ approach
velocity at this time point was still the same as the target velocity. In the 90° cut the subjects

slowed to a greater extent compared to the 45° cut (5.26 vs 5.61 m.s™).
3.1 Strength Group Comparisons

Knee and hip extensor moment comparisons between the strong and the weak group are
presented in figure 5. Stronger subjects demonstrated significantly larger peak hip extensor
moments, F(1,12) = 9.34, p = 0.01, and lower knee extensor moments, F(1,12) = 9.82, p = 0.009,
during the impact phase of the manoeuvre. This significantly reduced the knee to hip ratio,
F(1,12) = 11.58, p = 0.005, in the stronger group. Peak knee extensor moment was lower in the
strong group and approached significance, F(1,12) = 4.30, p = 0.06, np2 = 0.264. Figure 6
presents data for knee angle comparison between strength groups. Knee flexion angle at initial
contact was significantly deeper, F(1,12) = 4.75, p = 0.05, np2 = 0.28, for the strong group. Peak
flexion angle was also deeper in the strong group to a similar magnitude, however this was not
significant, but did show a large effect size (66.7° vs 61°, p = 0.16, np2 = 0.16). No other

differences between group variables were observed.
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Figure 5: Demonstrates the overall mean difference of hip and knee extensor moment
between the strong (black) and weak (grey) group during the cutting task. *indicates

significant difference between groups (p<0.05).
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Figure 6: Demonstrates the overall mean difference of knee angle at initial contact, and at
peak flexion between the strong and the weak group during the cutting task. *indicates
significant difference between groups (p<0.05). **represents large effect size between

groups (€>0.14).

3.2 Cutting Conditions

3.2.1 Kinematic Variables

An interaction between angle and velocity F(2,24) = 57.49, p = 0.001 for initial contact knee

flexion angle was observed and is presented in figure 7a. Peak knee angle also observed an

interaction between angle and velocity F(2,24) = 5.92, p = 0.008 (Figure 7b). An interaction

between cut angle x velocity also existed, F(2,24) = 12.34, p = 0.001. There was a significant
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main effect for cut angle (p = 0.001), but this was only seen at 2 m.s™. Velocity demonstrated a

significant main effect where 2 m.s™ was different from 4 and 6 m.s™ (p < 0.001).

701 Ll
I 1
T 1
m 60 A
(5]}
bt
2 501
2
o
> 401
c
<
5 307
x
2 *
L 201
(]
(0]
v — 45° Cut
10
90° Cut
0 T T T
2 4 6
A Approach Velocity (m.s'l)
80 1 . .
»
o 701
bt
o
(]
[a) .
© 60 1
()}
c
<
S 507 - !
x
K 1
L
o 404
c
X = 45° Cut
90° Cut
0 T T T
2 4 6
B Approach Velocity (m.s'l)

Figure 7: Collapsed group data for knee flexion angle for the 2 different cutting angles. Graph A
represent initial contact and graph B represents peak knee angle. * denotes significant difference in
knee flexion angle between 45 and 90 degree cut (p<0.05), ¥ denotes knee angle values at initial
contact were significantly different from 2m.s™ condition only (p<0.05).
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3.2.2 Kinetic Variables

Data for the kinetic variables can be found in Table 3. Data recorded during the first ground
reaction force peak demonstrates that both knee extensor moment, F(2,24) = 6.93, p = 0.004, and
resultant ground reaction force (GRF;), F(2,24) = 18.77, p = 0.001, show a significant
interaction between cut angle and velocity. Data recorded during the second peak shows that
knee extensor moment demonstrated an interaction between cut angle and velocity, F(2,24) =
42.39, p = 0.001. Ground reaction force at the second peak (GRF;) also demonstrated an

interaction between angle and velocity, F(2,24) = 10.85, p = 0.001.

Posterior ground reaction forces (GRFy,) displayed a velocity x cut angle interaction, F(2,24) =
9.71, p = 0.001). GRFy,; became significantly greater with increasing velocity in the 45° cut (p <
0.01) whereas it did not change between approach velocities in the 90° cut. Between cut angle
conditions GRFy,, was significantly greater in the 90° cut at 2 m.s™ (p <0.001) and 4 m.s™ (p <
0.05), whereas at 6 m.s™ braking was the same in both 45° and 90° manoeuvres. Contact time
also showed an interaction between velocity and cut angle, F(2,24) = 3.44, p = 0.049. In the 45°
condition contact time was longest at 2 m.s™ compared to 4 m.s™ (p < 0.001) and 6 m.s™ (p <
0.01). In the 90° condition, contact time remained the same at all 3 approach velocities. Between
cutting angles, contact times were longer at all approach velocities in the 90° cut compared to the

45° cut condition (p < 0.001).
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Table 3: Collapsed group data for kinetics of cutting manoeuvres.

CUT45 CuUT90 Main Effects & _value Effect
V2 Yz V6 V2 Va4 V6 Interactions " Size
Extensor Moment (Nm/kg)
Group =0.009 0.450
KEM; 1.19 (1.09) 1.68 (1.11) 3.03 2.14)t 1.34 (1.25) 1.58 (1.66) 1.48 (1.57)* Velocity (2<6) <0.001 0.658
Angle*velocity =0.011 0.366
- a * a  Velocity (2<4<6)  <0.006 0.869
KEM, 2.87(0.77)  3.60 (1.09) 5.02 (1.00)+  3.34(0.92) 3.74 (1.03) 3.40 (0.70) Angle ~0.19 0.377
Angle*Velocity <0.001 0.779
Ground Reaction Force (N/kg)
x - a a Velocity (2<4,6) <0.005 0.600
GRF, 205 (46) 299 (67) 352 (83) 283 (46) 287 (75) 273 (59) Angle*Velocity <0001 0.610
Angle =0.001 0.617
* a a,
GRF, 249 (43) 265 (37) 261 (34) 248 (42) 244 (39) 229 (30)% Angle*Velocity <0.001 0.475

Note: Results are mean (sd). CUT45 = 45 ° cut condition, CUT90 = 90 ° cut condition, V2 = 2m.s™ approach velocity, V4 = 4m.s™ approach

velocity , V6 = 6m.s™ approach velocity, IC = Initial Contact, s = seconds
*indicates a statistically significant difference from V2 condition (p<0.05)

tindicates a statistically significant difference from V2 and V4 conditions (p<0.05)

% indicates a statistically significant difference from CUT45 (p<0.05)
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CHAPTER 4: Discussion

4.1 Strength

The first aim of the study was to identify whether stronger individuals present different lower
extremity mechanics during a cutting manoeuvre in their plant leg. The first hypothesis
suggested the strong group would exhibit increases in knee flexion angle during the initial
contact phase of stance during cutting. The results show that this hypothesis was correct, with an
overall increase in knee flexion of 6.7° in the strong group compared to the weaker group.
Deeper contact angles have been associated with strength in single leg jump task (19) and Wu et
al. (37) observed significantly increased knee flexion at ground contact in a jump group vs non
jump group, during bilateral landing tasks in which the jump group were significantly stronger.
In terms of peak knee angle, Wu et al. (37) also reported increased flexion between groups,
similar to Spiteri et al. (16) significant 5° increases during a 45° cutting protocol, and Stearns
and Powers (14) significant 4° increases during bilateral drop jump after a 4 week plyometric
training programme. The current study did not see significant changes, but the magnitude of
change of 5.7° was similar to the literature and in line with the increases in knee flexion at initial
contact, and carried a large effect size. The data may support a premise that stronger individuals
are able to select a movement strategy that has both a deeper peak and initial contact angle. A
potential mechanism that would enable a stronger athlete to achieve deeper peak knee angles
might relate to their greater capacity to adjust to an increasing moment arm length. As the knee
flexes, the moment arm between the axis of rotation at the knee, and the line of action of the
performers mass will increase. An increase in moment arm will increase the force that is required
by the muscle to maintain a deeper knee posture. This is of particular importance at peak flexion

when the knee must be in a position from which it is able to extend quickly to perform the
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manoeuvre efficiently. Greater strength would be able to offset the greater internal force
requirements imposed by the lengthening moment arm. A deeper peak knee angle would allow
for a deeper initial contact angle, whilst maintaining the same displacement. In this respect,
stronger athletes can maintain the performance of the skill, whilst at the same time making it
safer by reducing strain on the ACL. In terms of being beneficial for injury prevention, greater
knee flexion has been shown to reduce ACL load by decreasing the patella tendon tibial shaft
angle, which in turn reduces tibial translation in relation to the femur (18). In addition, ACL
elevation angle is decreased with greater knee flexion, causing the ACL to have less tensile strain
placed upon it at any given shear force (17). This would mean that as the foot contacts the floor
at the start of the plant phase, a stronger individual would have an ACL that is under lower strain
which may help it to tolerate the high impact forces to a greater extent. The weaker group are
still able to manage the forces that are experienced during the contact phase in a similar fashion
to the strong group, as knee excursion remains similar between the groups, it is just that the knee

is in a less favourable position with regards to ACL load.

The second hypothesis predicted that the strong group would have a lower knee to hip ratio than
the weak group implying a greater contribution from the hip during the task. This was proved to
be the case also, with a 0.55 lower knee to hip ratio in the strong group. The evidence that
suggested this would arise via increased hip contribution to the movement pattern during cutting
was only partly correct. In fact, the lower ratio was not only created by a significant increase in
hip extensor moment, but importantly, that the stronger group also had a significantly lower knee

extensor moment, and these differences were observed across all conditions.

In a 4 week, hip focused plyometric and balance training programme, Stearns and Powers (14)

reported similar hip dominant changes in the knee to hip extensor ratio. However, when
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comparing the absolute values for hip and knee extensor moment, the 4 week intervention saw
increases in hip extensor moment, but no change in knee extensor moment. However, knee
adductor moments were reduced which the authors’ state may mitigate injury risk in women. The
current study may add to the literature as it suggests strength can alter sagittal plane knee kinetics
as well by directly reducing extensor moment. This distinction is an important one as extensor
moments at the knee are associated with proximal anterior shear force (22) due to the quadriceps
loading the patella tendon during deceleration. These anterior forces increase the load on the

ACL (38) and thus place the ligament under greater strain in the sagittal plane.

The lack of change reported in knee extensor moment within Stearns and Powers (14) work may
be partly due to differences in how extensor moment was recorded. Measurement was taken as a
mean for the whole of the deceleration phase, rather than just a peak value during the impact
phase only, as was the case in the present study. The present study shows that values for knee
extensor during the push off phase were higher than those reported at impact (Table 3), and so
using a similar approach to Stearns and Powers (14) may have resulted in similar findings.
Another reason for the differences may be in relation to the magnitude of strength differences
between pre to post in the training study (7%), versus the strong and weak group difference of
63% in the present study. Overall, this may imply that as the individual becomes stronger, the
greater loading can be transferred to the hip, but as strength continues to increase, the hip can
absorb so much of the force that lower contributions can be made at the knee, and ACL strain in

the sagittal plane can be moderated.
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4.2 Cutting Conditions

The second part of the study aimed to establish how different conditions such as cutting angle
and approach velocity into the cut would affect lower body biomechanics, specifically with
regard to knee flexion angles. The first hypothesis was accurate in predicting there would be no
difference in peak knee angle as a result of changing approach velocity. When cut angle data was
collapsed, values were recorded at 64.1°, 63, and 64.6° at 2, 4 and 6m.s™ respectively. These
values are higher than those reported in the literature, however by splitting the current study’s
data into 45° and 90° cutting tasks more comparable figures emerge. A number of studies used
approach velocities between 4 and 5m.s™ with a 45° cut, and peak knee angle in these were
reported within a range of 55- 63° (16,23,25,24,26). In the equivalent conditions in the present
study, values of 60.3° were observed and are comparable with that of the current literature.
However, in general, the data values in the present study were higher than those seen in the other
literature. It is speculated that subjects in the present study may have been stronger than in the
papers, and were certainly much stronger than in Spiteri et al (16) study who used a similar
strength protocol. The strongest subjects in that study produced similar force to the weakest in
the present study at 20.86 vs 17.5 N/Kg™ respectively. This may go some way to explain the

deeper differences.

The second hypothesis was also correct, peak knee angle was significantly higher in the 90° cut
condition with a 3.3° increase compared to the 45° task. Whether these increases would have any
functional significance is hard to tell, but it is worth noting that at 4 and 6 m.s™ there were
increases of 5.3° and 4.4° respectively, which may have a more practical relevance. This
supports the data of Havens and Sigward (34) however their data showed a greater difference

between the two cuts with a value of 8° separating the 90° and 45° cuts. The difference may be
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due to a difference in the approach, with subjects in that study only being given a 7.5m run up
and were asked to perform the task as quickly as possible. Subjects may still have been
accelerating by the time they reached the force platform which may change the mechanics of the
movement. Additionally, approach speed was not controlled for in the study, and although the
present study generally shows velocity to have no effect on peak knee angle, further analysis of
the current studies data displays a significant difference between 2 m.s™ and 4 m.s™ in the 45°
cut. It is possible that this lack of control confounded the data of Havens and Sigward (34) to
some degree. Another study by Besier et al. (30) saw small increases of 2.3° in a 60° compared
to 30° cut although significance was not reported, but may support a trend for increasing peak

knee angle as cut angle becomes more obtuse.

The movement strategy adopted appears to try to find a balance between minimising injury risk,
whilst still trying to optimise performance. As mentioned, deeper peak knee angles can reduce
ACL load significantly, at a time in the movement when ground reaction forces, and extensor
moments are at their highest (Table 3). Studies show that tibial displacement is reduced until at
approximately 60° knee flexion, when it reaches 0Omm, at which point the ACL in under very low
strain (40,41). It would appear that the movement strategy selected during cutting in all
conditions in the present study, enable the knee to reach this flexion angle to reduce ACL strain.
Greater levels of flexion continue to reduce ACL strain up to approximately 80° (42,43)
however, the deepest average knee angle in the present study occurred at 66.8°. This might
suggest a balance is struck where knee angle is deemed safe, and any further flexion would

impair performance.

On this note, one of the contributing factors to effective performance during a cut would be

reaching optimal torque values in the quadriceps to help the athlete extend the knee efficiently
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during the propulsive phase. The average peak values of around 63.9° in this study are in the
vicinity of the values reported for the optimal peak torques- angle relationship. Using a isometric
single leg press, peak torque was shown to occur at a 51°, with a highest individual value of 62°,
beyond which torque output diminishes at a steady rate, either as the length of the moment arm
increases, or the force length relationship is altered negatively (29,50). Other studies have
suggested the peak torque angle to be higher at between 65-70° (42,43) however the knee
extensor protocol used has arguably less correspondence to the cutting manoeuvre. Taking the
injury and performance data together, it would appear that injury prevention mechanisms dictate
the depth of peak knee angle during cutting, but that when the movement is pre-planned and
approach speed can be moderated, a depth is selected where performance can still be maximised.
The disparity between the values of Hahn et al. (29) and the present study might be explained by
the dynamic nature of the movement during cutting, compared to the static conditions in an
isometric press. The elastic component of the passive tissues may allow a slightly deeper peak
angle, which would allow the knee to return to a more efficient position supported by the stretch

shorten cycle (52).

Another consideration, other than achieving a safe peak knee angle, could be related to initial
contact angle, as this is the time point during the stance phase when the knee is in a more
extended position and injury risk is at its highest. From an ACL injury perspective, data from
observational studies (3,7), and stochastic modelling (8) report contact angles of below 30° as
having high injury risk. In addition, more extended contact angles below 20° also create
conditions where the hamstring is unable to apply any substantial posterior force to the tibia and
would prevent it from stabilising the knee if extensor force became too large (40). A deeper

peak knee angle may allow for a more flexed knee when contact with the ground is made. Initial
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contact knee flexion values in the present study showed no significant differences across any of
the conditions except at 2m.s™* during the 45° cut (51.9°), where it was significantly deeper than
any other velocity condition, or equivalent velocity at 90°. All other initial contact values ranged
between 35.8° and 39.2° across the 5 other conditions. These values are noteworthy in that they
all appear to be markedly above the 30° value that has been reported to be high risk for incurring
an ACL injury. Initial contact knee angle values above 30° have also been observed in other
similar protocols involving pre-planned manoeuvres (23,30). This might suggest that deeper
knee angles at peak flexion are selected to ensure a safer knee angle can be achieved at contact.
A key consideration here is the level of excursion that is required for a given movement. Greater
excursions at the knee, and therefore, less stiff landings, have been shown to reduce extensor
moments and ground reaction forces (32,33). It could be argued that a peak knee angle is set
which allows the individual enough excursion to maintain knee extensor moments and ground
reaction forces within safe limits during the task, but also ensure that initial contact knee angle
safely exceeds the 30° high risk value. Although deeper knee positions might be safer, a balance

must found in which performance is compromised as little as possible.

When looking at the 45° condition in isolation, peak knee angles showed small differences,
however, initial contact angle was significantly more flexed at the 2 m.s™ velocities, with 4 and 6
m.s™ showing no difference from one another. This demonstrates that under conditions where
task demands are low, it is initial contact angle that is altered to reduce the range of motion at the
knee, and not peak knee angle. The reduced excursion results in a stiffer knee at ground contact
which has been shown to increase knee extensor moments and ground reaction forces in landing
tasks (50,9). This movement pattern is utilised to try to increase the rate of loading, and as a

result, the impulse required to complete the task can be generated in a shorter time period
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reducing time spent in contact with the floor. In addition, greater storage and return of elastic

energy can be achieved which can aid performance during the propulsive phase (47).

As velocity is increased in the 45° cut, initial contact angle becomes more extended to increase
the excursion range and help to moderate extensor moments. It appears a minimum limit for
initial contact exists as there no difference was observed for this variable between 4 and 6 m.s™.
With no change in initial contact or peak knee angle it seems a fixed bandwidth for excursion
exists at faster velocities, and the subjects moderates approach velocity to ensure they can
perform safely within these pre-set limits, evidenced by a reduction in speed in the 6 m.s™
condition at the second approach to 5.6m.s™. This may suggest subjects moderated their speed
leading into the cut to ensure they could fall between the bandwidths identified so that the
demands of the tasks can be met safely and without losing efficiency. Greater speed may still
have been carried into the manoeuvre at 6 m.s compared to 4m.s™, but with similar knee
excursions, and larger braking requirements, initial and peak knee extensor moment were
increased significantly as a result, and may imply the maximum safe limits that the structure of

the knee can endure at this specific cut angle.

As reported, 90° cutting task saw greater peak knee angles, yet the same initial contact angles
compared to the 45° condition, meaning excursions were greater at 90°. Cutting tasks at 90°
require larger braking forces as they subjects must come to a complete stop before redirection.
To help mitigate these forces, higher joint excursions were utilised to help absorb these forces at
impact and help to moderate extensor moments (32,33). However, when comparing the cutting
angles at 6 m.s™, the 45° cut generated the same braking forces, with higher GRF,, and much
lower excursion than at 90°. This strategy resulted in significantly higher peak, and initial

contact, knee extensor moments in the 45° condition. A reason knee extensor moment remained
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lower in the 90° cut, compared to 45° may be due to the reduction in approach velocity observed
at 90°, as well as an increased excursion, but why this strategy is utilised to keep extensor
moment lower is less clear. Markolf et al. (44) observed that although ACL is the primary
stabiliser for anterior sheer forces, the addition of valgus and rotational moments at the knee
place the ACL under greater strain. Greater cutting angles have been shown in the literature to
cause greater frontal and transverse plane stresses applied at the knee (30,34,46) which when
combined with extensor forces create a combined stress load on the ACL. The present study
demonstrates that the subjects tried to maintain, and in 6 m.s™, even reduce sagittal plane
extensor forces to a greater extent in the 90° condition, whereas at 45°, where less rotation and
valgus movements would be experienced, extensor forces could be higher whilst applying a
similar overall strain to the ACL and may result in continued performance benefits in this

condition as contact times can be reduced.

The increase in peak knee angle in the 90° as opposed to selecting a more extended leg during
the contact phase, may suggest a strategy that is driven more by an injury prevention mechanism
at the expense of performance as task demands are increased. Selecting a straighter knee at initial
contact would place the knee closer to a high risk position around 30° of flexion, thereby
increasing ACL strain. By increasing peak flexion, ACL load remains lower at contact, but the
deeper knee angles observed in the 90° condition would put the knee in a more unfavourable
position for performance, by increasing the distance of the active mass of the subject, to the axis
of rotation at the knee. This increase to the moment arm would increase the force required by the
quadriceps and, alongside the reduced stiffness of the knee, may explain the significantly

increased contact times at all approach velocities in the 90° condition (0.23 vs 0.32s). The greater
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contact time would allow greater opportunity for cross bridge formation to allow the muscle to

overcome the inertia created by the deep knee position, and reduced elastic return of energy.

Further evidence of an injury prevention mechanism at work in more demanding conditions
relates to changes that occur at 6m.s™ compared to 2 and 4m.s™ in the 90° cut condition. A
reduction in peak knee extensor moment, and GRF, at observed which may indicate that in this
high demand condition, the subject was unable to control velocity into the manoeuvre as
effectively, resulting in forces that may pose risk to the integrity of the joint structures. Excessive
forces are known to stimulate Golgi tendon organ into inhibiting efferent output to protect
passive structures (40), and may impact performance efficiency as evidenced by lower GRF,. In
a comparable study using incremental single leg drop jumps Peng et al. (31) reported reductions
in performance in the final 60cm condition, which coincided with an increased peak knee angle,
suggesting when velocity into contact phase cannot be controlled, peak knee angle is affected. It
is worth noting initial contact angles became more extended at this time point also, however, did
not go below 30° as seen in the present study. This was not seen in the present study, possibly
because the subject was able to moderate their velocity to ensure successful and safe execution
of the task, whereas in a drop jump this is not possible. This may further support the notion that
knee angles are primarily selected with injury prevention mechanisms as a priority, rather than

performance.

In conclusion, neuromuscular programmes have demonstrated a reduction in ACL injury rates.
The present study demonstrates the benefits that including strength may have in directly reducing
ACL strain in dynamic movements such as cutting. Strength may have a protective effect on
ACL by altering load distribution to the hip and alleviating stresses on the knee via reduced

extensor moment, during initial contact with the ground. Additionally, strength may have a
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favourable influence on knee angle at contact. Movement strategies adopted during the
deceleration phase of the manoeuvre, at greater cutting angles, appear to select deeper peak knee
angles. These changes allow larger excursions for the absorption of higher forces that result from
the greater braking requirements at 90°. As the demand of the cutting task increases approach
velocity is moderated to ensure a balance can still be met between successful execution of the
task, whilst maintaining a safe knee posture. It would appear that even in higher demand
activities, a flexion angle below 30° is avoided to reduce ACL loading suggesting a movement
strategy that is driven by an injury avoidance mechanism. In lower demand movements, knee
excursion is reduced to help increase the rate of loading that would aid optimal task performance,
unfortunately a limitation of the study is that post stride velocity was not measured which may
have demonstrated this. Taken as a whole, the data may suggest that a bandwidth exists for a
given cutting angle, where, in a pre-planned movement where approach velocity can be
modulated, initial contact, and peak knee angles have set limits to ensure efficient and safe

execution of a task.
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CHAPTER 5: Practical Recommendations

Data from this study confirms the importance of strength as part of a neuromuscular injury
prevention programme. The large strength differences between groups in the present study may
indicate greater strength gains may be required to see the magnitude of changes during cutting,
therefore a well-planned long term training programme may be necessary to see the magnitude of
effects that were observed in the present study. Hip focussed strength programmes would help to
increase the likelihood of transfer to hip moments during performance. Greater quadriceps
strength may also be beneficial to enable the performer to attain deeper knee positions, without
affecting performance negatively. It might therefore be efficient to use compound exercises to

achieve this goal.
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Appendix 1

Appendix 1.1 Signed Ethics Form St Mary’s University

StMary's

St Mary’s University

Ethics Sub-Committee
Application for Ethical Approval (Research)

This form must be completed by any undergraduate or postgraduate student, or member
of staff at 5t Mary's University, who is undertaking research involving contact with, or
observation of, human participants.

Undergraduate and postgraduate students should have the form signed by their
supervizor, and forwarded to the School Ethics Sub-Commitiee representative. Staff
applications should be forwarded direcily to the School Ethics Sub-Committee
representative. All supporting documents should be merged into one PDF (in order of the
checklist) and clearly entitled with your Full Name, School, Supervisor.

Please note that for all undergraduate research projects the supervizor is considered to
be the Principal Investigator for the study.

If the proposal has been submitted for approval to an extemal, properly constifuted
ethics commitiee (e.g. NHS Ethics), then please submit a copy of the application and
approval letier to the Secretary of the Ethics Sub-Committee. Please note that you will
al=n be required to complete the St Mary's Application for Ethical Approval.

Before completing this form:

+ Please refer to the University's Ethical Guidelines. As the researcher/
supervisor, you are responsible for exercizing appropriate professional judgment
in this review.

Please refer to the Ethical Application System (Three Tiers) information sheet.

Please refer to the Frequently Asked Questions and Commonly Made Mistakes
sheet.

= |fyou are conducting research with children or young people, please ensure that
you read the Guidelines for Conducting Research with Children or Young
People, and answer the below questions with reference to the guidelines.

Pleaze note:
In line with University Academic Regulations the signed completed Ethics Form
must be included as an appendix to the final research project.

If you have any queries when completng this document, please consult your supervisor
(for students) or School Ethics Sub-Committee representative (for staff) .

Approved by the Ethics Sub-Committee on the 30 April 2014.



Appendix 1.2 Subject information sheet

To be filled by Principal Investigator (PI)

1. Instructions

Insert information specific for your study where the form says to “insert.”
Delete all parenthesis and text that does not apply to your study.

My name is Will Davies, and | am currently studying in my final year of a Masters in Strength and
Conditioning at St Mary’s University in Twickenham. | am inviting you to participate in my major project
which | must complete as part of the qualification. The topic that | have chosen to study is related to
strength and how it might affect change of direction technique. | am also looking to explore the cutting
maneuver at a range of approach speeds, and cutting angles, to see how these conditions affect knee
posture.

Participation in the study will involve two visits to the Aspire Academy biomechanics department facility
in Doha, and will take about 60mins each. If you agree to participate, the first test session will require
you to perform a maximal isometric, single leg squat movement at a 40deg knee angle. You will then be
taken to the lab where you will complete a number of change of direction tasks that will be used in the
next testing session to familiarize you to the approach speeds, and angles used during session 2. The
second session will involve a warm up, before having retroreflective markers applied to your lower body
so that your movements can be tracked using 3d motion analysis. You will then complete a total of 18
cutting trials at a range of velocities and angles, with a 1 min rest between each, and should take about
45 mins to 1 hour.

Cutting movements have been associated with anterior cruciate ligament injury and so some level of risk
may be associated with the task. However, at the speeds encountered during this session this is unlikely.
However, if you have had a previous injury to the knee in the previous 6 months you should make the
researcher aware or are still in a rehabilitation protocol from a previous anterior cruciate ligament (ACL)
injury, then you will be excluded from the study. The findings of this study may be reported in the final
dissertation and may be in a scientific journal, but your name will remain confidential.

1. Benefits

Your participation in this study is likely to benefit you. We also hope that your participation in the study
will provide us with information that will benefit othersin the future.

1. Your Rights

51



» We may contact you regarding studies you may be interested in participating.

» We want to assure you that we will keep your information confidential.

* You do not have to be in this study if you do not want to participate.

» Your decision to be in any study is totally voluntary.

* Your care at Aspetar Qatar Orthopaedic and Sports Medicine Hospital will not be altered by your
decision to participate or not participate.

» Your information will not be shared outside of this study team except to those groups inside and

outside of Anti-Doping Lab Qatar, who are responsible for making sure studies are conducted
correctly and ethically.

If you are interested in learning more about the study, please.

Sincerely,

Contact William Davies

Complete the attached questions and mail it back to us using the self-addressed and stamped
envelope. (the questions (related to your study) must be submitted with the advertisement

to the IRB for review).
Review the attached consent form and call the numbers below so that a researcher can talk
with you about the study and answer your questions.

(Signature of PI)
(William Davies)
Principal Investigator

IRB#

Contact No: 66158064

THIS STUDY HAS BEEN REVIEWED AND APPROVED BY ANTI-DOPING LAB QATAR
INSTITUTIONAL REVIEW BOARD
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Appendix 1.3 Subject consent form

‘f St Mary’s
~os%  University
§r Twickenham
L.ondon

School of Sport, Health
& Applied Science

’v ¢
QT

Participant Consent Form

Project title:

“The Effect of Approach Velocity and Cutting angle on Knee Position during and its
association with peak torque angle”

| have read the Letter of Information, have had the nature of the study explained to me, and |
agree to participate. All questions have been answered to my satisfaction.

Subject Name (please print):

Signature: Date:

Individual responsible for
obtaining consent:

Signature: Date:

Investigator:

Signature: Date:
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Appendix 1.4 Strength protocol data collection sheet

Test Session 1: Anthropometrics and Isometric Strength

Name:

Date:

Anthropometrics:

Measure 1 | Measure 2 Right Leg Measure 1 | Measure 2 Left Leg Measure 1 | Measure 2
Height Length Length
Weight Knee width Knee width
Leg Dom L/R Ankle width Ankle width
Strength:

int Angle (° h N
Joint Angle (°) Strength Score (N) Plate Adjustment
Target Angle | Knee angle | Hip angle | Trial 1 Trial 2 Trial 3 Trial 4 Highest Value
40 Degrees

*2nd highest value must be within 10% of highest

Notes:
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Appendix 1.5 Cutting protocol data collection sheet

Testing Session 2: Cutting Trials | NAME: DATE:
=
o | E k5 ‘Sg = = £ ™
s (8| 2| &g | 38 3 z ~
Kz} o o = 9 < = N Q
S g 2l o8| | 2 = ° =
45 DegreeCut | ¢ | = £ o J5i < 5 > Y
g o Q o0 © © E N §=
- () ED [ E o © O ot
© < © @© Q = & © o
=S| 5| s 3 S o S 2
F 2| o 2| < - g 3
<
Trial 1
2m.s Trial 2
(1.42-1.57s) |2
Trial 3
Notes:
Trial 1
dm.s Trial 2
(0.71-0.79s) | -2
Trial 3
Notes:
Trial 1
em.s Trial 2
(0.47 - 0.53s) |2
Trial 3
Notes:
<= T 3 © © = S ™
2 © a > = > °a > 0
2| Q “— 2 = = ) b= ]
@ ] o = o ‘S c 8 9
90 DegreeCut | ¢ | = £ o o1 o ® > )
2| 2 1) a0 © < o S £
5 | 2 = & o) S TJ ® =3
© < © O —_ © O I72)
= = = 8 o O o
= o 3 o = [a) o =
T =z < o o O
< <
Trial 1
2m.s Trial 2
(1.42 -1.57s) |12
Trial 3
Notes:
Trial 1
4m.s Trial 2
(0.71-0.79s) |12
Trial 3
Notes:
Trial 1
em.s Trial 2
(0.47 - 0.53s) |2
Trial 3
Notes:
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Appendix 2

Appendix 2.1 Aspetar Research Approval

REF:

Aspotar
PO Hne 2952
L =gaar

inspircd oy aspirc”

-‘

AspETAR%} T

CNO/0D0D121(f] e e e s 2 i S

Date: 24th March 2016

To: William Davies
Physical Coach,
NSMP department
Aspetar

Dear William Davies,

REVIEW OF STUDY: “The influcnce of strength an the hiomechanics of the knee during
cutting at different velocities and angles™

— Yes | Mo |
_Coes this project support Aspetar’s global research strategy? o

Does this project have HOD approval? &
Has consideration been given to the risk and benefits tc both i
the research participants AND the organization?
Does this project have a process for dealing with possible :
_harmful =ffects that may occur to research participants?
In line with the Declaration of Helsinki and the Belmont i
Report, does this project require aarticipant infarmed /g
consent?
Is study design robust enough ta answer the proposed ‘./""
research question?
Is the research tzam suitably qualified to undertake this V24
_research project?
Are thare any possible conflicts of interests for both the e
|_research teamn and the orgarization?

am satisfied that each of the above elements have heer appropriately cansidered by the
CMO Sciontific Sub-Committee. Acca-dingly, ycur project proposal has been approved by
the CMO's Scientific Sub-Conunillee on 23rd of March 2016.

Thank you and best rezards,

B e o €4 AN
-R@wed by: Apptove@ /

Sebastien Racinais,
Head of Research Operations Dr Scott Gillogly
Chief Mead cal Cfficer

On behalf of Prof Mathew Wilson
Lirector of Research

11074 24132030 deael vl A renter of
£ 077 74132020 o el Aewlo  Arpre Zen2 TIUNIEton
A 3532830T07
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Appendix 2.2 ADLQ ethics approval

Anti- Doping Lab Qatar Institutional Review Board

el gaeijenis IKE SCH Bopismalion: SCH-4LL-owo
Faw: q41329 97 L{H Agmurance: SGH-ADL-A-op
Email ADLQ-RO@adlgalor.cnm

APPROVAL NOTICE

Drate FX-TE XN

U el Mr.Willizrn Thamas Bavies — Aspetar

Juwestigator

IRE Applicabion & Faobooo2b

Fratoca Tifle The intlucnee of strength on the biomechanics of the lmee during
cubting at different velocitios and angles
Suamissicn Tepe  Dndtial Subrmission

Resview Type: Full Buard Review
Appravel Frorod =B ey aob- 27 jogf2oly

The Anti-Duping Leb Cazar Instinctional Heview Brard mas reviowsd end approved the abave
referenced pratoenl.
As ke TeEne pul IovesZzaloe of Lhis researed projedt, yuu are responstible tor:
o Fihical Compliance and protection of the riphis, salely ane weltare of wman subjecs
iovilved I this reseescy wooject.
# T [ollow ke policies a0 prucedures as so Dy ADLG-TRD To amy malers related w che
project. Zolluwinys the ADLG-(RI approval (e, with cogards to obtzning prior zporoval of
arey devialiun of promcea], reparting of wranticipated ceents, znd scheissonoof progres s
Teparts].
a Cloinfioem tae A0LG-RO of the date of commm encAnant of fae respaTrh

ol

Divocter — QRS LA 010 1080 of Reacars Suppor) a1 pitn

Mz Nnor Alhiotzan ]i’-\ﬂ_l]';tbﬁ-i-nﬂ
nts Lig,
Late QME:HB

—

# P Cnimaaznzzmens of @ ssonch, Pzl et Rty Ui pued frobiys fepsning 2,

Asseingh Tragersr Anmeal Rrpen, pleoce conee - Bdsalfan @ Borersh QNir, Anb-Coping i Qi

PR TRTIET
pai ki
AT Dwpiog
[ab Catar

wonadlqatr oo
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Appendix 2.3 Subject consent Form

ASLG BESEARCH QFFLCE
FOROK 27735
Erii: AT O-FiEadlaneas sam

Drale Beceived:

For Administorative Lse
Ooly

T:ne ol Research: "Tha intluence of swangth on the hismechanics of the knee daring cutting at

different selocirizs and anglas"

: Trretocel Mo 1 upedicable) -
Prinizipal lnveslioator Williern Devies Pl Contas ™u: 66135064

Co-lvvestigators: Diay Cleather, Fhil Geatam-Sceath Co-PL Coalacl Mo 35236240

| Organization: Aspetar Orthopacdic and Spors Medicine Hospital

Infarmation Sheat

1. Inivoductioy

We invie you to calks pact in a roscarch study invastigating how difforest sutng eonstzints (approach
sped vmd eotling wogels) wllesl the ungls of the kose when i s conmets the ground, aad the peuk sngle
Lhe khee achicves ducing the manewves. I will thes ook Lo gee i000ere 35 2 nelalienship belween the e,
gq well 5 try to ascortain the influcnee strength has on faig rolatinnship, Y ow were soloced as 2 candidace
for this sl heesues yoo have ahisory of plodng wam spors and full inthe caegore mf cor esearch.
Tlease take your rithe o vead this foom, ask auy question you may have befoee deciding 1o paclicipa in
this stiudy. We encourape won o discuzs yonr dccision with yout family ar doctors,

2. Your Righrs

[REB AFFROVAL STAME |

AL feraresd Consend Borm Aot Sesearsh Participaets) §0-F6E

LRI ER T L
shadh Dyl
Amti Depl
L."‘.'L'lQ:.t:P'rELgl




