
This is a non final version of an article published in final form in Journal of Science & Medicine in 
Sport (2017). Ahead of print. doi.org/10.1016/j.jsams.2016.11.015 
 

The effect of intermittent lower limb occlusion on recovery following exercise-induced muscle 

damage: a randomized controlled trial 

William Page, Rachael Swan & Stephen D Patterson 

School of Sport, Health & Applied Science, St Marys University, London, UK. 

 

Corresponding Author 

Dr Stephen D Patterson 

School of Sport, Health & Applied Science, St Marys Univeristy, Waldegrave Road, Strawberry 

Hill, Twickenham, UK. 

Phone : +442082402357 

Fax: +442082404212 

Email: Stephen.Patterson@stmarys.ac.uk  

Word Count (excluding abstract and references): 3025 

Abstract word count: 258 

Number of tables: 1 

Number of figures : 2 

 

Running Title: Intermittent lower limb occlusion and muscle damage 

Disclosure of Funding: None 

 

mailto:Stephen.Patterson@stmarys.ac.uk


This is a non final version of an article published in final form in Journal of Science & Medicine in 
Sport (2017). Ahead of print. doi.org/10.1016/j.jsams.2016.11.015 
 
Abstract 1 

Objectives: The purpose of this investigation was to examine the effectiveness of intermittent lower 2 

limb occlusion in augmenting recovery from exercise induced muscle damage (EIMD) in physically 3 

active males.  4 

Design: Randomized Controlled Trial, double blind 5 

Methods: Sixteen healthy recreationally active male participants were randomly assigned to an 6 

intermittent occlusion (OCC; n = 8) or control (SHAM; n = 8) group. The EIMD protocol comprised of 7 

100 drop-jumps, from a 0.6m box. Indices of muscle damage were creatine kinase (CK), thigh-8 

circumference (TC), muscle soreness (DOMS), counter-movement jump (CMJ) and maximal isometric 9 

voluntary contraction (MIVC). Measurements were assessed pre, 24h, 48h and 72h following exercise.  10 

Results: There was a significant time effect for all indices of muscle damage suggesting EIMD was 11 

present following the exercise protocol. The decrease in MIVC was significantly attenuated in the OCC 12 

group compared to the SHAM group at 24 (90.4 ± 10.7 vs 81.5 ± 6.7%), 48 (96.2 ± 6.1 vs. 84.5 ± 7.1%) 13 

and 72h (101.1 ± 4.2 vs. 89.7 ± 7.5%). The CK response was reduced in the OCC group at 24 (335 ± 14 

87 vs. 636 ± 300 IU) and 48h (244 ± 70 vs. 393 ± 248 IU), compared to the SHAM group. DOMS was 15 

significantly lower in the OCC compared to the SHAM group at 24, 48 and 72h post EIMD. There was 16 

no effect of OCC on CMJ or TC.  17 

Conclusions: This investigation shows that intermittent lower limb occlusion administered after a 18 

damaging bout of exercise reduces indices of muscle damage and accelerates the recovery in physically 19 

active males. 20 

Key Words: muscle function, ischemia, vascular occlusion, delayed onset muscle soreness, 21 

eccentric exercise.  22 

 23 
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Introduction 24 

Strenuous or unaccustomed exercise involving eccentric muscle contractions leads to exercise induced 25 

muscle damage (EIMD) 1. Typically EIMD manifests as structural damage within the muscle including 26 

disruption to sarcomeres and dysfunction of excitation-contraction coupling 2. EIMD also results in 27 

reduced ability for muscle force production, decreased ability to produce explosive muscle contractions, 28 

increased muscle swelling, pain and an increase in appearance of muscle proteins in the blood such as 29 

creatine kinase (CK) in the days following exercise 1.  Various strategies have been investigated as a 30 

methods to attenuate the negative effects of eccentric contractions, including reduced physical function. 31 

Therapies attempting to reduce EIMD include antioxidants 3, non-steroidal anti-inflammatory drugs 4, 32 

cryotherapy 5 and compression garments 6. The effectiveness of these therapeutic strategies in reducing 33 

signs and symptoms of EIMD is unclear.  34 

Recently, the use of intermittent vascular occlusion (OCC) has come to attention in aiding the recovery 35 

process 9. This involves periods of intermittent vascular occlusion of a limb for short periods of time 36 

(2-5 minutes), followed by reperfusion. This process also known as ischemic pre- or post-conditioning 37 

has been used to protect cardiac and skeletal tissue against ischemic reperfusion (IR) injury 10.  IR injury 38 

is the damage that occurs when blood supply returns to the tissue after a period of prolonged ischemia, 39 

causing metabolic and contractile damage 11. This metabolic and contractile damage observed following 40 

IR injury, is similar to that seen in EIMD, namely increased intracellular calcium concentrations 12  and 41 

an increase in appearance of muscle proteins in the blood and cytokine markers such as CK, lactate 42 

dehydrogenase and IL-6 11; 13. OCC can attenuate IR injury and thus may potentially be used to speed 43 

up the recovery process following EIMD, via increased blood flow due to its effects on activating ATP-44 

sensitive potassium channels 14, elevating adenosine levels 15 and / or reducing the inflammatory 45 

response 16, yet the exact mechanisms are currently unknown. 46 

Whilst OCC may attenuate the functional and metabolic damage associated with EIMD, few studies 47 

have studied the efficacy of this intervention on recovery. Unilateral OCC applied following a training 48 

session resulted in beneficial effects on functional measures of athletic performance, including repeated 49 
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sprint ability and jump height, 24 hs following the intervention 9. This was the first study to demonstrate 50 

a potential use of OCC in the recovery process from athletic efforts. More recently Northey and 51 

colleagues 17 applied OCC following a heavy strength training session and found that it did not improve 52 

recovery at 1 and 24 h post exercise, when compared to a passive recovery. Therefore evidence for 53 

OCC as a recovery tool is conflicting.  54 

To summarize, OCC is recognized as an effective and reliable protective strategy in human cardiac and 55 

skeletal muscle, reducing the negative side effects of IR injury. The mechanisms by which damage 56 

occurs following ischemia are comparable to those seen following EIMD 1. Therefore the aim of this 57 

investigation was to determine if OCC could enhance the recovery process following EIMD.  It was 58 

hypothesised that OCC would attenuate the markers of EIMD during recovery in healthy recreational 59 

males.  60 

METHODS 61 

 Sixteen healthy recreationally active male participants (age, 22.6 ± 2.8 yr; height, 179.6 ± 5.8 62 

cm; mass, 75.5 ± 8.1 kg; mean ± SD) volunteered to take part in the study. The design, implementation 63 

and reporting of this study conforms to the Consolidated Standards of Reporting Trials (CONSORT) 64 

guidelines for randomized trials. Participants were fully informed of all procedures and associated risks 65 

before giving their written informed consent. Participants were randomly assigned to one of two 66 

independent groups, OCC or SHAM, in a double blind fashion. Inclusion criteria included an ability 67 

and willingness to abstain from strenuous exercise, caffeine, alcohol and anti-inflammatory medication 68 

for 72 hours before and for the duration of the study. Exclusion criteria included recent use of other 69 

pain management methods, previous history of cardiovascular disease and any lower limb 70 

musculoskeletal injuries in the past 6 months. All experimental procedures were approved by the ethics 71 

committee of St Mary’s University, London, which conformed to the Declaration of Helsinki. 72 

 The participants were required to attend the laboratory on five separate occasions based around 73 

a 10 day testing period. All trials were performed at the same time of day.  In the initial trial, participants 74 

were required to attend a familiarization session of all the performance tests. Seven days later, 75 



This is a non final version of an article published in final form in Journal of Science & Medicine in 
Sport (2017). Ahead of print. doi.org/10.1016/j.jsams.2016.11.015 
 
participants reported to the laboratory for four consecutive days. The first day involved baseline 76 

performance tests and completing the EIMD protocol; immediately followed by post exercise tests and 77 

the intervention or placebo protocols. The indices of EIMD (muscle soreness [DOMS], maximum 78 

voluntary contraction [MIVC], thigh circumference [TC] and vertical jump height [CMJ]) were taken 79 

pre and post exercise and at 24 h intervals post exercise up to 72 h. CK was measured at all the same 80 

time points except immediately post exercise. The rating of recovery intervention (RORI) was only 81 

administered and collected immediately post-intervention.  82 

Muscle damage was induced via repeated drop jumps from a box 0.6m in height and has previously 83 

been demonstrated to result in EIMD 18. Prior to commencing the protocol, participants, had to 84 

demonstrate the correct technique; coaching was used to ensure safe practice. Participants conducted 85 

five sets of 20 repetitions separated by a two minutes of recovery to ensure maximal intensity was 86 

maintained throughout. Participants stepped off the box with their dominant leg, hands on hips and upon 87 

landing jumped maximally landing on the same surface.      88 

Upon completion of the EIMD protocol, participants adopted a supine position to allow bilateral arterial 89 

occlusion cuffs to be placed on the proximal portion of the thigh (14.5 cm width; Delfi Medical 90 

Innovations, Vancouver, Canada). The inflatable cuffs were connected to a pressure gauge and were 91 

automatically inflated to either 220mmHg (OCC) or 20mmHg (SHAM) for five minutes followed by 92 

five minutes reperfusion. This was repeated three times totalling 30 minutes (15 minutes ischemia and 93 

15 minutes of reperfusion). The pressures chosen have previously been used in similar studies 94 

investigating vascular occlusion for recovery 9. Participants were not informed about the rationale of 95 

the study to reduce any placebo effect. 96 

Performance measures for MIVC and CMJ followed a standardised warm-up consisting of five 97 

incremental sub-maximal efforts before commencing three maximal efforts separated with 60 seconds 98 

recovery. The maximal value was recorded and used for evaluation. This has been quantified to reduce 99 

the CV to < 5% 19. 100 
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Knee extension peak torque of the dominant leg was measured via a digital strain gauge (MIE Digital 101 

Myometer; MIE Medical Research Ltd. Leeds). Participants were seated in a standardised position with 102 

arms folded across their shoulders and both hips and knees flexed at 90º, measured prior to each 103 

contraction via a goniometer to minimise error (Bodycare Products, Warwickshire, UK). Participants 104 

were required to extend as hard as possible for three seconds 20. Participants performed a CMJ with 105 

hands on hips to assess lower limb muscular power.  Participants stood on a portable electronic matt 106 

(FLS Electronics Ltd. Jump matt. Ireland) and dropped to a self-selected level (approximately a 90° 107 

knee angle) before jumping maximally, jump height, in cm, was used for evaluation. Jump height was 108 

calculated from the formula: h=g·t2 /8 (where h is the jump height in metres; g is gravitation acceleration 109 

[9.81 m·s-2]; t is the flight time in seconds). 110 

Plasma CK was determined from fingertip capillary blood samples. Approximately 300 μl of capillary 111 

whole blood was collected ((Microcuvette® CB300, Sarstedt, Numbrecht, Germany) and was 112 

immediately placed in a refrigerated centrifuge (Mikro 220R D-78532, Tuttlingen, Germany) and spun 113 

at 3,500 rpm for 10 minutes at 4°C. The sample was immediately stored at -80°C for analysis at a later 114 

date. All samples were analysed using a semi-automated clinical chemistry analyser (Randox RX 115 

Monza Randox, Crumlin, United Kingdom). The normal ranges for plasma CK for this assay are 24-116 

195 IU and the intra sample CV was 2.3%.  Muscle swelling was measured on the dominant leg midway 117 

between the greater trochanter and the lateral epicondyle of the femur. TC was measured in an 118 

anatomical position using an anthropometric tape measure (HaB Direct Southam Warwickshire). To 119 

ensure consistent measurements between testing days, TC was marked with a semi-permanent pen 20.  120 

DOMS was assessed via a 200mm visual analogue scale. Participants stood in anatomical position with 121 

hands on hips and were asked to hold a half squat (90° knee angle). The far-left of the 200mm line 122 

represented ‘no pain’ while the far-right represents ‘extremely painful’. Participants were asked to mark 123 

their perceived soreness on the scale 20.  124 

Five minutes post intervention, participants were asked to rate the intervention they received on how 125 

they perceived and expected the recovery intervention to encourage the recovery process. This was 126 
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measured on a 1–5 Likert scale with one represented ‘Like Very Much’ and five represented ‘Dislike 127 

Very Much’ 7. 128 

All data are reported as means ± SD. To account for inter individual variation, CMJ and MIVC were 129 

expressed as a percentage change relative to baseline. CK, TC, DOMS and RORI data were expressed 130 

as absolute values. RORI was analysed using an independent t-test. Differences in the other measured 131 

variables were analysed with a mixed factorial two-way repeated measures ANOVA, using treatment 132 

as the between subject factor and time as the within subject factor.  Where a significant effect was 133 

observed, interaction effects were further examined using Fishers least significant difference (LSD) 134 

post hoc analysis. All data were analysed using SPSS for Windows (v. 21.0 software package) with the 135 

level of significance set at P < 0.05. 136 

 137 

RESULTS 138 

MIVC was not different between groups at baseline (611 ± 51 vs. 629 ± 136 N, for OCC and SHAM 139 

respectively). There was a significant time effect for MIVC, (P < 0.05). MIVC showed a significant 140 

group (P < 0.05) and interaction effect (P < 0.05). Post-hoc analysis indicated that the decrease in MIVC 141 

was significantly attenuated (P < 0.05) in the OCC group compared to the SHAM group at 24 (90.4 ± 142 

10.7 vs 81.5 ± 6.7%), 48 (96.2 ± 6.1 vs. 84.5 ± 7.1%) and 72h (101.1 ± 4.2 vs. 89.7 ± 7.5%) post EIMD 143 

(Figure 1).  144 

CMJ was not different between groups at baseline (34.0 ± 4.4 vs. 38.9 ± 8.1 cm, for OCC and SHAM 145 

respectively). There was a significant time effect for CMJ (P < 0.05) with peak loss in CMJ occurring 146 

24 hours post exercise (84.3 ± 4.3 and 80.0 ± 6.5 % of baseline values for OCC and SHAM 147 

respectively). There was no significant interaction (P = 0.098) or group effect observed (P = 0.069; 148 

Table 1). 149 

There was a significant time effect for CK (P < 0.05), however there was no significant main effect of 150 

group observed (P = 0.78). There was a significant interaction between time and treatment for CK (P < 151 
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0.05), with post hoc analysis revealing CK to be lower in the OCC group at 24 (335 ± 87 vs. 636 ± 300 152 

IU) and 48h (244 ± 70 vs. 393 ± 248 IU) post EIMD when compared to the SHAM group (Table 1).  153 

There was a small but significant time effect for TC (P < 0.05), however there was no main group effect 154 

observed (P > 0.05). TC demonstrated a significant interaction between time and treatment (P < 0.05; 155 

Table 1), however Post-hoc analysis did not reveal were the differences in TC between OCC and SHAM 156 

conditions lay.  157 

There was a significant time effect for DOMS (P < 0.05) with peak soreness occurring 24h post EIMD. 158 

DOMS demonstrated a significant interaction between time and treatment (P < 0.05) and group effect 159 

(P < 0.05). Post-hoc analysis indicated that the difference in DOMS was significantly lower (P < 0.05) 160 

in the OCC compared to the SHAM  group at 24, 48 and 72h post EIMD (Figure 1).  161 

There was a no difference in the RORI for post-conditioning (mean rank: 2.62 ± 0.92) and control (mean 162 

rank: 2.62 ± 0.52) conditions (P > 0.05).  163 

  164 

DISCUSSION 165 

The primary aim of this study was to examine the effect of OCC on indices of muscle damage following 166 

eccentric exercise. The findings confirm our hypothesis that OCC can shorten the recovery process 167 

following EIMD, as evidenced by a return to pre strength levels 24 hs earlier than the SHAM condition. 168 

This faster recovery of functional outcomes is likely due to a decrease in the inflammatory response 169 

observed following strenuous eccentric exercise as observed by reduced creatine kinase and soreness. 170 

Thus, OCC promoted a positive environment for reduced muscle soreness and functional recovery in 171 

physically active males to a greater extent than a SHAM treatment.  172 

The exercise protocol resulted in EIMD, as evidenced by significant time effects of all dependent 173 

variables, supporting the work of others 5, 21. In the current study we demonstrated MIVC was reduced 174 

following EIMD in both conditions, yet the significant group effect indicated the drop in MIVC was 175 

attenuated to a greater extent in the OCC group in comparison to the SHAM condition. Post hoc tests 176 
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revealed that the loss in muscle strength following EIMD was attenuated across all time points following 177 

the application of OCC and returned to pre testing levels within 48 hs. In comparison strength was 90% 178 

of pre testing levels in the SHAM condition 72 hs post EIMD.  Despite the positive effect on strength 179 

recovery, it is not possible to detect whether this was a result of improving the recovery of disrupted 180 

sarcomeres in myofibrils and / or damage to the excitation-contraction coupling system. 181 

In addition, the data presented supports previous work that OCC is an effective intervention to enhance 182 

the rate of recovery following strenuous exercise 9. Beaven and colleagues 9 were the first to 183 

demonstrate the effectiveness of OCC in the recovery process. It should be noted that whilst improved 184 

recovery was observed 9 the exercise protocol and outcome measurements were different from our work. 185 

They demonstrated improved recovery 24 hs post-intervention in power production and sprint 186 

performance. One more recent study demonstrated that exercise with blood flow restriction may play a 187 

role in attenuating EIMD 22 suggesting OCC may be important in preconditioning muscle tissue prior 188 

to damage. In contrast we observed OCC was not able to attenuate the decline in lower limb muscular 189 

power despite a trend for a group (p = 0.069) and interaction (p = 0.09) effect. Furthermore Northey 190 

and colleagues 17 did not demonstrate any benefit of OCC in the recovery process following strenuous 191 

resistance exercise. It is possible that the training status of the individuals may explain the differences 192 

between their study and our own. For example, the participants in the current study were recreationally 193 

active and therefore MIVC was reduced by 18.5% following EIMD in the SHAM group. In contrast the 194 

participants in the Northey and colleagues 17 study had a history of strength training which resulted in 195 

a smaller loss of force production (4%), which was likely due to the repeated bout effect 23, suggesting 196 

that OCC was less likely to play a role in the trained group.   197 

Our data demonstrates OCC can attenuate the increase in CK as evidenced by reduction at 24 and 48 198 

hs following exercise. CK is an indirect marker of EIMD, which displays a high degree of inter and 199 

intra subject variability, mainly due to the training status of the individual 24.  The reduction in CK 200 

following the application of OCC suggests cell membrane integrity was maintained to a greater extent 201 

than the SHAM group, suggesting a reduction in the inflammatory response to EIMD. A reduction in 202 

inflammatory response leads to a reduction in muscle oedema and intramuscular pressure, which 203 
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reduces the stimulation of nociceptors, potentially reducing pain, stiffness and muscle soreness 204 

sensations 1.  205 

OCC also had a positive reduction on muscle soreness following EIMD. This is in line with previous 206 

research using a similar technique (ischemic preconditioning), which reported reduced postoperative 207 

pain following total knee arthroplasty 25. The mechanism(s) by which OCC might lead to reduced 208 

soreness / pain remains elusive. Whilst there was an increased swelling over time, the degree of change 209 

was minimal, which is similar to previous studies using this mode of exercise to induce EIMD 8. 210 

Therefore it is likely that the reduced muscle soreness observed following OCC was due to an attenuated 211 

inflammatory response to EIMD. Speculatively this may be due to a downregulation of circulating 212 

leukocytes 16 and / or increased nitric oxide (NO) which is up-regulated in response to OCC 26, and 213 

appears to be an important intracellular and intercellular regulator of muscle inflammation and muscle 214 

remodelling 27. It should be noted however that a reduced inflammatory response may not always be 215 

sought. Whilst this may be beneficial for short term recovery, as evidenced in the current study, the 216 

inflammatory response is important for adaptations to exercise and thus practitioners should take care 217 

as to when they apply different recovery techniques.    218 

A limitation of studies investigating strategies to improve the recovery process is the possible 219 

psychological effect of recovery. In both conditions participants were blinded to the rationale of the 220 

study. RORI showed no difference between interventions suggesting that the recovery process was due 221 

to physiological responses and not psychological mechanisms suggested by others 7, 28. This suggests 222 

that the blinding procedures were successful and their expectations had no effect on other dependant 223 

variables. Secondly, participants were recreationally active and therefore the damage they experienced 224 

may have been greater than the elite athletic population who would be more accustomed to this type of 225 

exercise 23. Future investigations should aim to further elucidate the mechanisms for improved recovery, 226 

including a greater focus on cellular and inflammatory responses. Alongside this research should aim 227 

to investigate the dose, frequency and timing of the intervention including the potential impact that 228 

OCC has on the adaptation process. 229 
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Conclusion 230 

In conclusion, the data presented in this investigation suggests that the application of 3 x five minutes 231 

of arterial occlusion administered following eccentric damaging exercise reduces soreness and enhances 232 

post-exercise muscular function. Thus, OCC accelerates the recovery post-exercise in recreational 233 

active males, potentially via reduced secondary muscle damage.  234 

Practical Implications  235 

 The current findings contribute to our understanding of recovery from EIMD, which is 236 

important for developing appropriate training strategies; 237 

 OCC  enhances the recovery process following strenuous eccentric exercise 238 

 OCC may be used by practitioners as a simple and cost effective tool to help athletes recover 239 

from exercise.  240 
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 Figure Legends 

Figure 1. Consort diagram of enrolled participants 

Figure 2. Maximal isometric voluntary contraction (MIVC) before and following EIMD. Values are 

expressed as mean ± SD.    OCC,     SHAM. * Indicates significantly different from SHAM, P < 0.05. 

 

Table Legends 

Table 1. Measures for OCC and SHAM groups; counter movement jump (CMJ), perceived muscle 

soreness (DOMS), plasma creatine kinase (CK) and thigh circumference (TC) assessed pre, post, 24, 

48 and 72h after EIMD. Values are expressed as means ± SD. * Indicates significantly different from 

SHAM, P < 0.05. 
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Table 1. 

 Pre Post 24h 48h 72h 

CMJ  

(% 

Baseline) 

OCC 100 ± 0 85.1 ± 7.3 84.3 ± 4.3 87.0 ± 8.2 87.5 ± 3.1 

SHAM 100 ± 0 84.7 ± 5.2 79.8 ± 6.5 80.5 ± 8.7 82.3 ± 8.1 

DOMS 

(mm) 

OCC 8.9 ± 8.0 47.1 ± 25.7 57.0 ± 

24.6* 

51.4 ± 

30.6* 

24.5 ± 

20.7* 

SHAM 15.6 ±12.5 68.1 ± 31.8 106.1 ± 

30.1 

99.5 ± 40.4 64.5 ± 37.6 

CK 

(I/UL) 

OCC 163.5 ± 

30.1 

 335.8 ± 

87.3* 

243.8 ± 

69.6* 

211.8 ± 

68.4 

SHAM 178.4 ± 

61.4 

 636.4 ± 

300.1 

393.2 ± 

248.0 

335.1 ± 

244.1 

TC 

(cm) 

OCC 53.9 ± 3.1 54.8 ± 3.0 54.1 ± 3.1 54.0 ± 3.0 53.8 ± 2.8 

SHAM 54.1 ± 4.4 54.9 ± 4.6 54.7 ± 4.3 54.8 ± 4.2 54.6 ± 4.3 
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Figure 1 

 

 

Figure 2 

 


