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Accumulated oxygen deficit during exercise to exhaustion determined at different 1 

supramaximal work-rates.  2 

 3 

Abstract 4 

Purpose. The aim of the study was: a) to determine the effect of supramaximal exercise intensity, during 5 

constant work-rate cycling to exhaustion, on the accumulated oxygen deficit (AOD); and b) to determine 6 

the test-retest reliability of AOD. Methods. Twenty one trained male cyclists and triathletes 7 

(means ± standard deviation for age and maximal oxygen uptake (V̇O2max) were 41 ± 7 years and 4.53 8 

± 0.54 L∙min-1, respectively) performed initial tests to determine the linear relationship between oxygen 9 

uptake (V̇O2) and power output, and V̇O2max. In subsequent trials, AOD was determined from exhaustive 10 

square-wave cycling trials at 105, 112.5 (in duplicate), 120 and 127.5% V̇O2max. Results. Exercise 11 

intensity had an effect (P = 0.011) on the AOD (3.84 ± 1.11, 4.23 ± 0.96, 4.09 ± 0.87 and 3.93 ± 0.89 L 12 

at 105, 112.5, 120 and 127.5% V̇O2max, respectively). Specifically, AOD at 112.5% V̇O2max was greater 13 

than at 105% V̇O2max (P = 0.033) and at 127.5% V̇O2max (P = 0.022), but there were no differences 14 

between the AOD at 112.5% and 120% V̇O2max. In 78% of the participants, the maximal AOD occurred 15 

at 112.5 or 120% V̇O2max. The reliability statistics of the AOD at 112.5% V̇O2max, determined as intraclass 16 

correlation coefficient and coefficient of variation, were 0.927 and 8.72% respectively. Conclusion. The 17 

AOD, determined from square-wave cycling bouts to exhaustion, peaks at intensities of 112.5-120% 18 

V̇O2max. Moreover, the AOD at 112.5% V̇O2max exhibits an 8.7% test-retest reliability.   19 
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Introduction  20 

During high-intensity exercise, both aerobic and anaerobic energy systems contribute to meet the 21 

energy demands.1 Aerobic energy production is easily quantified as the rate of oxygen uptake (V̇O2).2 22 

However, anaerobic capacity (AnC), defined as the maximum amount ATP resynthesised via anaerobic 23 

metabolism during high-intensity whole-body exercise,5 is more difficult to quantify and presents a 24 

challenge for exercise physiologists.3,4  Since direct methods to quantify AnC are expensive and/or 25 

invasive, indirect approaches such as the accumulated oxygen deficit (AOD) have been developed3,6 26 

The AOD is determined as the difference between the sudden increase in oxygen demand and the 27 

exponential7 increase in V̇O2 at the onset of exercise. The quantification of AnC via the AOD relies on 28 

a number of assumptions which might compromise the validity of the test.3 29 

First, determination of AnC requires exercising at intensities that exceed the maximal V̇O2 (V̇O2max).3,6,8 30 

The oxygen demands at supramaximal intensities need to be estimated, typically from a linear 31 

projection of the relationship between steady-state V̇O2 and power output at submaximal intensities. 32 

However, the assumption of a linear relationship between V̇O2 and power output, has been challenged 33 

due to the emergence of the slow component of V̇O2, which may increase the slope of the V̇O2-power 34 

output relationship at intensities above the gas exchange threshold (GET). Since at intensities greater 35 

than V̇O2max there is no slow component of V̇O2 (i.e. V̇O2 increases inexorably towards V̇O2max),9 36 

Noordhof et al.3 recommended using relatively short exercise bouts to construct the V̇O2-power output 37 

relationship. Secondly, as a measure of AnC, the AOD is assumed to remain constant at any 38 

supramaximal intensity lasting 2-5 minutes.3,6,10 Whilst consistent AODs have been reported in cycling 39 

at 110% and 120% V̇O2max,11 whether the AOD remains consistent determined from CWR at intensities 40 

outside the range of 110 – 120% V̇O2max, but within the range of 2-5 min, remains unknown.  41 

In addition to the methodological issues described above, the reliability of the AOD remains 42 

controversial. It is important for athletes and coaches to know the test-retest reliability of a 43 

measurement,12 but unfortunately only two studies have quantified the test-retest reliability of the 44 

AOD.11,13  Moreover, the results of these studies were inconsistent. Doherty, Smith and Schroder13 45 

concluded that the AOD determined during running exercise was not a reliable test; whilst Weber and 46 

Schneider11 reported good test-retest reliability of the AOD in cycling tests at both 110 and 120% of 47 

V̇O2max.  48 

The purpose of this study was to address the above limitations by investigating whether the AOD 49 

remains constant during different supramaximal constant work-rate (CWR) cycling bouts to exhaustion, 50 

and to determine the test-retest reliability of the AOD. Specifically, the primary aim of the study was to 51 

determine whether the AOD remains constant during cycling to exhaustion at four supramaximal CWR 52 

intensities. The secondary aim of the study was to determine the test-retest reliability of the AOD during 53 

identical supramaximal CWRs tests. It was hypothesized that, as an estimate of AnC, supramaximal 54 

exhaustive exercise at different supramaximal intensities would result in similar AODs. It was also 55 

hypothesised that the AOD would exhibit acceptable test-retest reliability.   56 
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Methods 57 

Subjects 58 

Twenty-one trained14 male cyclists and triathletes voluntarily participated in this study. Their mean ± 59 

standard deviation (SD) for age, height and mass were 41 ± 7 years, 1.82 ± 0.08 m and 79.6 ± 7.5 kg, 60 

respectively.   61 

Experimental overview 62 

Each participant was required to complete seven visits to the physiology laboratory, typically once a 63 

week (7 ± 2 days between trials), with each trial separated by at least 48 h. All trials were conducted on 64 

the same individually-adjusted, electromagnetically braked cycle-ergometer (Lode Excalibur Sport, 65 

Groningen, the Netherlands) at a similar time of the day (±2 h) and under controlled ambient conditions 66 

(19 ± 1 °C and 33 ± 5% humidity). After two preliminary trials to determine GET, V̇O2max, and the V̇O2-67 

power output relationship, participants completed five experimental trials, each consisting of a CWR to 68 

exhaustion at 105, 112.5, 120 or 127.5% of V̇O2max. The 112.5% V̇O2max trial was repeated to determine 69 

test-retest reliability. The order of the experimental trials was randomised, with the exception of the 70 

identical trials at 112.5% of V̇O2max, which were performed consecutively. Participants were provided 71 

with a food record diary and instructed to follow a similar diet and to refrain from strenuous exercise in 72 

the 24 h before each trial. In addition, they were instructed to refrain from caffeine and alcohol ingestion 73 

12 h prior to each trial. Figure 1 schematically outlines the protocol.  74 

Procedures 75 

Initially, participants completed the preliminary trials. First, a ramp test to exhaustion was used to 76 

determine the GET. After three minutes of unloaded pedalling, the resistance increased continuously 77 

at a rate of 0.5 W∙s-1 (i.e. 30 W∙min-1) until exhaustion, defined by a decrease >10 rpm for >5 s despite 78 

strong verbal encouragement. The cadence for this trial was freely chosen by each participant (87 ± 8 79 

rpm), and remained constant throughout this and subsequent tests. Two researchers independently 80 

determined the GET for each participant using the V-slope method.15 On a separate day, participants 81 

performed a submaximal step test to determine the relationship between V̇O2 and power output followed 82 

by a ramp to exhaustion to determine V̇O2max. The submaximal step test consisted of 10 × 3 min stages 83 

at increasing intensities. The test started at an intensity that corresponded to 50% GET and increased 84 

by 10% GET in each subsequent 3 min stage, so that the tenth 3-min stage was completed at 140% 85 

GET. There were 30 s of passive recovery between stages to allow a capillary sample to be collected 86 

(see below). After completion of the tenth 3 min stage, participants remained seated on the cycle 87 

ergometer for five minutes before completing the ramp test to exhaustion. The starting intensity in the 88 

ramp test corresponded to 70% GET and increased continuously at a rate of 15% GET∙min-1 until 89 

exhaustion. V̇O2max was calculated as the highest value derived from a 30-s rolling average; excluding 90 

V̇O2 values ± 4 SD outside a local 5-breath average.16 Approximately 20 min after the completion of the 91 

test, participants completed a supramaximal CWR test to exhaustion for familiarization purposes.  92 
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The five experimental trials started with 3 min of unloaded cycling immediately followed by 5 minutes 93 

at 70% GET. After a further 5 min of passive rest, participants were instructed to attain their preferred 94 

cadence as soon as possible (≤5 s) and to maintain that cadence for as long as possible. The intensity 95 

of the trials were 105, 112.5, 120 and 127.5% of V̇O2max. This range of supramaximal intensities (105% 96 

- 127.5% V̇O2max) encompasses the range of typical intensities used during AOD determination, and 97 

was intended to cause exhaustion between ~2 and ~5 min.6,11,17 Subjects were unaware of the power 98 

output (or percentage of V̇O2max), elapsed time or expected time to exhaustion (TTE). Capillary blood 99 

samples (20 µL) were collected 1, 3 and 5 min after exhaustion. The AOD was determined as the 100 

difference between the accumulated oxygen demand and accumulated oxygen uptake.6  101 

Measurements 102 

During all trials, participants breathed room air through a facemask (Hans Rudolph, Kansas City, MO, 103 

USA). Gas exchange samples were collected and analysed breath-by-breath using an open spirometric 104 

system (Oxycon Pro, Jaeger Ltd. Höechberg, Germany). The gas analyser was calibrated before each 105 

test accordingly to manufacturer instructions with gases of known concentrations (5% CO2, 16% O2, 106 

79% nitrogen; Carefusion, Höechberg, Germany) and a 3 L syringe (Viasys Healthcare, Höechberg, 107 

Germany). Blood samples were analysed for blood lactate concentration (BLa) using the enzymatic-108 

amperiometric method (Biosen C-line, EKF Diagnostic, Germany). Heart rate (HR) was measured using 109 

a telemetric monitor (Polar S610, Polar Electro, Finland) at 5 s intervals. Breath-by-breath V̇O2 was 110 

filtered (see above) and, subsequently, linearly interpolated to produce second by second data. The 111 

accumulated oxygen uptake was determined as the integrated V̇O2 values from the onset of exercise 112 

until exhaustion (recorded to the nearest second). The accumulated oxygen demand was determined 113 

as the product of the oxygen demand and time to exhaustion (TTE). Oxygen demand, in turn, was 114 

determined as a linear projection of the V̇O2-power output relationship. In the experimental trials, peak 115 

HR and peak BLa were determined as the highest value recorded during exercise, and the highest post-116 

exercise BLa concentration, respectively. End-exercise V̇O2 corresponded to the average V̇O2 during 117 

the last 10 s of exercise before exhaustion.  118 

Statistical Analysis 119 

Data were analysed using IBM SPSS 21 (IBM Corp, Armonk, NY) and presented as mean ± SD. 120 

Differences between AOD at 105% V̇O2max (AOD105), AOD112.5, AOD120 and AOD127.5, alongside other 121 

physiological variables (power output, TTE, accumulated oxygen demand and oxygen uptake, peak 122 

BLa, peak HR and end-exercise V̇O2), were determined using repeated measures ANOVA. The 123 

presence of a training or learning effect in the AOD was evaluated by studying the difference between 124 

AOD in consecutive trials using repeated measures ANOVA. A post hoc Bonferroni t-test was 125 

conducted to locate differences between trials if a significant F value was detected. The test-retest 126 

reliability of the AOD was determined as coefficient of variation (CV) and intraclass correlation 127 

coefficient (ICC). The CV was determined from the typical error expressed as percentage of the mean;12 128 

whilst the ICC was calculated from the standard error of measurement derived from the ANOVA using 129 
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the 3,1 ICC.18 95% confidence limits (CL) were determined for both measures of reliability. Significance 130 

was accepted at P < 0.05. 131 

132 
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Results 133 

 134 

Preliminary trials 135 

The GET and V̇O2max corresponded to 2.60 ± 0.33 L∙min-1 (189 ± 25 W) and 4.53 ± 0.54 L∙min-1 136 

(57 ± 6 mL∙kg-1∙min-1), respectively. The power output for the initial 3 min stage in the step test was 137 

95 ± 13 W, and increased by 19 ± 3 W in each subsequent stage until the tenth stage, which was 138 

completed at 265 ± 36 W. These workloads represent intensities from 42 ± 4% to 85 ± 6% V̇O2max and 139 

were accompanied by increases in BLa from 0.97 ± 0.22 mmol∙L-1 at the end of the first stage to 4.01 ± 140 

1.73 mmol∙L-1 at the end of the tenth stage. There was a strong linear relationship between V̇O2 and 141 

power output (P < 0.001 for all the subjects; r = 0.995 ± 0.005).  142 

Experimental trials 143 

One participant experienced technical problems during the supramaximal test at 105% V̇O2max, and his 144 

data were removed from the analysis. Data presented in Table 1, therefore, summarises the result for 145 

the rest of participants (n = 20). The intensity of the supramaximal CWR tests had a significant effect 146 

on TTE, accumulated oxygen demand and accumulated oxygen uptake (all P < 0.001; Table 1). Post-147 

hoc tests confirmed that, as expected, TTE, accumulated oxygen demand and accumulated oxygen 148 

uptake decreased with each increase in oxygen demand (all P < 0.001; Table 1). There was no training 149 

effect on AOD, as no differences were observed between the AOD during consecutive supramaximal 150 

trials (P = 0.563). The AOD, however, was affected by the intensity of the supramaximal exercise (P = 151 

0.011). Post-hoc tests revealed that AOD112.5 was significantly greater than AOD105 (P = 0.033) and 152 

AOD127.5 (P = 0.022). There were no differences (P ≥ 0.05) between AOD105, AOD120 and AOD127.5. The 153 

maximal AOD (MAOD) corresponded to 4.46 ± 0.96 L (or 56.1 ± 11.1 mL∙kg-1). Ten percent of the 154 

participants achieved their MAOD at 105% V̇O2max, 48% at 112.5% V̇O2max, 28% at 120% V̇O2max and 155 

14% at 127.5% V̇O2max. The determination of the AOD for a representative subject at each 156 

supramaximal intensity is presented in Figure 1.  157 

*** Table 1 near here *** 158 

*** Figure 1 near here *** 159 

Test-retest reliability 160 

One participant did not perform the retest trial at 112,5% V̇O2max, due to training commitments, and 161 

retest data from another subject could not be used due to technical problems during data collection. 162 

Therefore, results presented in Table 2 correspond to test-retest bouts to exhaustion of the remaining 163 

participants (n = 19). The test-retest ICC and CV of the AOD were 0.869 [0.691, 0.947] and 8.72% 164 

[6.52, 13.16], respectively.  165 

***Table 2 near here***  166 
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Discussion 167 

 168 

The main aim of this study was to determine whether AOD, as a means of quantifying AnC, remains 169 

constant during exercise to exhaustion at supramaximal intensities that ranged from 105 to 127.5% 170 

V̇O2max. The secondary aim of the study was to determine the test-retest reliability of AOD. The main 171 

original finding of the study is that, contrary to the hypothesis, cycling AOD determined from exhaustive 172 

CWR supramaximal exercise is affected by the intensity of exercise. Specifically, the AOD at 173 

supramaximal intensities followed an inverted U-shape with highest values attained at 112.5% and 174 

120% V̇O2max. Moreover, at 112.5% V̇O2max, the AOD has acceptable test-retest reliability. These results 175 

suggest that, for endurance-trained athletes, such as those in the current study, AnC should be 176 

determined from a supramaximal CWR to exhaustion at 112.5-120% V̇O2max. In addition, athletes and 177 

coaches need to consider the test-retest reliability of the AOD when using the AOD as a means of 178 

quantifying AnC.  179 

Part of the variation observed in AOD can be explained by the range of times to exhaustion. Medbø et 180 

al.6,10 reported increases in the AOD concurrent with increases in TTE during CWR to exhaustion 181 

shorter than 2 min, likely because shorter bouts did not allow a full depletion of AnC. Since the CWR 182 

test at 127.5% V̇O2max lasted ~1.5 min, it is possible that AnC was not fully depleted at the time of 183 

exhaustion. The finding of a lowered AOD105 compared to AOD112 was, however, somewhat 184 

unexpected. There are various plausible reasons to explain the reduced AOD observed at the lowest 185 

supramaximal intensity. First, exhaustion in the AOD105 trial occurred in ~4.44 min. Early studies 186 

reported a constant AOD during square-wave-exercise bouts lasting up to 15 min6,19, although neither 187 

of these studies6,19 reported the actual intensity as a percentage of V̇O2max. Besides, the chosen 188 

exercise modality was running in the study of Medbo et al.6 instead of cycling in the current study and 189 

only three subjects participated in the study of Karlsson and Saltin19. Secondly, it has been suggested 190 

that the MAOD is reached during an exercise protocol that best simulates the athlete’s actual 191 

competitive event.3,20 Using time-trials to determine AOD, however, might be affected by  pacing 192 

strategies.21 Moreover, the AOD cannot be determined during long events because they are performed 193 

at submaximal intensities just above the critical power,8 despite an increased contribution from 194 

anaerobic energy sources. Thirdly, we assumed a linear relationship between V̇O2 and power output, 195 

which implies that efficiency is not affected by intensity. However, there is evidence that gross efficiency 196 

decreases as the intensity of exercise increases.22 Assuming a constant efficiency has been shown 197 

decrease the AOD during time-trials of increasing duration.23 Nevertheless, the relationship between 198 

V̇O2 and power output in the present study was very strong for all participants. Whilst unfortunately the 199 

data presented herein cannot explain the lowered AOD observed at 105% V̇O2max, the present study 200 

suggests that supramaximal intensities of 110 to 120% V̇O2max should be used in order to estimate AnC 201 

by means of the AOD method.  202 

The second aim of the present study was to determine the test-retest reliability of AOD at 112.5% 203 

V̇O2max. Weber and Schneider11 reported high correlation coefficients (≥ 0.95) and low CVs (≤ 7%) for 204 
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AOD determined at both 110% and 120% V̇O2max. Doherty et al.13 concluded that the AOD determined 205 

from three running tests to exhaustion at 125% V̇O2max was unreliable; despite an ICC and CV of 0.91 206 

and 6.8% respectively, because of large 95% limits of agreement. The limits of agreement, in turn, have 207 

been disregarded by some authors because they are too stringent.12,18 It is important to note that the 208 

variability in the measurement of AOD reported in the present and previous studies11,13 is still greater 209 

than the ~5% test-retest variability typically observed in other physiological parameters such as VO2max 210 

or lactate threshold.24 211 

The large variability in AOD compared with other physiological measures can be explained by the 212 

protocol employed in the current study to quantify AOD. Open-loop tests have more variation than 213 

closed-loop tests (i.e. tests where the duration, distance or work to be completed is known), even at 214 

high exercise intensities, which have a lower TTE. 25. The variability in 1.5 km and 5 km running time 215 

trials (2.0% and 3.3%, respectively), for instance, is smaller than that of tests at constant speed to 216 

exhaustion of similar durations (15.1% and 13.2%, respectively).26 The latter values approximate the 217 

test-retest variability in TTE reported in the present study, despite different modes of exercise (cycling 218 

vs. running). Moreover, in cycling, there is a 6–10% variability during exercise at intensities at or close 219 

to V̇O2max.24,27 Interestingly, the curvature constant of the power-duration relationship, which can be 220 

considered as a means at estimating anaerobic work capacity,28 also presents high test-retest 221 

variability.29,30 It is therefore plausible that the large test-retest variability of the measurement in the 222 

AOD represents the large variability of AnC itself.  223 

 Practical Applications 224 

Athletes wishing to determine their AnC by means of the AOD method typically use a single 225 

supramaximal exercise bout to exhaustion at constant intensity. The present study demonstrates that 226 

the intensity of the supramaximal exercise does affect AOD. It is suggested, therefore, that the 227 

determination of AnC using the AOD method is performed from a CWR to exhaustion at 112.5-120% 228 

V̇O2max, where it peaks for 77% of the participants. Moreover, athletes and coaches using the AOD to 229 

evaluate AnC should consider that the test-retest reliability is 8.72%.  230 

Conclusion 231 

This study demonstrates that the AOD determined from cycling CWR to exhaustion is affected by the 232 

intensity of the exercise (and, consequently, TTE). The AOD followed an inverted U-shape, with 77% 233 

of subjects reaching its peak (i.e. MAOD) at either 112.5% or 120% V̇O2max. The AOD can be used to 234 

estimate AnC during a CWR test to exhaustion at 112.5-120% V̇O2max. At supramaximal intensities, the 235 

test has a test-retest reliability of 8.72%.  236 
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Tables and figures legends 307 

 308 

Table 1. Characteristics and physiological responses for cycling bouts to exhaustion at A:  105; B: 309 

112.5; C: 120; and C: 127.5% of V̇O2max (n = 20). 310 

Table 2. Characteristics and physiological responses to two identical cycling trials to exhaustion at 311 

112.5% V̇O2max (n = 19).  312 

 313 

Figure 1. Outline of the experimental approach.  314 

Figure 2. Determination of the AOD in a representative subject during cycling exercise to exhaustion 315 

at 105 (Panel A), 112.5 (Panel B), 120 (Panel C) and 127.5% V̇O2max (Panel D).  Dotted lines represent 316 

oxygen demand and open circles V̇O2.  317 

  318 
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Tables  319 

 320 

Table 1 321 

 322 

 105%   112.5%   120%   127.5%  

Power output (W)# 341 ± 48  370 ± 52  399 ± 56  428 ± 59 

TTE (s)#  267 ± 78  173 ± 48  123 ± 31  91 ± 20 

Acc O2 demand (L)# 21.28 ± 6.69  14.81 ± 4.37  11.15 ± 2.95  8.83 ± 2.10 

Acc O2 uptake (L)# 17.40 ± 6.02  10.55 ± 3.62  7.03  ± 2.21  4.88 ± 1.33 

End-exercise V̇̇O2 (L∙min-1)¥ 4.50 ± 0.53  4.30 ± 0.63  4.20 ± 0.56  4.12 ± 0.55 

AOD (mL∙kg-1)$ 48.52 ± 12.83  53.65 ± 11.86  51.90 ± 11.14  49.74 ± 10.82 

Anaerobic contribution (%)# 19.1 ± 5.0  29.9 ± 6.0  37.8 ± 5.0  45.1 ± 4.6 

Peak BLa (mmol∙L-1)$ 11.67 ± 2.58  10.92 ± 2.48  10.24 ± 2.38  9.56 ± 2.58 

Peak HR (beats∙min-1)  169 ± 13  168 ± 11  166 ± 12  162 ± 11 

TTE: time to exhaustion; Acc O2 demand/uptake: accumulated oxygen demand/uptake; EE: end-exercise; 
AOD: accumulated oxygen deficit.  
#: Denotes significant differences between all trials.  
¥: Trial at 105% V̇O2max was greater than all others.  
$: Trial at 105% V̇O2max significantly different than at 120 and 127.5; and 112.5% was different than the 127.5% 
trial. 
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Table 2.  324 

 Trial 1  Trial 2  
Trial 1 – Trial 2 

[95% CL] 
 ICC [95% CL]  CV [95% CL] 

TTE (s) 168 ± 44  160 ± 49  -7 [-22, 7]  0.792 [0.537, 0.914]  14.31 [10.63, 21.87] 

Acc V̇O2 (L) 10.11 ± 3.37  9.56 ± 3.47  -0.55 [-1.93, 0.45]  0.735 [0.433, 0.889]  18.79 [13.90, 29.00] 

End-exercise V̇O2 (L∙min-1) 4.27 ± 0.66  4.27 ± 0.55  0.00 [-0.11, 0.11]  0.927 [0.822, 0.971]  3.78 [2.84, 5.64] 

AOD (L) 4.19 ± 0.99  4.09 ± 0.98  -0.10 [-0.56, 0.38]  0.869 [0.691, 0.947]  8.72 [6.52, 13.16] 

AOD (mL∙kg-1) 52.3 ± 11.7  51.1 ± 11.8  -1.2 [-6.5, 4.8]  0.866 [0.685, 0.946]  8.72 [6.52, 13.16] 

Anaerobic contribution (%) 30.3 ± 6.1  31.0 ± 5.1  0.7 [-1.3, 5.1]  0.669 [0.320, 0.858]  10.68 [7.97, 16.19] 

Peak BLa (mmol∙L-1) 10.88 ± 2.60  10.41 ± 2.75  -0.37 [-1.16, 0.42]  0.818 [0.587, 0.926]  14.16 [10.45, 21.97] 

Peak HR (beats∙min-1) 167 ± 11  165 ± 11  -2 [-5, 1]  0.896 [0.751, 0.959]  2.26 [1.66, 3.51] 

ICC: intraclass correlation coefficient; CV: coefficient of variation. 95% CL: 95% confidence limits.  
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Figures 326 

Figure 1 327 
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Figure 2 331 
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