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Concurrent validity and test-retest reliability of an elite tracking system to assess 

swimming performance variables  

Abstract 

The TritonWear® technology is designed to aid swimming and coaching practice through the 

measurement and data feedback of eight key performance skills; split time, stroke count, speed, 

stroke rate, distance per stroke, turn time, time underwater and stroke index. There is yet to be 

any literature published that into the reliability and validity of this technology, limiting the 

extent to which its use can be justified. The present study set out to determine the inter-trial 

reliability of both the TritonWear® device and video analyses, and the concurrent validity of 

the TritonWear® device through comparison to video analysis across two trials. The a-priori 

goal of this study was to specifically comment on the usefulness of this wearable technology 

to coaches who are seeking to increase split times (swimming velocity) as well as coach athletes 

to improve upon highly complex skills such as turn-times. Twenty swimmers (age 16.29 ± 2.77 

years) and their parent or guardian consented to the completion of two 100 metre swims (4 x 

25m) at race-pace for either freestyle or breaststroke on different days whilst wearing the 

TritonWear® device. After 48 hours, swimmers repeated the trial at race pace, both trials were 

videoed above and below water. The coefficient of variation (CV) and 95 % limits of agreement 

methods were used to assess reliability on both the TritonWear® device and video footage data. 

For freestyle; results were reported as reliable for all but one variable (TritonWear® - time 

underwater, CV = 26.68 %) with all results consistently below 8% (CV = 1.84 % to 7.03 %). 

For breaststroke; results were reported as reliable for all but three variables; TritonWear®; time 

underwater CV = 26.68 %; stroke index = 19.09 %; distance per stroke = 17.03 %, and video; 

stroke index = 14.02 %. All other results were consistently below 9 % (CV = 1.10% to 8.97 %). 

The most reliable limits of agreement (LOA) variables were turn time (0.01 seconds ± 0.13 

seconds) for freestyle and speed for breaststroke (0.03 ± 0.22). In relation to the analytical 
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goals set, the present study shows that the TritonWear® device is reliable for the measurement 

of split time, turn time and speed for high level junior swimmers. 

 

Keywords: TritonWear®, video analyses, split time, turn time, comparison of methods 
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Introduction:  

Swimming at the elite level is competitive, where marginal advantages in training prescription 

can transfer into improvements in competition times, increasing an athlete’s chance of success 

(James, Davey, & Rice, 2004). Coaches and athletes often search for performance-enhancing 

opportunities to support their training programme; one emerging strategy is to use quantifiable 

data analyses through tracking devices to measure both skill and technical development. Such 

analyses are usually conducted using either video or sensor-based data collection (Beanland, 

Main, Aisbett, Gastin, & Netto, 2014). Video analyses are generally considered to be the ‘gold 

standard’ method of analysing swimming performance (Ceseracciu, Sawacha, Fantozzi, 

Cortesi, Gatta, Corazza & Cobelli, 2011) and are currently the most-used method for obtaining 

quantitative information for swimmers (Smith, Norris, & Hogg, 2002). Cameras positioned 

both above and below the water are used to assess a variety of swimming metrics, such as 

velocity profiling (Komar, Leprêtre, Alberty, Vantorre, Fernandes, Hellard et al., 2012), and 

joint angular kinematics (Sanders, 2007).  

 

Video analysis of swimming performance is complex and has limitations; for example, 

researchers have noted parallax error and water turbulence, which can alter or obscure the video 

images (Payton, 2008). In addition, the digitisation and data analysis process can be arduous 

and time-consuming; possibly resulting in high magnitudes of error occurring during data 

collection and analyses; Gourgoulis, Aggeloussis, Kasimatis, Vezos, Boli, & Mavromatis, 

(2008) reported underwater recording root mean square errors up to reporting up to 1.28 %.  

Such errors could result in poorly informed coaching conclusions (Phillips, Farrow, Ball, & 

Helmer, 2013), and can directly limit the application of video analyses in training and 

competition (Magalhaes, Vannozzi, Gatta, & Fantozzi, 2015). When it is correctly interpreted, 

data collected through video footage can provide the coach with both qualitative and 
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quantitative feedback, which can be effectively used to aid both training and competition 

(Smith, Norris, & Hogg 2002). One study found that approximately three quarters of coaches 

in the United States of America are currently using video analysis monthly, with most coaches 

showing a significant over representation of qualitative analyses and a lack of representation 

of quantitative analyses, as shown through a chi-square goodness-of-fit test (X2 = 35.93) 

(Mooney, Corley, Godfrey, Osborough, Newell, Quinlan, & ÓLaighin, 2016). The apparent 

reliance on qualitative measures has been suggested by these researchers to be due to the low 

cost and easily implementable nature, especially regarding biomechanical analysis. However, 

it has been argued by Knudson (2007) that for meaningful analyses to occur, the coach must 

have an outstanding level of expertise regarding biomechanical knowledge and understanding. 

This information suggests that there is a clear requirement for an alternative performance 

analysis option that is reliable, valid, and can be implemented easily into the training regime 

of high level swimmers.  

 

Technological advances are providing coaches and athletes with alternative options through 

the development of wearable and water-proof microelectromechanical systems (MEMS) 

(Callaway, Cobb, & Jones, 2009). Several researchers have developed and used MEMS 

technologies to analyse key performance objectives within their studies (Dadashi, Crettenand, 

Millet, Seifert, Komar, & Aminian, 2013; Davey, Anderson, & James, 2008; Ohgi, Ichikawa, 

Homma, & Miyaji 2003); however, Magalhaes et al. (2015) noticed a gap in the literature as 

many of the algorithms used are different, which is due to a wide variety of sensors and sensor 

attachments. The TritonWear® technology claims to accurately measure a range of metrics for 

both speed and stroke efficiency, using a head mounted device. Use of a head-worn sensor has 

advantages, firstly; overall motion of the swimmer’s body can be recorded, secondly; 

Lecoutere, and Puers, (2014) noted that swimmers experience fewer proprioceptive changes 
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compared to when the sensors are located on other body parts such as the wrist. In their study, 

a miniaturised triaxial accelerometer and gyroscope was devised to automatically calculate and 

record stroke type, stroke rate and distance per stroke during a 200 medley. The research was 

deemed successful by the researchers who claimed to have collected raw accelerometer and 

gyroscope data. However, there was no mention as to whether this data was either reliable or 

valid. If the data is to be extrapolated into commercial use, such information is crucial to obtain. 

In addition, there is no clarification as to how many subjects were tested in the research, which 

leads to questioning around how this data might have differed, had there been a larger sample 

size of people with varied swimming styles and biomechanical properties. Mooney et al (2016) 

state that there is a need to further investigation into the use of a head-worn tracking device for 

swimming performance, and advise that thorough analyses should be carried out.  

 

The TritonWear® device is a technologically advanced, head-mounted swimming sensor that 

is currently on the market. Its reliability has not yet been tested, somewhat limiting the 

justification for swimming teams to use the technology to assess the discussed performance 

parameters. As there is yet to be any published data on the validity of the TritonWear® device, 

the justification for its use to reliably enhance performance is limited. To determine changes 

in performance using this device, its reliability must first be established. TritonWear® claim 

to accurately and reliably measure the swimming performance of metrics; split time, stroke 

count, speed, stroke rate, distance per stroke, turn time, time underwater and stroke index 

(Lehary, 2015). 

 

Split time and speed are two of the most crucial variables that will be assessed. When coaches 

test for performance improvements, it will often be the velocity that the athlete has swum over 

a set distance on two or more trials that will be the key performance indicator (Corley, Mooney, 
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Quinlan, & Laighin, 2015). Stroke count is measured using the movement of the swimmer’s 

head as they progress through the water. Turn-time is the preferred method of directional 

change, a tumble-turn is used in freestyle swimming, and an open-turn in breaststroke 

(Maglischo, 2003). Technical mastery of a tumble turn is complex, with several variables that 

need to be accounted for (Lee, Leadbetter, Ohgi, Thiel, Burkett & James, 2011), including two 

rotations of the body; one in the transverse axis and one in the longitudinal axis (Maglischo, 

2003). Stroke rate is one of the most commonly assessed variables in the literature (Mooney, 

Corley, Godfrey, Osborough, Newell, Quinlan, & ÓLaighin, 2016), the device will recognise 

a unique signal profile by the motion of the swimmer’s head. For instance, freestyle stroke rate 

will be determined by the rolling motion of the head which is required for breathing, 

and breaststroke is recognised due to the unique upwards and downwards motion of the 

swimmer’s head,  

 

The devices that are used most frequently attach to the swimmer’s wrist or back, both of which 

use a similar method to calculate the sum of acceleration peaks for each lap (Chakravorti, Le 

Sage, Slawson, Conway, & West, 2013). Beanland, Main, Aisbett, Gastin, & Netto (2014) 

studied velocity and stroke count with twenty-one sub-elite swimmers using a head-mounted 

global positioning system (GPS) device and an integrated tri-axial accelerometer against video 

analysis. They reported high accuracy for stroke count readings in butterfly (R = 1.00) and 

breaststroke (R = 0.99) but not for freestyle. Freestyle stroke count was not measured, as initial 

assessments of the accelerometer signals showed no clear recognisable pattern for this stroke, 

which is likely due to the head mounted sensor, as other studies could identify freestyle stroke 

count when devices have been attached to the wrist (Siirtola, Laurinen, Röning, & Kinnunen, 

2011) and lower back (Ichikawa, Ohgi, Miyaji, & Nomura, (2006). As one of the most crucial 

performance indicators, reliable measurement of swimming velocity is of critical importance 
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in performance testing (Dadashi, Crettenand, Millet, & Aminian, 2012; Stamm, James, & Thiel, 

2013; Dadashi, Millet, & Aminian, 2015; Beanland, Main, Aisbett, Gastin, & Netto, 2014; 

Bächlin, & Tröster, 2012).  

 

The variables discussed are key performance markers in a sport where minute improvement 

can be the difference between success and failure. If a reliable and valid tracking device can 

instantly provide the coach with useable information, there is a clear opportunity to coach and 

improve swimming performance using accurate and reliable quantitative information. To 

provide coaches with such feedback, Atkinson and Nevill (1998) suggest that the 

meaningfulness of repeated tests can be quantified using ‘analytical goals’. Analytical goals 

require the researcher to decide if the 95 % limits of agreement are acceptable enough for the 

outcomes of a test to be of practical use.  

 

Split times are key performance indicators analysed by coaches to measure improvement in 

athletes, usually following a period of training (Garland Fritzdorf, Hibbs & Kleshnev, 2009). 

One important analytical goal in relation to this, is to take into consideration how much 

improvement each athlete from the sample population is likely to make during a training period 

of 12 months. A period of 12 months was chosen, as the most competitive event of the season 

for these athletes occurs at the same time each year, following which a new periodised 

programme will begin. The analytical goal therefore, was that the average 95 % limits of 

agreement and coefficient of variation are less than that of the average yearly improvement of 

split time, for the stroke and distance that each swimmer performed in testing. If the percentage 

of improvement is lower for yearly improvement than data from reliability and validity testing 

shows, a coach cannot conceivably conclude that the athlete has indeed improved, as it is 
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possible that any improvement shown in the data is simply down to the variation between 

devices (error) or day to day variation of the athletes (biological error).  

 

Turn time has been identified in the literature as a key indicator of race performance (King & 

Yeadon, 2004). Chow, Hay, Wilson, and Imel (1984) reported strong relationships (R = 0.59 – 

0.73) between split times and turning efficiency. Turn time is a crucial skill to improve for both 

longer (Chakravorti, Slawson, Cossor, Conway, & West, 2012) and shorter swimming events 

(Lee, Leadbetter, Ohgi, Thiel, Burkett, & James, 2011), with Thayer and Hay (1984) estimating 

that time taken to turn is approximately equal to one-third of the time taken to complete the 

swimming set. Turning technique is a highly complex skill (Lyttle, Blanksby, Elliott, & Lloyd, 

1998), with great variations of technique between individuals (Chu, Luk, & Hong, 1999). It is 

therefore crucial that for swimmers using technology to make improvements to performance; 

that a device claiming to provide reliable feedback is tested and validated.  The evidence 

strongly suggests that turn performance is a crucial consideration for coaching swimmers 

(Mason & Cossor, 2001), therefore an analytical goal was set to determine how reliable the 

‘turn time’ information is and to what extent coaches of young swimmers might be able to use 

this information to the advantage of the population of swimmers that has been tested.  

 

The present study principally aimed to accurately and extensively evaluate the reliability and 

concurrent validity of the TritonWear device for the eight variables that have been discussed. 

Additionally, through the analyses of reliability data of the device, as well as video footage; 

this study aimed to add some clarification to the notion that video analysis is itself a reliable 

method of quantitatively processing data that is useful to young swimmers. With the use of 

analytical goals, this study aims to specifically comment on the usefulness of this wearable 

technology to coaches who are seeking to increase split times (swimming velocity) as well as 

coach athletes to improve upon highly complex skills such as turn-times. Finally, this study 
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aims to explore the extent to which experience and ability of the individual using the device 

changes the reliability and validity of its use. In doing so, this study aimed to provide coaches 

who use the TritonWear device with some information that is relevant and useable in relation 

to the population of athletes that has been tested.  
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Methods 

Design and procedure 

This present study was a quantitative, test-retest reliability and concurrent validity study 

assessing the TritonWear® device against the following dependant variables; speed, split time, 

turn time, time underwater, stroke count, stroke rate, distance per stroke, and stroke index.  

 

Participants completed two 100m swims (4 x 25 m) at race pace for either freestyle or breast 

stroke on different days whilst wearing the TritonWear® device. After a period of 48 hours, 

swimmers returned to the pool to swim the same stroke, in the same order, over the same 

distance, at race pace. Athletes were required to attend both testing sessions, each test lasted 

no longer than 20 min including warm up. The warm up consisted of a 15 min swimming 

specific routine, which included; raising of heart rate and body temperature through light 

swimming of the given stroke for 5 min, upper and lower body activation and mobilisation 

exercises as well as potentiation swims progressively building to ‘race pace’ over 6 lengths. 

Participants then exited the pool to have the TritonWear® device fitted directly inferior to the 

inion, on the occipital bone, as advised by the TritonWear® manual guidelines (Lehary 2015). 

Swimming data was collected on the TritonWear® device through the TritonWear® online 

platform. The two sets of data were then compared and a test re-test reliability analysis took 

place. The data was also compared to video analysis using the SwimPro® system below water 

and ‘Coaches Eye’ above water to measure the concurrent validity of the test. Currently, video 

analysis is the gold-standard measure to accurately assess the discussed variables (Ceseracciu, 

Sawacha, Fantozzi, Cortesi, Gatta, Corazza, et al 2011). In line with FINA recommendations, 

water temperature was controlled to be equal for both trials (25 °C). Weather temperature was 

within one degree from trial 1 (34 °C) to trial 2 (35 °C) with a humidity of 64 % in trial 1 and 

62% in trial 2, as measured by the schools ‘in house’ temperature system.  
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Participants 

Twenty male and female swimmers (age 16 ± 2.77 years) and their parent/guardian gave 

consent to participate in the present study. Participants were excluded if they or their 

parent/guardian did not wish to provide full consent. Trials were spaced 48 hours apart, with 

athletes asked not to exercise on testing days and to follow their usual dietary habits. Ethical 

approval was granted by the St Mary’s university ethics sub-committee. 

 

TritonWear and Video Systems  

The components of the waterproof sensor unit include; a 9-axis inertial measurement unit; 

including a 3-Axis digital accelerometer, a 3-axis digital gyroscope, and a 3-axis digital 

magnetometer, a micro-controller, a wireless module to transmit calculated metrics to the hub, 

a clock to synchronise timing and a lithium ion polymer battery with an internal battery 

charging unit. The tracker contains three axes which read the oscillation data from both the 

accelerometer and the gyroscope. Oscillation data will differ depending on which stroke is 

being performed, due to the Euler Angles (pitch, yaw and roll). During the freestyle stroke, the 

rolling motion of the swimmer’s head will be picked up in the ‘roll readings’ on the tracking 

device. Breaststroke produces wave-like oscillations that are read by the device in the ‘pitch’ 

measurements; whenever the unit’s pitch reading surpasses a certain limit, a stroke will be 

counted.  

 

Regarding the metrics analysed; time underwater is the time taken for the swimmer to break 

out of the water following their push off the wall. The tracking device receives signals to show 

when the time underwater measurement ends and occurs after the breakout of the water, before 

the first stroke is taken. The measurement is calculated by multiplying the individual’s average 

velocity over the length with the time of the breakout event. Distance per stroke (DPS) is 
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calculated using data from two other metrics; stroke count and distance underwater. An average 

distance per stroke per length of the pool is measured by subtracting the distance underwater 

by the length of the pool - in this instance twenty-five metres - and then dividing that number 

by the total number of strokes for that length (Length of pool – distance underwater) / number 

of strokes. Stroke rate is measured by calculating the distance underwater and the number of 

strokes per length. Time underwater is subtracted from the total time taken to complete that 

length, which calculates the total amount of time that the swimmer spent stroking in that length. 

This stroke rate is then found by dividing the time stroking by the number of strokes in that 

length, this number is then converted to a format representing strokes per minute. Speed is 

determined by dividing the length of the pool by the time taken to swim it, in relation to 

swimming velocity (speed), ‘stroke index’ is the metric used to highlight the swimmers stroke 

efficiency. The calculation is distance per stroke x speed x cycle multiplier. For freestyle, the 

cycle multiplier is two strokes for one cycle, for breaststroke, one stroke is equal to one cycle. 

Simply, the higher the stroke index, the more efficient the technique. Theoretically, less energy 

should be required when a swimmer travels faster with fewer strokes.  

 

Two ‘wall clam’ and two ‘claw cam’ SwimPro® cameras were used with supporting software 

for video analyses. Each camera has 1080p @ 1 MP/s, with a shutter speed of up to 1/10000 

seconds. The camera hardware consists of 120 gb SSD with ‘SuperSpeed’ download capacity 

(60 mb/s) and a HDMI mini display port TV and computer monitor output. The trials were 

videoed above and below water using four SwimPro® cameras, each capturing 30 progressive 

video frames per second. Above water video will be recorded using an iPad and CoachesEye® 

analyses software, also at 30 frames per second. For thorough technical examination, it’s 

imperative that both above and below cameras are used to fully observe the swimmer’s 

movements, minimising light refraction and the effect of bubbles and splashes obscuring the 
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view are key factors to take into consideration (Gourgoulis, Aggeloussis, Kasimatis, Vezos, 

Boli, & Mavromatis, 2008). Regarding camera quality, Payton (2008) recommends that using 

a frame rate of 25-50 Hz and a shutter speed between 1/350-1/750 seconds for maximum image 

quality.  The video footage was manually reviewed by one assessor, the four cameras were 

synchronised with each other using the SwimPro platform, for concurrent validity; the recorded 

data sets on the TritonWear platform were compared directly to those of the video analyses.  

 

Statistical Analyses  

Concurrent validity and reliability was assessed using a 95 % limits of agreement (Bland and 

Altman, 1986) and coefficient of variation (Atkinson & Nevill, 1998). Paired sampled t-tests 

were used to calculate biases between the TritonWear® device and Video footage (validity) 

and to compare data of the two trials (reliability). Statistical significance was set at P < 0.05 

for all dependant variables. The Shapiro-Wilk test measured the normality of differences 

between tests and the Pearson product-moment correlation was used to measure the strength of 

a linear association between variables. Data has been reported using averages (means) as well 

as standard deviations, and was analysed using SPSS (SPSS v.22; Inc., Chicago, IL).  
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Results 

The CV method was used to assess reliability on both the TritonWear® device and video 

footage data (Table 1). For freestyle; results were reported as reliable for all but one variable 

(TritonWear - time underwater, CV = 26.68 %) with all results consistently below 8% (CV 

1.84 % to 7.03 %). For breaststroke; results were reported as reliable for all but three variables; 

TritonWear; time underwater = 30.90 %; stroke index = 19.09 %; distance per stroke = 17.03 %, 

and video; stroke index = 14.02 %. All other results were consistently below 9 % (CV = 1.10 % 

to 8.97 %).  

 

Using the paired-sample t-test (Table II) to calculate bias. TritonWear® Measurements of 

stroke count, stroke rate, distance per stroke, turn time, time underwater and stroke index 

demonstrated no significant differences (P > 0.05) for freestyle trials one and two. 

Measurements of split time (P = 0.01) and speed (P = 0.03) demonstrated systematic bias, with 

the second trial being slower across participants from trial 1 to trial 2. The same was apparent 

with the video data, with split time (P = 0.01) and speed (P = 0.01) showing systematic bias, 

in addition stroke index (P = 0.00) also demonstrated bias, all other measurements 

demonstrated no significant differences.  

 

TritonWear® Measurements of split time, stroke count, speed, distance per stroke, turn time, 

time underwater and stroke index demonstrated no significant differences (P > 0.05) for 

breaststroke trials one and two. Measurements of stroke rate (P = 0.02) demonstrated 

systematic bias. Video data showed that all measurements demonstrated no significant 

differences (P > 0.05) except for stroke index (P = 0.03), which showed systematic bias. 

Using the 95 % LOA method, mean differences between trials for both freestyle and 

breaststroke are shown in Table 1 for both the TritonWear® device and the video analysis. 
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Mean differences between trials ranged from 0.00 to 0.55 for Triton freestyle, 0.03 to 0.7 for 

Triton breaststroke, 0.01 to 0.13 for video freestyle and 0.013 for video breaststroke. 

Measurements of greatest reliability were Speed for Triton freestyle (95% LOA = 0.00 ± 0.07, 

CV 1.84 %), split time for triton breaststroke (95 % LOA 0.16 ± 1.20), CV 1.98 %, speed for 

video freestyle (95 % LOA = 0.05 ± 0.08, CV 2.03 %) and split time for video breaststroke 

(95 % LOA = -0.07 ± 0.66, CV 1.10 %).  

 

Based on data from competitive swim meets, average improvement for the freestyle group over 

one calendar year was 3.1% or 2.09 seconds. Based on 95 % limits of agreement validity data, 

there was an average 0.66 second underestimation (0.49 + 0.83 / 2) reported for split times. 

Reliability data of the TritonWear® device showed an error of -0.55 with a 95 % LOA of 0.94, 

translating to a 0.39 second underestimation of split time. The mean difference in split times 

between trial 1 and trial 2 was 0.55 seconds. Average improvement for the breaststroke group 

over 12 months was 3.97 % or 3.32 seconds. Based on 95 % limits of agreement validity data, 

there was an average 0.58 second underestimation (0.62 + 0.53 / 2) reported for split times. 

Reliability data of the TritonWear® device showed an error of -0.16 with a 95 % LOA of 1.20, 

translating to a 1.04 second underestimation of split times.  

 

Based on 95 % limits of agreement freestyle validity data, there was an average 0.27 s 

underestimation (0.32 + 0.22 / 2) reported for turn times. Reliability data of the TritonWear 

device showed an error of 0.006 with a 95 % LOA of 0.13, translating to a 0.14 s 

underestimation of turn time. CV for TritonWear® freestyle turn times was 4.2 %, which was 

reported as reliable. Breaststroke validity data showed that there was an average 0.59 s 

underestimation (0.72 + 0.45 / 2) reported for turn times. Reliability data of the TritonWear® 

device showed an error of 0.13 with a 95 % LOA of 0.37, translating to a 0.5 s underestimation 
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of turn time. CV for TritonWear® breaststroke turn times was 8.97 %, which was reported as 

reliable.  

 

Split time reliability data from the TritonWear® device found that the fastest five swimmers 

(CV = 1.5, LOA = 0.67) were more consistent than the slowest five (CV = 1.92, LOA = 1.02) 

similarly, for breaststroke; the fastest five swimmers (CV = 0.96, LOA = 0.54) were less 

erroneous than the slowest five (CV = 1.66, LOA = 1.09). Validity data confirms this trend, 

freestyle fastest swimmers (CV = 0.49, LOA = 0.22), and slowest (CV = 1.28, LOA = 0.69), 

and breaststroke fastest (CV = 0.54, LOA = 0.32) and slowest (CV = 0.72, LOA = 0.47) 

swimmers. 

 

The Pearson moment correlation (Table III) was used to measure the strength of a linear 

association between variables. For freestyle, trial 1; there were significant values with strong 

relationships highlighted for split time (R = 0.99, P = 0.00), stroke rate (R = 0.91, P = 0.00), 

stroke count (R = 0.86, P = 0.00), and stroke index (R = 0.72, P = 0.00). All other variables are 

reported as not significant with weak relationships. For freestyle trial 2, there were significant 

values with strong relationships highlighted for split time (R = 0.99, P = 0.00), time underwater 

(R = 0.95, P = 0.00), stroke count (R = 0.86, P = 0.00). Speed was reported as significant (P = 

0.02) with a weaker relationship (R = 0.50) than in trial 1 (R = 0.66). All other variables are 

reported as not significant with weak relationships. 

 

For breaststroke trial 1, there were significant values with strong relationships highlighted for 

split time (R = 0.98, P = 0.00), stroke count (R = 0.87, P = 0.00) and speed (R = 0.90, P = 0.00). 

All other variables are reported as not significant with weak relationships. For breaststroke trial 

2, there were significant values with strong relationships highlighted for split time (R = 0.99, 
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P = 0.00), speed (R = 0.83, P = 0.00), stroke count (R = 0.79, P = 0.001), and stroke rate (R = 

0.67, P = 0.004). All other variables are reported as not significant with weak relationships.  

 

Paired-sample t-test calculations for comparison of the TritonWear® device against video 

analysis (validity) demonstrated no significant differences (P > 0.05) for freestyle in either trial, 

except for stroke index in trial 1 (T (9) = - 4.98, P = 0.00) and 2 (T (9) = - 3.74, P = 0.01), and 

time underwater (T (9) = 2.65, P = 0.027) for trial 2 only. Breaststroke validity data showed 

systematic bias for distance per stroke (T (9) = - 4.14, P = 0.003), turn time (T (9) = 2.31, P = 

0.047) and stroke index (T (9) = - 3.74, P = 0.005) in trial 1, and distance per stroke (T (9) = - 

4.94, P = 0.001), stroke rate (T (9) = 3.23, P = 0.01) and stroke index (T (9) = - 5.06, P = 0.00) 

in trial 2. Using the CV method, according to the arbitrary value of CV < 10 % (Stokes 1985), 

these same results were reported as reliable for key variables ‘split time’ and ‘speed’, during 

the validity analysis (CV = 0.95 % - 6.82 %).  

 

Concurrent validity and reliability were assessed using a 95 % limits of agreement (Table IV) 

(Bland and Altman, 1986), coefficient of variation (Atkinson and Nevill, 1998). Data showed 

the best overall LOA correlations for freestyle were speed in trial 1 (0.21 %) and turn time 

(0.27 %) trial 2, and for breaststroke; speed in trial 1 (0.08 %) and speed in trial 2 (0.17 %). 

Coefficient of variation (Atkinson and Nevill, 1998) data was best correlated for freestyle for 

split time in trials 1 (1.06 %) and 2 (1.88 %), and breaststroke split time in trial 1 (0.95 %) and 

2 (0.66 %). 
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Table I.  Reliability of TritonWear data against video analysis data (n = 20). 
 

Reliability Data Trial 1 (mean ± s) Trial 2 (mean ± s) 95% LOA CV (%) 

Triton freestyle:     

Split time (s) 17.45 ± 2.34 17.99 ± 2.41 -0.55 ± 0.94 1.91 

Stroke count (n) 19.3 ± 1.77 19.3 ± 1.70 0.00 ± 1.85 3.46 

Speed (m/s) 1.41 ± 0.19 1.38 ± 0.17 0.031 ± 0.07 1.84 

Stroke rate (n/min) 1.49 ± 0.22 1.53 ± 0.17 -0.05 ± 0.14 3.45 

Distance per stroke (m)   1.13 ± 0.29 1.10 ± 0.31 0.026 ± 0.13 4.36 

Turn time (s) 1.12 ± 0.13 1.12 ± 1.12 0.006 ± 0.13 4.20 

Time underwater (s)      2.72 ± 0.60 2.56 ± 0.67 0.16 ± 2.09 28.69 

Stroke index 2.99 ± 0.55 2.87 ± 0.44 0.12 ± 0.57 7.03 

Triton Breaststroke:     

Split time (s) 21.92 ± 2.22 22.08 ± 2.44 0.16 ± 1.20 1.98 

Stroke count (n) 10.70 ± 2.06 10 ± 1.56 0.7 ± 2.45 8.58 

Speed (m/s) 1.14 ± 0.14 1.11 ± 0.18 0.03 ± 0.22 7.16 

Stroke rate (n/min) 1.56 ± 0.11 1.67 ± 0.14 0.12 ± 0.25 5.58 

Distance per stroke (m)   1.51 ± 0.19 1.61 ± 0.30 0.10 ± 0.73 17.04 

Turn time (s) 1.56 ± 0.11 1.43 ± 0.17 0.13 ± 0.37 8.97 

Time underwater (s) 4.89 ± 2.06 4.14 ± 0.97 0.75 ± 3.85 30.90 

Stroke index 1.74 ± 0.30 1.85 ± 0.49 -0.10 ± 0.95 19.10 

Video Freestyle:     

Split time (s) 17.47 ± 2.44 18.10 ± 2.79 -0.63 ± 1.21 2.47 

Stroke count (n) 19.30 ± 1.77 19.40 ± 2.17 -0.1 ± 1.45 2.70 

Speed (m/s) 1.45 ± 0.17 1.41 ± 0.18 0.05 ± 0.08 2.03 

Stroke rate (n/min) 0.78 ± 0.11 0.81 ± 0.11 -0.03 ± 0.08 3.50 

Distance per stroke (m)  1.19 ± 0.10 1.18 ± 0.12 0.01 ± 0.08 2.51 

Turn time (s) 1.13 ± 0.18 1.16 ± 0.14 -0.04 ± 0.17 5.27 

Time underwater (s)     2.54 ± 0.28 2.51 ± 0.45 0.02 ± 0.49 6.99 

Stroke index 3.48 ± 0.59 3.35 ± 0.62 0.13 ± 0.21 2.26 

Video Breaststroke:     

Split time (s) 21.88 ± 2.23 21.95 ± 2.33 -0.07 ± 0.66 1.10 

Stroke count (n) 10.80 ± 1.93 10.90 ± 1.73 -0.1 ± 1.72 5.72 

Speed (m/s) 1.15 ± 0.11 1.15 ± 0.12 0.03 ± 0.04 1.11 

Stroke rate (n/min) 0.61 ± 0.04 0.62 ± 0.05 -0.01 ± 0.06 3.46 

Distance per stroke (m) 1.95 ± 0.27 1.92 ± 0.24 0.03 ± 0.22 4.11 

Turn time (s) 1.36 ± 0.13 1.38 ± 0.12 -0.02 ± 0.10 2.68 

Time underwater (s) 4.53 ± 0.89 4.68 ± 0.71 -0.15 ± 0.75 5.87 

Stroke index 2.27 ± 0.51 2.68 ± 0.44 -0.41 ± 0.96 14.02 

Note: LOA = 95% limits of agreement; CV = coefficient of variation. Significantly different (P < 0.05). 
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Table II. Paired sampled t-tests were used to calculate biases between the ‘TritonWear’ device and Video 
footage 

 Trial 1 
Sig. (2-tailed) 

Trial 2 
Sig. (2-tailed) 

Trial 1 
Sig. (2-tailed) 

Trial 2 
Sig. (2-tailed) 

 Freestyle Breaststroke 

Split time (s) 0.806 0.499 0.669 0.078 

Stroke count (n) 1 0.726 0.678 0.726 

Speed (m/s) 0.276 0.601 0.387 0.202 

Stroke rate (n/min) 0.407 0.027 0.527 0.12 
Distance per stroke 
(m) 0.414 0.333 0.003 0.001 

Turn time (s) 0.192 0.325 0.058 0.01 

Time underwater (s) 0.955 0.795 0.047 0.481 

Stroke index 0.001 0.005 0.005 0.001 

Table III. Pearson product-moment correlation was used to measure the strength of a linear association between 
variables 

 Split 
Time Stroke Count Speed 

Time 
Under
water 

Distance 
Per Stroke Stroke Rate Turn 

Time 
Stroke 
Index 

Validity Trial 1 Freestyle 
Pearson 
Correlation 0.995 0.929 0.812 -0.044 0.623 -0.953 0.48 0.85 

Sig. (2-tailed) 0.00 0.00 0.004 0.905 0.054 0.00 0.16 0.002 
R 0.99 0.86 0.66 0.002 0.39 0.91 0.23 0.72 

Validity Trial 2 Freestyle 
Pearson 
Correlation 0.994 0.926 0.708 -0.973 0.674 0.435 0.524 0.757 

Sig. (2-tailed) 0.00 0.00 0.022 0.00 0.033 0.208 0.12 0.011 

R 0.99 0.86 0.50 0.95 0.45 0.19 0.27 0.57 

Validity Trial 1 Breaststroke 
Pearson 
Correlation 0.991 0.934 0.949 0.577 -0.021 0.8 -

0.018 0.481 

Sig. (2-tailed) 0.00 0.00 0.00 0.081 0.954 0.005 0.961 0.159 
R 0.98 0.87 0.90 0.33 0.0004 0.64 0.00 0.23 

Validity Trial 2 Breaststroke 
Pearson 
Correlation 0.997 0.891 0.911 0.324 0.755 0.818 0.032 0.377 

Sig. (2-tailed) 0.000 0.001 0.000 0.361 0.012 0.004 0.929 0.283 
R 0.99 0.79 0.83 0.10 0.57 0.67 0.001 0.14 
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Table IV.  Validity of TritonWear data against video analysis data (n = 20). 

Validity Data 
TritonWear 
(mean ± s) 

Video 
(mean ± s) 

95% LOA CV (%) 

Split time (s)     

Stroke count (n) 17.45 ± 2.34 17.47 ± 2.44 -0.021 ± 0.51 1.06 

Speed (m/s) 19.3 ± 1.77 19.3 ± 1.77 0.00 ± 1.31 2.44 

Stroke rate (n/min) 1.41 ± 0.19 1.45 ± 0.17 -0.041 ± 0.21 5.53 

Distance per stroke (m)   1.49 ± 0.22 1.55 ± 0.21 -0.065 ± 0.13 3.01 

Turn time (s) 1.13 ± 0.29 1.19 ± 0.10 -0.065 ± 0.47 14.64 

Time underwater (s)      1.12 ± 0.13 1.13 ± 1.18 -0.003 ± 0.32 10.40 

Stroke index 2.72 ± 0.60 2.54 ± 0.28 0.185 ± 1.32 18.15 

Split time (s) 2.99 ± 0.55 3.48 ± 0.59 -0.49 ± 0.61 6.85 

Breaststroke Trial 1     

Split time (s) 21.92 ± 2.22 21.88 ± 2.23 0.041 ± 0.57 0.95 

Stroke count (n) 10.70 ± 2.06 10.8 ± 1.93 -0.1 ± 1.45 4.86 

Speed (m/s) 1.14 ± 0.14 1.15 ± 0.11 -0.01 ± 0.08 2.79 

Stroke rate (n/min) 1.56 ± 0.11 1.62 ± 0.14 -0.06 ± 0.17 3.77 

Distance per stroke (m)   1.51 ± 0.19 1.95 ± 0.27 -0.44 ± 0.66 13.74 

Turn time (s) 1.56 ± 0.23 1.36 ± 0.13 0.19 ± 0.52 12.91 

Time underwater (s)      4.89 ± 2.06 4.53 ± 0.89 0.36 ± 3.35 25.76 

Stroke index 1.74 ± 0.30 1.74 ± 0.29 0.005 ± 0.97 20.10 

Freestyle Trial 2     

Split time (s) 18.00 ± 2.44 18.10 ± 2.79 -0.11 ± 0.94 1.88 

Stroke count (n) 19.3 ± 1.77 19.4 ± 2.17 -0.1 ± 1.72 3.21 

Speed (m/s) 1.38 ± 0.17 1.41 ± 0.18 -0.02 ± 0.26 6.82 

Stroke rate (n/min) 1.53 ± 0.17 1.26 ± 0.16 0.27 ± 0.63 16.38 

Distance per stroke (m) 1.10 ± 0.10 1.18 ± 0.12 -0.08 ± 0.49 15.51 

Turn time (s) 1.12 ± 0.11 1.16 ± 0.14 -0.05 ± 0.27 8.51 
Time underwater 

(s) 2.56 ± 0.67 2.51 ± 0.45 0.05 ± 1.14 16.20 

Stroke index 2.87 ± 0.44 3.35 ± 0.62 -0.48 ± 0.80 9.33 

Breaststroke Trial 2     

Split time (s) 22.08 ± 2.44 21.95 ± 2.33 0.13 ± 0.40 0.66 

Stroke count (n) 10.80 ± 1.93 10.90 ± 1.73 -0.1 ± 1.72 5.72 

Speed (m/s) 1.11 ± 0.18 1.15 ± 0.12 -0.04 ± 0.17 5.47 

Stroke rate (n/min) 1.67 ± 0.17 1.59 ± 0.13 0.08 ± 0.16 3.58 

Distance per stroke (m)   1.61 ± 0.30 1.92 ± 0.24 -0.31 ± 0.39 7.94 

Turn time (s) 1.43 ± 0.17 1.38 ± 0.12 0.05 ± 0.40 10.42 

Time underwater (s) 4.14 ± 0.97 4.68 ± 0.71 -0.54 ± 1.96 16.09 

Stroke index 1.85 ± 0.49 2.68 ± 0.44 -0.84 ± 1.02 16.37 
     

Note: LOA = 95% limits of agreement; CV = coefficient of variation. Significantly different (P < 0.05). 
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Discussion  

The present study aimed to evaluate the reliability of the TritonWear® device for the variables 

that have been discussed. Based on the extrapolation of measurement error, and in accordance 

with the analytical goals set for this population of young athletes; the present study showed 

that the TritonWear® device is reliable for the measurement of split time, turn time and speed 

for high level junior swimmers. Additionally, data showed that variations in performance tend 

to decrease as swimming ability improves. The data suggests that for the key performance 

indicator of split time; so long as freestyle and breaststroke athletes using the device improve 

upon their initial trial by > 0.39 and > 1.05 seconds respectively, coaches can be confident that 

improvement has indeed been made. The data presented also suggests that for coaches seeking 

to improve turn times, it would be beneficial to test athletes over a period long enough to 

improve by 0.14 seconds and 0.5 seconds for freestyle and breaststroke respectively.  

 

An analytical goal was set for split time to estimate the implications of the results on the sample 

population. Data shows that the average yearly improvement for the freestyle group was 3.1% 

or 2.09 s over 12 months, it’s noted that this improvement is greater than the highest 

measurement error from reliability (0.39 s) and validity data (0.83 s). For breaststroke, the 

average yearly improvement (3.97 % or 3.32 s) was also greater than the highest measurement 

error from reliability (1.05 s) and validity (0.62 s) data. Therefore, to ensure that performance 

improvements were not due to measurement error of the instrument, based on the data 

presented; a freestyle athlete would need to improve by at least 0.39 s, and a breaststroke athlete 

by at least 1.05 s when using the TritonWear® device, and 0.58 s and 0.6 s respectively when 

using video analysis. It’s worth considering that these improvements occurred over a period of 

12 months. For coaches utilising this technology with youth athletes, based on the data 
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provided; it is advised that sufficient time between testing sessions is allotted to allow for 

sufficient physiological improvement, including enhanced skill acquisition.    

  

Additionally, through the analyses of reliability data of the device, as well as video footage; 

this study aimed to add some clarification to the notion that video analysis is itself a reliable 

method of quantitatively processing data that is useful to young swimmers. Realistically, 

physiological performance testing will not always occur over this time-frame. An interesting 

observation from the data is that freestyle ‘split time’ video analysis was 0.56 % (2.47 % – 

1.91 %) more erroneous than the TritonWear® device over two trials, for freestyle ‘speed’ the 

video data was 0.19 % more erroneous (2.03 % - 1.84 %) than the TritonWear® device. The 

average agreement between the TritonWear® device and video (CV = 1.47 %) was 1 % higher 

than the agreement between the two video analyses (2.47 %), which can be seen by comparing 

validity and reliability data. Therefore, in relation to the analytical goals set out earlier, to 

feasibly assume that the athlete has made significant improvements in split times and speed for 

freestyle over 100 metres, that athlete would need to improve > 2.47 % and > 1.84 % 

respectively if the data is being analysed by video, and > 1.91 % and > 2.03 % respectively if 

the data is being analysed with the TritonWear® device. This difference can be entirely 

explained by the video analyses procedure, rather than by the athlete themselves, as the error 

grows in the video analysis despite testing identical trials, reasons for this finding could be a 

result of an accumulation of marginal errors in during the video analyses. The accuracy of the 

data collection marginally decreases as the velocity of swimming increases, possibly due to the 

minute differences in body segment positioning during key phases of the swim. Increased 

swimming velocity has also been linked to camera footage obscuration due to disruption such 

as water turbulence and bubbles (Payton, 2008) which is more likely to occur as swimmers are 

moving faster. An interesting finding, when you consider that video analysis is currently 
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regarded as the gold standard in performance testing for swimming (Ceseracciu, Sawacha, 

Fantozzi, Cortesi, Gatta, Corazza & Cobelli, 2011). It’s possible that the highly complex nature 

of technical video analyses, in addition to the technique variability of athletes between trials 

can result in unreliable interpretation of the video footage. Research suggests that there are 

several potential explanations to explain why video analyses might present such discrepancies. 

Kwoon and Casebolt (2010) suggest that image disturbance due to refraction is a common 

obstacle when performing underwater video analysis; specifically; calibration of the camera in 

the water, inadequate lighting underwater and bubbles created by the swimmer appear to be 

the key issues. In addition, the cameras used videoed at 30 progressive video frames per second, 

which suggests that to decrease the amount of associated error; the assessor might need to use 

camera equipment above 30 frames per second. In contrast, breaststroke data reported opposing 

trends; the TritonWear® device was 0.88 % more erroneous for split time recording (1.98 % - 

1.10 %) than the video analysis, and for speed; breaststroke data was a substantial 6.05 % more 

erroneous (7.16 % - 1.11 %) than the video data. This suggests that when split times are slower; 

video analyses become more reliable. The average split time for freestyle across both trials and 

devices was 4.21 seconds faster than for breaststroke, and speeds 0.27 metres per second slower 

for breaststroke.  

 

Regarding turn time, the data presented show that, similarly to split time and speed data, the 

TritonWear® device is more reliable than video analyses for freestyle, but less reliable for 

breaststroke. For freestyle ‘turn time’; video analysis CV was 1.07 % (5.27 – 4.20) more 

erroneous than the TritonWear® device over the two trials, for breaststroke; CV data showed 

that video data was 6.29 % (CV = 8.97 % – 2.68 %) less erroneous than the TritonWear® 

device. These findings offer a possible explanation for the previously discussed error increases 

associated with video analysis for freestyle split time and speed; it is likely that the difficulties 
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of analysing video footage for freestyle turns due to swimming velocity can alter the overall 

accuracy of the data collected for both split times and speed. Based on data from 95 % limits 

of agreement analysis; for an athlete using the TritonWear® device for freestyle, they must 

improve > 0.14 seconds between trials for a meaningful improvement to be calculated, any 

improvements below this number could be due to error of the instrument rather than 

improvement of the athlete.  The mean difference between trial 1 and trial 2 of average turn 

times for freestyle was 0.006 seconds using the TritonWear® device, a number which exceeds 

that of the underestimation of the device. For breaststroke, an athlete must improve > 0.5 

seconds between trials for a meaningful improvement to be calculated, the mean difference 

between trial 1 and trial 2 for average turn times with breaststroke was 0.13 seconds using the 

TritonWear® device. This data suggests that the TritonWear® device is more accurate at 

calculating freestyle turn times than it is for breaststroke when compared to video analysis. 

However, the associated underestimations from both video analysis and the TritonWear® 

device were greater than that of the average difference of athletes between two trials. A 

suggestion could be made that for coaches seeking to improve turn time, a longer period of 

time should be planned between testing sessions to allow the athlete to make sufficient turn-

time improvements; > 0.14 seconds for freestyle and > 0.5 seconds for breaststroke when using 

the TritonWear® device.  

 

The key variables analysed show strong correlations between the device and the video footage, 

potentially due to the data comparisons being made concurrently within one swim. Inter-trial 

reliability testing highlighted an increase biological error, likely due to the high possibility that 

subjects will differ in two trials on different days. Breaststroke split time reliability data varied 

1.18 %, when average validity (CV = 0.80 %) is subtracted from reliability (1.98 %), freestyle 

reliability data showed similar correlations, where reliability data differed 0.44% (1.91 % - 
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1.47 %). The recorded error for breaststroke increased nearly 1.5 times by allowing the athlete 

to swim on separate occasions, suggesting that inter-trial testing allows subjects to have an 

influence over the result of their performance that is effecting the error recorded by the devices. 

Interestingly, each breaststroke variable (except turn time), reported a CV higher in the 

TritonWear® reliability data than the average of both validity trials (1.79% average difference), 

further adding to the likelihood that by completing trials on different days is likely to result in 

some degree of variance in performance, the data presented suggests that this variance is most 

likely due to individual biological differences. The systematic bias highlighted using a paired 

samples t-test shows that for both the TritonWear® data, and video data; that the freestyle 

group were on average slower in the second trial than in the first. One assumption to explain 

the abnormal data distribution is that the second trial took place at the end of a training week. 

It is possible that, despite trying to minimise the likelihood of athletes becoming fatigued 

between trials; that this group of ten swimmers were slower due to the accumulation of training 

over the course of the previous 4 days.  

 

The coefficient of variation in performance between trials is a key statistic to measure for a 

coach who is interested in implementing methods that might positively affect performance. 

Hopkins, Hawley, & Burke (1999) claim that to improve an athlete’s chances of winning a 

medal, strategies need to be adopted that will improve an athlete’s performance by an amount 

that is equivalent or higher than 0.5 of the coefficient of variation. Stewart and Hopkins (2000) 

noted that the variation between competitive trials for 311 national-level junior athletes was 

approximately 1 %, meaning that improvements in trial times for each of these athletes would 

need to equal just 0.5 %. The lowest TritonWear CV data for split times was 1.91 for freestyle, 

a coach using this data would look to key skills such as turn time to determine where this athlete 

might be able to make improvements equal or above 0.95 %. As previously mentioned, turn 
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time, including time underwater, could make up approximately 20 % of the total race Thayer 

and Hay (1984). It would therefore be advisable, based on the literature, for the coach to seek 

an improvement in turn time by 5 % to raise overall time by 0.95 %. As previously discussed, 

to account for error of the TritonWear® device for freestyle turn time, an athlete would need 

to improve by 0.14 seconds + 5 % of their previous turn time (mean 1.12 seconds). Using data 

in the current study, the coach could seek to improve overall performance by 0.95 % by 

improving turn time by 0.196 seconds (5 % of 1.12 + 0.14 seconds) and time underwater by 

2.77 seconds (average time underwater + 5 %) over the course of the entire race. However, for 

time underwater; consideration needs to be given to the possibility that there is a 2.25 second 

potential error associated with that metric as shown through the 95% LOA method. This 

process is one example of the advantages that immediate and reliable feedback can provide 

coaches working with junior swimmers.  

 

One of the aims of the present study was to determine how ability level of the athlete changes 

usefulness of the device. Stewart and Hopkins (2000), studied between-competition variation 

in performance for 149 males and 162 female junior athletes, swimming at a national level. 

They reported that faster swimmers (CV = 1.1%, 95 % CL = 0.8 - 1.5%) showed greater 

consistency in performances between competitions than slower swimmers (CV = 1.55 %, 95 % 

CL = 1.2-2.2 %). The data presented in this study is comparable; findings suggest that on 

average, as swimming ability improves, individual variation between trials decreases. More 

able swimmers can select a pace that is closer to their optimum, and are more competent in the 

highly technical skills such as turn time and time underwater. When using this device, it is 

important that the coach considers the likelihood that the data provided for the less able 

swimmers will have higher inaccuracies. It is highly likely that athletes who are still learning 



 30 

will demonstrate higher levels of technique variability in their performances, especially when 

margins for error are so small.  
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Conclusion 

Based on the evidence provided, it is suggested that the TritonWear® device can be used to 

reliably measure the swimming performance variables of split time, speed and turn time in 

training and competition of high level junior swimmers. Coaches who opt to use video footage 

to analyse swimming performance should be cautious when attempting to measure complex 

skills at high velocities such as freestyle turns. In addition, future analysis of youth swimming 

performance should take measures to minimise systematic bias by limiting the effects of 

training fatigue on participants. Based on the current findings, the present study shows that the 

TritonWear® device is reliable for the measurement of split time, turn time and speed for high 

level junior swimmers. Finally, based on the framework presented by Batterham and Atkinson 

(2005), future research using the data provided should use a sample size of > 20 participants 

should be used to make meaningful inferences for the variables split time, speed and turn time. 
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