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ABSTRACT (246 words) 48 

Exercise-induced cardiac remodeling (EICR) and the attendant myocardial adaptations 49 

characteristic of the athlete’s heart may regress during periods of exercise reduction or 50 

abstinence. The time course and mechanisms underlying this reverse remodeling, 51 

specifically the impact of concomitant plasma volume (PV) contraction on cardiac 52 

chamber size, remain incompletely understood. We therefore studied recreational runners 53 

(n=21, aged 34 ± 7 years; 48% male) who completed an 18-week training program (~7 54 

h w
-1

) culminating in the 2016 Boston Marathon after which total exercise exposure was 55 

confined to <2 h.w
-1

 (no single session >1 hour) for 8 weeks. Cardiac structure and 56 

function, exercise capacity, and PV were assessed at peak fitness (10-14 days before) and 57 

at 4- and 8-weeks post marathon. Mixed linear modeling adjusting for age, sex, V̇O2peak 58 

and marathon finish time was used to compare data across time points.  Physiologic 59 

detraining was evidenced by serial reductions in treadmill performance. Two distinct 60 

phases of myocardial remodeling and hematologic adaptation were observed. After 4 61 

weeks of detraining, there were significant reductions in PV (Δ -6.0%, P<0.01), left 62 

ventricular (LV) wall thickness (Δ -8.1%, <0.05), LV mass (Δ -10.3%, P<0.001), and 63 

right atrial area (Δ -8.2%, P<0.001). After 8 weeks of detraining, there was a significant 64 

reduction in right ventricle chamber size (end-diastolic area Δ = -8.0%, P <0.05) without 65 

further concomitant reductions in PV or LV wall thickness. Abrupt reductions in exercise 66 

training stimulus result in a structure-specific time course of reverse cardiac remodeling 67 

that occurs largely independently of PV contraction.  68 

Key Words: sports cardiology, left ventricle, cardiac morphology, echocardiography, 69 
hemoglobin mass   70 

 71 
NEW AND NOTEWORTHY (max 75 words) 72 

Significant reverse cardiac remodelling, previously documented among competitive 73 

athletes, extends to recreational runners and occurs with a distinct time course.  Initial 74 

reductions in plasma volume and LV mass, driven by reductions in wall thickness, are 75 

followed by contraction of the right ventricle. Consistent with data from competitive 76 

athletes, LV chamber volumes appear less responsive to detraining and may be a more 77 

permanent adaptation to sport. 78 

  79 
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Glossary 80 

 81 

EICR  Exercise induced cardiac remodeling 82 

LV  Left ventricle or left ventricular 83 

RV  Right ventricle or right ventricular 84 

V̇O2  Oxygen uptake 85 

V̇O2peak Peak oxygen uptake 86 

tHb-mass Total hemoglobin mass 87 

CO  Carbon monoxide 88 

[Hb]  Hemoglobin concentration 89 

COHb  Carboxyhemoglobin 90 

%COHb Percent carboxyhemoglobin 91 

PV  Plasma volume 92 

BV  Blood volume 93 

 94 

 95 

 96 

 97 

98 
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INTRODUCTION  99 

 Routine vigorous endurance exercise stimulates numerous changes in 100 

cardiovascular structure and function and concomitant increases in blood volume (BV).  101 

Specifically, the process of exercise induced cardiac remodeling (EICR) is characterized 102 

by mild to moderate biventricular eccentric hypertrophy, preserved or enhanced diastolic 103 

function, bi-atrial dilation, and BV expansion. EICR has been thoroughly characterized 104 

among elite athletes (2, 11, 18, 19, 21, 33) and has recently been documented among 105 

recreational exercisers who typically perform comparatively lower volumes and 106 

intensities of exercise training (1, 8, 13, 28, 35). Similarly, the hematologic response to 107 

endurance exercise training has been described in novice exercisers where a rapid 108 

increase in plasma volume (PV) precedes a slow increase in red blood cell volume (16).  109 

A recent meta-analysis concluded that increases in red blood cell volume of 4% can be 110 

expected over 15 weeks of endurance training in young and middle aged exercisers (16). 111 

 While several studies document reductions in left ventricular (LV) wall thickness 112 

and chamber size following periods of exercise abstinence among elite competitive 113 

athletes (15, 20, 34), and during periods of bed rest in non-athletes (9), the reversibility of 114 

EICR among recreational athletes has not been described. In addition, no prior studies 115 

have described the change in blood volume that occur during exercise detraining in this 116 

population. Consequently, several key issues pertaining to EICR regression including the 117 

time course, the mechanistic role of blood volume contraction, and the response of 118 

cardiac chambers other than the left ventricle remain incompletely understood.  119 

 We therefore studied cardiac structure, function and blood volume components 120 

among recreational marathon runners who participated in an 8-week prescribed exercise 121 

detraining program following completion of a marathon race (42.2 km). We hypothesized 122 



 5 

that participants would demonstrate significant reverse cardiac remodeling characterized 123 

by reductions in chamber volumes and wall thickness and that this reverse remodeling 124 

would parallel and perhaps be mechanistically driven by reductions in blood volume. 125 

 126 

METHODS 127 

Study Design Overview 128 

 We used a prospective, longitudinal, and repeated measures study design to 129 

examine the cardiovascular response to prescribed detraining among healthy recreational 130 

marathon runners participating in the 2016 Boston Athletic Association’s Boston 131 

Marathon (42 km foot race). An initial sample of 24 runners (50% men) were recruited 132 

and consented to this study.  No participants had established cardiovascular disease at the 133 

time of enrollment and all were free of inducible myocardial ischemia and arrhythmia 134 

during baseline cardiopulmonary exercise testing. Five female participants were routinely 135 

taking oral contraceptive pills.  Otherwise, no participants started or stopped any 136 

prescription or over-the-counter medications during the study period. In preparation for 137 

the marathon, participants completed a standardized running training program that has 138 

previously been shown to be an adequate exercise dose to stimulate exercise-induced 139 

cardiac remodeling (35), and all participants completed the marathon without medical 140 

complications. Following the marathon, participants were instructed to restrict their 141 

exercise dose to < 2 hours/week of low intensity exercise, with no single exercise session 142 

> 1 hour in duration and no interval training of any kind.  143 

   Participants underwent study measurements at 3 time points:  peak fitness at 1-2 144 

weeks prior to the marathon, 4-weeks post-race, and 8-weeks post-race (Figure 1). 145 

Assessment at each study time point included measurement of height, weight, fasting 146 
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blood sampling, cardiac structure and function using transthoracic echocardiography, 147 

maximal exercise capacity using cardiopulmonary exercise testing, and hematologic 148 

parameters using carbon monoxide rebreathing as described in detail below. The study 149 

was approved by the Partners Healthcare System Human Research Committee, and 150 

written informed consent was obtained from each participant at the time of enrollment. 151 

 152 

Exercise exposure during the study period 153 

 Self-reported exercise participation data were gathered on a weekly basis during 154 

the study period using a written questionnaire. Running distance and duration, aerobic 155 

cross training, and any other deliberate exercise training sessions were collected. Exercise 156 

exposure was categorized into running (total mileage; figure 2, panel A) and durations 157 

of: 1.) Running, 2.) Cross-training (including outdoor cycling, stationary cycling, 158 

elliptical trainer, skiing, zumba, and team sports such as soccer), 3.) Yoga or pilates, and 159 

4.) Weight training.  160 

 161 

Echocardiography 162 

 Transthoracic echocardiographic data were acquired prior to exercise testing and 163 

were completed and analyzed by a single experienced cardiac sonographer (A.D). Images 164 

were acquired using commercially available ultrasound system (Vivid-Q, GE Medical 165 

Systems, Israel Ltd), with a 1.5-4 MHz phased array transducer, to acquire 2 dimensional 166 

grey scale and Doppler images. All cardiac images were electronically archived as raw 167 

data and reported values represent the average of 3 consecutive cardiac cycles to account 168 

for heart rate and measurement variability. LV volumes, ejection fraction and left atrial 169 

volumes were calculated using the modified biplane technique (14). LV mass was 170 
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calculated using the area-length method and LV geometry was assessed using relative 171 

wall thickness. Right ventricular (RV) end-diastolic area, end-systolic area, basal 172 

diastolic diameter, diastolic length and fractional area change were measured from RV 173 

optimized apical 4-chamber images. LV myocardial tissue velocities were measured in 4 174 

basal segments (septum, lateral, inferior and anterior) and RV velocities were measured 175 

in the RV free wall base using a modified apical 4-chamber view. LV longitudinal strain 176 

was analysed using speckle tracking software (Echopac, GE Medical, Horten, Norway, 177 

version 112.1.6) of two dimensional grey-scale images taken from the apical four, two 178 

and three chamber views. In order to time-align and adjust for inter-individual variability 179 

of heart rate, frame-by-frame data were exported to custom-made software that 180 

completed cubic spline interpolation to produce 600 data points for both the systolic and 181 

diastolic periods as previously described (29, 30). All measurements are presented as raw 182 

data and after body surface area indexing via the Mosteller formula (17) where 183 

appropriate. Values defining the limits of normal right and left ventricular structure were 184 

adopted from the American Society of Echocardiography/European Association of 185 

Echocardiography chamber quantification recommendations (14). Intra and inter-186 

observer variability data from our laboratory for the key echocardiographic variables 187 

reported in this study have been previously published (3).  188 

 189 

Cardiopulmonary exercise testing 190 

 Exercise tests were conducted on a treadmill (Pro XL, Woodway Inc. WI) using a 191 

graded maximal effort-limited protocol with continuous electrocardiography and breath-192 

by-breath measurement of metabolic gas exchange.  The test protocol consisted of a 2-193 

minute period of standing rest to facilitate ventilatory equilibrium after which treadmill 194 
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speed and gradient were increased to 5 miles.hr
-1

 (8.0 km.h
-1

) and 1% respectively for 10 195 

minutes to facilitate musculoskeletal warm up.  After the warm up phase, speed was 196 

maintained at 5 miles hr
-1 

and gradient increased by 0.5% every 15 s until volitional 197 

exhaustion.  Gas exchange was measured using a commercially available metabolic cart 198 

(Ultima CardiO2; Medgraphics, St.Paul, MN).  Oxygen consumption (V̇O2) data were 199 

smoothed using a 5 breath rolling mean with the highest and lowest values in each 7 200 

breaths removed and peak oxygen consumption (V̇O2peak) was defined as the highest 5 201 

breath mean value during exercise.   The ventilatory threshold was determined by the 202 

modified V-slope method (6).  Heart rate was continuously recorded during exercise 203 

using a wireless 12-lead electrocardiogram system (Mortara X12+ Transmitter; Mortara 204 

Instruments, WI). Primary outcome variables of exercise were time to exhaustion and 205 

V̇O2 peak. 206 

 207 

Carbon Monoxide Rebreathing 208 

 Total hemoglobin mass (tHb-mass) and BV were quantified using the optimized 209 

carbon monoxide (CO) rebreathing method described in detail by Schmidt and Prommer 210 

(26).  In brief, since CO binds avidly to hemoglobin (Hb), carboxyhemoglobin (COHb) 211 

concentration was measured in blood after 2 minutes of rebreathing a known CO volume 212 

(1.0 ml
.
kg

-1
 in males and 0.9 ml

.
kg

-1
 in females).  Each participant was seated for 15 213 

minutes to allow stabilization of plasma volume, after which a mouthpiece containing 214 

~10g ‘soda lime’ (calcium oxide/sodium hydroxide mixture as a carbon dioxide scrubber) 215 

connected them to a custom made spirometer (Spico-CO Respirations-Applikator, Blood 216 

Tec, Germany) and a 3 litre anesthetic bag pre-filled with 100% oxygen.  The participants 217 

were instructed to completely exhale to residual volume and then take a deep breath in 218 
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through the spirometer while the CO dose was administered into the rebreathing circuit 219 

via a pre-filled 100 ml syringe.  To support the diffusion of CO into the blood, 220 

participants were instructed to perform a 10 second breath hold after the first inspiration, 221 

after which they continued normal breathing from the spirometer for 1 min 50 s.  The 222 

participants were then disconnected from the CO rebreathing circuit after exhaling to 223 

residual volume. The exhaled volume was collected and analyzed to quantify the amount 224 

CO not bound to hemoglobin.  Finally, participants fully exhaled to residual volume into 225 

a CO gas analyzer (Dräger Pac 7000, Drägerwerk AG & Co. KGaA, Germany) before, 226 

and at 4 minutes after CO rebreathing to determine the CO volume exhaled after 227 

disconnecting the patient from the spirometer.  228 

 Fingertip capillary samples (200 μL) were collected before, and at 6- and 8-229 

minutes after the start of CO rebreathing (Na-heparinized 200 μL RAPIDLyte Multicap 230 

Capillary tubes, Siemens Healthcare Diagnostics Inc, Deerfield, USA). Each capillary 231 

blood sample was analyzed in duplicate within 10 minutes of acquisition for 232 

measurement of percent carboxyhemoglobin (%COHb) using a commercially available 233 

blood gas analyzer (ABL80 FLEX CO-OX, Radiometer A/S, Copenhagen, Denmark).  234 

 235 

Calculation of tHb-mass, Blood, Plasma and Erythrocyte Volume 236 

 tHb-mass was calculated using an excel spreadsheet (Microsoft Excel 2011 for 237 

Apple Macintosh) based on the formula: 238 

    tHb-mass = K x MCO(mL) x 100 x (Δ%COHb x 1.39)
-1

 239 

where:  240 

   K = barometric pressure x 760
-1 

x [1(0.003661 x temperature)] 241 

   MCO = COadm – (COsystem + lung (after disconnection) + COexhaled (after disconnection)) 242 



 10 

   COadm = CO volume administered into the system 243 

   COsystem + lung (after disconnection) = CO concentration in spirometer x (spirometer volume +  244 

          lung residual volume) 245 

  COexhaled (after disconnection) = end-tidal CO concentration x alveolar ventilation rate 246 

  Δ%COHb = difference between baseline %COHb and %COHb post CO  247 

         administration (average of 6- and 8-min %COHb values) 248 

  1.39 = Hüfners number (constant) (ml CO x g Hb
-1

) 249 

  Alveolar ventilation rate is assumed to be 5 L.min
-1

 250 

 251 

 Blood volume, plasma volume and erythrocyte volume were calculated from the 252 

hematocrit, hemoglobin concentration ([Hb]) and tHb-mass using the following formulae: 253 

BV (ml) = tHb-mass (g)/[Hb] (g
.
dL

-1
) x 100 254 

Erythrocyte volume (ml) = BV (ml) x hematocrit (%) 255 

Plasma volume (ml) = BV – erythrocyte volume 256 

 257 

 Hematocrit and hemoglobin concentration values were obtained from capillary 258 

blood and were corrected to venous conditions using the following formulae (7, 27): 259 

[Hb] (g
.
dL

-1
) = [Hbcapillary] x 0.8787 + 1.24 260 

Hematocrit (%) = [hematocritcapillary] x 0.8425 + 5.23 261 

 262 

 Reproducibility data using identical methodology for tHbmass (standard error = 263 

2.1%) and BV (standard error = 2.4%) were assessed in healthy individuals (n=15) in 264 

preparation for this study.  265 

 266 
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Statistical analysis 267 

 Normality of distribution for all variables was assessed using the Shapiro-Wilk 268 

test. Variables are reported as mean ± standard deviation and median and interquartile 269 

range as appropriate for data distribution. The significance of changes across time points 270 

was assessed using mixed linear modeling with age, V̇O2peak, and gender as fixed effects 271 

and subject identification as a random effect. Akaike’s information criterion tool was 272 

used to select optimal covariance structures for each model. Post hoc pairwise 273 

comparisons of variables between study visits were made using least squares means 274 

derived from the mixed-effects models performed with Bonferroni correction. Linear 275 

regression was used to identify relationships between changes in left and right ventricular 276 

chamber volumes, left and right atrial dimensions, and LV mass, with delta blood volume 277 

and delta plasma volume.  Data analyses were performed using the Statistical Package for 278 

the Social Sciences (SPSS) software version 23 (IBM Corp ©).  A P value of <0.05 was 279 

considered significant.  280 

  281 

RESULTS  282 

 Twenty-one participants (age = 34 ± 7 years, 48% men) completed the 2016 283 

Boston Marathon (4:28 ± 0:27 hours:mins) and then adhered to the 8-week detraining 284 

protocol (Table 1). Running volume decreased from 31.6 ± 9.6 miles.week
-1 

during the 285 

final marathon training phase to 3.4 ± 3.1 miles.week
-1

 during weeks 0 to 4 weeks and 4.8 286 

± 3.9 miles.week
-1 

during weeks 4-8 weeks post-marathon (P<0.001, Figure 2).  At 287 

baseline, LV and RV chamber sizes, as defined using BSA-indexed LV end diastolic 288 

volume and RV end diastolic area, exceeded the upper limits of the clinically 289 

recommended normal range (14), in 6/21 and 7/21 participants respectively.  No runners 290 
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exceeded clinical cut points for LV mass.  V̇O2peak was stable across study time points 291 

but physiologic detraining was evidenced by serial reductions in time to exhaustion 292 

during treadmill testing (baseline = 17.8 min. vs. 4-weeks = 17.3 min. vs. 8-weeks = 17.1 293 

mins, P<0.01).     294 

 295 

4-Weeks Detraining: “Early” Adaptations 296 

 Hematologic and cardiac structural and functional data across study time points 297 

are detailed in Table 2 and Table 3 respectively. After 4-weeks of detraining, BV and 298 

plasma volume were both significantly decreased compared to baseline while erythrocyte 299 

volume and total hemoglobin mass were unchanged. This was accompanied by 300 

significant reductions in LV wall thickness, LV mass, and right atrial size. In contrast, 301 

there were no significant changes in LV chamber dimensions or volume, left atrial 302 

volume, and LV indices of systolic and diastolic function. The majority of RV indices of 303 

size and function were similarly unchanged after 4 weeks of detraining. 304 

 No significant correlations were identified between delta PV and delta BV and 305 

delta LV mass or any chamber volume or area delta values at 4 weeks (R
2
 values from 306 

0.01-0.14; P values from 0.09 – 0.96).  307 

  308 

8-Weeks Detraining: “Late” Adaptations 309 

 At 8 weeks post-marathon, no further reductions in either blood or plasma volume 310 

were observed, and erythrocyte volume and total hemoglobin mass remained stable. 311 

Similarly, there were no further reductions in LV wall thickness and LV chamber 312 

dimensions remained unchanged. However, there was a significant reduction in RV size 313 

as demonstrated by multiple complementary indices including RV length, basal diameter, 314 
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end-diastolic area, and outflow tract diameter. Aside from the tricuspid annular plane 315 

systolic excursion, which was decreased but remained within normal limits, there were no 316 

statistically significant changes in LV or RV function in systole or diastole at 8 weeks 317 

compared to both previous study time points.  318 

No significant correlations were identified between delta PV and delta BV, and 319 

delta LV mass or any chamber volume or area delta values at the 8-week time point (R
2
 320 

values from 0.01-0.13; P values from 0.12-0.95).  321 

 322 

323 
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DISCUSSION  324 
 325 
 This longitudinal study, designed to examine the cardiovascular response to 326 

exercise detraining among recreational marathon runners, generated the following 327 

principal findings. Eight weeks of reduced training volume led to a decline in peak 328 

treadmill exercise time, significant reductions in BV, and reverse cardiac remodeling. 329 

Specifically, we observed a 3.6% decline in BV, which was driven by reductions in 330 

plasma volume with concomitant stability of erythrocyte volume and total hemoglobin 331 

mass. This relatively rapid hematologic response occurred early during the study period 332 

and was completed within 4 weeks. In contrast, differential cardiac remodeling occurred 333 

during the two phases of the study period. Specifically, we observed an early and highly 334 

significant reduction in LV mass, driven by reductions in wall thickness, followed by a 335 

subsequent decline in right ventricle size. Contrary to our a priori hypothesis, 336 

hematologic and myocardial changes were not all temporally coupled and associations 337 

between Δ PV and echocardiographic measurements were not significant, with the 338 

exception of a weak association between Δ PV and Δ EF%.  This suggests that reverse 339 

cardiac remodeling, specifically reductions in ventricular chamber dimensions, are not 340 

mechanistically driven by a simple reduction in BV.  In aggregate, these findings provide 341 

novel insights into how the cardiovascular system responds to a sudden and marked 342 

reduction in exercise exposure.  343 

 A large body of prior work has delineated the cardiovascular structural and 344 

functional plasticity in response to endurance exercise training (4, 11). Specifically, 345 

endurance exercise stimulates eccentric remodeling of the left ventricle, right ventricular 346 

dilation, biatrial dilation, and an expansion of BV. These adaptations have been 347 

demonstrated among numerous populations including recreational or novice exercisers 348 



 15 

(1, 13, 28, 35), highly trained and collegiate athletes (23, 33) young elite athletes (18), 349 

and aging masters athletes (10). Comparatively, few studies have examined the reverse 350 

cardiac remodeling associated with physical deconditioning. Important prior work 351 

documents cardiac atrophy during prolonged bed rest, with 60 days of head down tilt bed 352 

rest in healthy females (a similar duration to the present study) and a similar 6-week 353 

study of horizontal bed rest in males reporting highly significant reduction in LV 354 

chamber size (~20%) and LV mass (~8.0%) (9). Similarly, there are several studies 355 

examining elite athletes following termination of training and competition (5, 15, 20), 356 

with one report documenting a 7% decrease in LV cavity dimensions and a 15% decrease 357 

in LV wall thickness after long term (1-13 years) deconditioning (20). These prior data 358 

may represent the upper limits of the reverse remodeling but are not generalizable to the 359 

sizable and rapidly growing population of recreationally exercising people. In addition, 360 

we are unaware of any prior data defining the temporal sequence, right heart 361 

involvement, and role of vascular volume contraction on reverse cardiac remodeling 362 

during detraining.  Findings from this study address each of these key areas of uncertainty 363 

and thereby enhance our understanding of exercise-related cardiac plasticity in several 364 

ways. Our findings suggest that 4 weeks of detraining causes a reduction in left 365 

ventricular wall thickness and that 8 weeks of detraining are sufficient to observe 366 

reductions in right ventricular chamber size. It is noteworthy and perhaps surprising that 367 

we did not observe a reduction in left ventricular chamber dimensions. It is possible that 368 

our study duration was insufficient to capture left ventricular regression, the preceding 369 

training stimulus was not sufficient to cause a significant dilation prior to our detraining 370 

study period, or alternatively, that LV chamber dimensions may be less responsive to 371 

removal of exercise as has been previously suggested. (20). 372 
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 Blood volume, particularly the plasma component, expands acutely in response to 373 

endurance training (16, 24, 31) or during acclimatization to environmental stimuli (22). 374 

To date, few studies have examined changes in BV during exercise detraining and we are 375 

unaware of any work designed to examine the relationship between physiologic BV 376 

fluctuation and myocardial structure and function in this context. While biochemical 377 

mediators and cellular adaptations underlying exercise-induced cardiac remodeling have 378 

been well described (32), the potential role of BV as a physical determinant of cardiac 379 

structure and function in this setting has not been rigorously explored. Based on the 380 

Frank-Starling mechanism, we hypothesized that a significant percentage of the expected 381 

decline in cardiac chamber size would be caused by simple BV or PV contraction.  Our 382 

data refute this hypothesis and suggest that acute reductions in BV or PV during exercise 383 

cessation contribute minimally to reverse cardiac remodeling. While speculative, it is 384 

possible that acute contraction of BV during exercise detraining is coupled with a decline 385 

in peripheral venous capacitance, which facilitates maintenance of central BV. This 386 

speculation is supported by the fact we observed no statistically significant changes 387 

across numerous highly preload dependent indices of myocardial function including 388 

trans-mitral Doppler velocities. Further research designed to explore this potentially 389 

adaptive coupling of the peripheral vasculature with the myocardium represents an 390 

important area of future work. Finally, it is noteworthy that the erythrocyte compartment 391 

of the blood volume: tHbmass, was not significantly different across study timepoints. 392 

The stability of tHbmass parallels our peak V̇O2 data which also did not significantly 393 

decline with detraining as these parameters are well known to be tightly coupled (25).      394 

Given that red cells have a lifespan of approximately 110 days (12), beyond the length of 395 

our study, a longer detraining phase may be required to stimulate a reduction in tHbmass.  396 
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 Several limitations of the present study must be acknowledged.  First, although 397 

our sample size was adequately powered to detect clinically and statistically significant 398 

changes in cardiac morphology during exercise detraining, we lack sufficient numbers to 399 

investigate fully the impact of gender on our observations. While our mixed model 400 

analyses adjusted for gender we cannot exclude the notion that men and women may 401 

respond differently to prescribed detraining. Second, our study period was confined to 8 402 

weeks and included only 2 detraining study time points. Thus we are unable to comment 403 

with any more accuracy than “early” and “late” response regarding the temporal sequence 404 

of our observation. More frequent observations over a more extended time period may 405 

have yielded a more detailed characterization of the detraining response and should be 406 

considered in future similar studies.  Third, we employed a detraining protocol involving 407 

marked reductions in exercise exposure but not complete abstinence. This choice was a 408 

deliberate step to maximize subject recruitment and to make our results generalizable 409 

among individuals who do not stop exercising completely, however, this may have 410 

resulted in Type 2 error.  Fourth, as we previously described exercise-induced cardiac 411 

remodeling during marathon training in a similar cohort, we elected not to study our 412 

current participants during marathon preparation. We are therefore unable to comment on 413 

the completeness of the reverse remodeling we observe during detraining.  Finally, our 414 

cohort was comprised of recreational marathon runners rather than elite or sub-elite 415 

athletes and we are thus unable to comment on how our findings apply to these 416 

specialized populations.  417 

 In conclusion, a sudden and sustained decrease in exercise volume over 8 weeks 418 

results in the regression of exercise-induced cardiac remodeling and a reduced plasma 419 

volume in recreational marathon runners.  This regression follows distinct structure-420 
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specific ‘early’ and ‘late’ time courses characterized by early reductions in LV wall 421 

thickness and mass followed by later reductions in RV chamber size. Contrary to our a 422 

priori hypothesis, contraction of blood volume does not appear to represent a causal 423 

mechanism in the reverse cardiac remodeling during exercise detraining.    424 

 425 

 426 

  427 
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Figure 1. Study design schematic demonstrating periodized marathon training pre- and 545 

in-study exercise exposure and timing of the 3 study visits.   546 

 547 

Figure 2: Weekly training volume during each phase of the study period.  Panel A 548 

represents mean weekly running distance. Error bars represent one standard deviation. 549 

Panel B represents running, cross training (includes stationary bike and elliptical trainer), 550 

yoga and pilates, and weight training duration.  551 

 552 

Figure 3: Schematic diagram of the alterations in blood volume and cardiac morphology 553 

prior to the Marathon and following 4 and 8 weeks of prescribed detraining.  Percentage 554 

changes are detailed only where statistically significant. Downward arrow represents 555 

reduction. RA = right atrium; LA = left atrium; RV = right ventricle; LV = left ventricle; 556 

RVOT = right ventricular outflow tract; BV = blood volume; PV = plasma volume; EV = 557 

erythrocyte volume; LVPW = left ventricle posterior wall; RWT = relative wall 558 

thickness; RVAd = right ventricle area (diastole); RVPLAX = parasternal long axis view 559 

of the right ventricle. 560 

  561 
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Table 1:  Baseline participant characteristics  562 
 All  

(n=21) 

Male  

(n=10) 

Female  

(n=11) 
Age (years) 32.2 (26.4,38.5) 35.3 (28.7,44.1) 27.6 (26.3,36.9) 

Height (cms) 168 (161,174) 175 (172,178) 161 (160,167) 

Weight (kgs) 69.7 (57.7,73.3) 73.6 (72.3,79.6) 57.7 (57.1,62.6) 

BMI (kg.m
-2

) 23.1 (21.9,25.8) 24.6 (23.3,26.4) 22.2 (20.9,23.0) 

Marathon completion time (hh:mm) 4:21 (4:08,4:51) 4:17 (4:07,4:49) 4:22 (4:10,4:50) 

Baseline V̇O2peak (ml.kg-1
.min-1) 48.9 (42.2,54.0) 53.6 (46.4,57.1)  47.9 (40.4,49.8)  

Values are presented as median (interquartile range);  BMI = Body Mass Index;  563 

V̇O2peak = Peak oxygen uptake.  564 

565 
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Table 2:  Effects of marathon detraining on body mass, blood volume and exercise 566 

physiology; values presented as median (interquartile range): 567 

Characteristic Pre-marathon + 4 Weeks + 8 Weeks P 

Body mass (kg) mean ± sd 69.4 ± 12.2 69.5 ± 12.8 69.8 ± 12.9 0.294 

Blood volume 

Blood Vol., L 5.0(4.5,6.0) 4.7(4.4,5.9)† 4.8(4.3,6.1) 0.024 

Blood Vol., ml.kg-1 77.9(73.2,81.9) 76.3(69.4,80.2)† 76.3(70.1-79.2) 0.018 

Plasma Vol., L 3.2(3.0,3.6) 3.0(2.8,3.3)† 3.0(2.7-3.6) 0.004 

Plasma Vol., ml.kg-1 47.7(44.9,51.5) 46.1(41.7,48.0)† 45.9(42.8,50.1) 0.003 

Erythrocyte Vol., L 1.7(1.6,2.4) 1.8(1.6,2.5) 1.8(1.6,2.5) 0.745 

Erythrocyte Vol., ml.kg-1 28.5(27.4,31.3) 29.0(27.8,32.4) 28.9(27.3,31.9) 0.903 

tHbmass, ml 563(536,797) 582(531,831) 575(522,833) 0.901 

tHbmass, ml.kg-1 9.5(8.9,10.3) 9.5(9.0,10.7) 9.4(8.9,10.5) 0.977 

Cardiopulmonary Exercise Testing 

TLim, minutes:seconds 17:47(17:10,18:53) 17:23(16:19,18:48) 17:04(16:03,18:18) 0.007 

peak, L.min-1 3.0(2.8,4.2) 3.3(2.8,4.2) 3.3(2.8,4.2) 0.12 

peak, ml.kg-1
.min-1 48.9(42.2,48.9) 50.2(48.9,54.6) 49.5(47.1,54.4) 0.08 

peak, L.min-1 111(93.7,153) 109.5(82.2,145.6) 109.5(88.8,150.3) 0.36 

TVT, minutes:seconds 13:14(12:53,14:25) 13:52(12:57,14:37) 13:11(12:43,14:34) 0.42 

VT, L.min-1 2.45(2.34,3.31) 2.62(2.34,3.25) 2.64(2.38,3.27) 0.16 

P values represent a significant slope across all three measurements. † denotes a highly 568 

significant difference from pre-marathon (P<0.01); Vol. = volume; tHbmass = total 569 

hemoglobin mass; TLim  = Time to exhaustion; peak = maximal aerobic capacity; 570 

peak = maximal ventilation; TVT = time to reach ventilatory threshold; VT = 571 

oxygen uptake at the ventilatory threshold.  572 

 573 
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Table 3a:  Left heart structure and function; values presented as median (interquartile 574 

range): 575 

Characteristic Pre-marathon + 4 Weeks + 8 Weeks P 

Left Heart Structure 

LVIDd, cm 5.0(4.8,5.2) 5.0(4.8,5.2) 5.0(4.7,5.3) 0.777 

LV wall thickness, mm 8(7,8) 7(6,8)† 7(7,8)* 0.02 

LV length, cm  8.5(8.2,9.0) 8.8(8.1,9.0) 8.8(8.4,9.0) 0.26 

RWT, cm 0.30(0.26,0.33) 0.26(0.24,0.32)† 0.29(0.26,0.32)‡ 0.009 

LVEDV, mL  108(96,128) 117(95,121) 110(95,120) 0.843 

LVEDV / BSA, mL/m2 62.1(53.1,69.1) 61.5(55.5,71.7) 61.2(57.3,68.1) 0.859 

LV mass, g 134(109,148) 116(107,134)† 118(106,131)† 0.002 

LV mass / BSA, g/m2 71.8(65.2,80.8) 66.8(60.2,73.0)† 67.2(60.2,71.5)† <0.001 

LA Vol., mL  30(24,39) 29(25,39) 30(27,35) 0.981 

Left Ventricular Function 

Systolic Function     

      Ejection fraction, % 65.2(62.2,67.0) 65.2(63.8,68.8) 64.9(60.9,68.9) 0.182 

      Basal S’, cm.s-1 11(10,13) 11(10,12) 11(10,12) 0.876 

      Longitudinal Strain, % -21.6(-22.8,-20.3) -20.7(-23.4,-20.2) -20.3(-20.2,-18.3) 0.350 

Diastolic Function     

   LV Basal E’, cm.s-1 17(15,18) 16(15,17) 17(15,18) 0.623 

   LV Basal A’, cm.s-1 9(8,10) 9(8,11) 9(8,11) 0.13 

   Trans-mitral E-wave, cm.s-1 0.78(0.72,0.95) 0.80(0.71,0.88) 0.79(0.71,0.93) 0.44 

   Trans-mitral A-wave, cm.s-1 0.39(0.35,0.47) 0.42(0.31,0.49) 0.39(0.30-0.47) 0.854 

   E/A Ratio 1.9(1.6,2.3) 1.8(1.6,2.2) 2.0(1.7,2.6) 0.406 

P values represent a significant slope across all three measurements.  *denotes a 576 

significant difference from pre-marathon (P<0.05); † denotes a significant difference 577 

from pre-marathon (P<0.01); ‡ denotes a significant difference from 4 weeks post 578 

marathon (P<0.05).  LVIDd = left ventricular internal dimension (diastole); LV = left 579 

ventricular; RWT = relative wall thickness; LVEDV = left ventricular end-diastolic 580 

volume; LA = left atrial; S’ = peak systolic tissue velocity ; E’ = early diastolic peak 581 

tissue velocity; A’ = late diastolic peak tissue velocity; E-wave = early mitral inflow 582 

filling velocity; A-wave = late mitral inflow filling velocity; E/A ratio = ratio of early to 583 

late ventricular filling velocities. 584 

 585 

586 
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Table 3b: Right heart structure and function; values presented as median (interquartile 587 

range):  588 

Characteristic Pre-marathon + 4 Weeks + 8 Weeks P 

Right Heart Structure 

RV Length, cm 8.4(7.9,8.9) 8.3(7.9,8.8) 8.0(7.6,8.7)† 0.002 

RV Basal diameter, cm 3.5(3.2,3.9) 3.5(3.3,3.8) 3.4(3.2,3.7)* 0.03 

RVAd, mm2
 18.9(15.1,21.0) 18.6(16.4,21.9) 17.5(16.0,21.8)* 0.01 

RVAd / BSA, mm2/m2 10.7(9.5,11.9) 10.9(9.7,11.8) 10.4(9.2,11.4)*‡ 0.02 

RVOT1, cm 3.1(2.7,3.3) 3.0(2.8,3.3) 2.9(2.5,3.0)†‡ 0.015 

RVOT2, cm 2.3(2.0,2.5) 1.9(1.8,2.1)† 1.8(1.7,2.1)† <0.001 

RVPLAX, cm 3.1(2.7,3.4) 3.1(2.6,3.4) 3(2.8,3.2)* 0.014 

RV Strain, % 0.16(0.15,0.17) 0.15(0.14,0.17) 0.15(0.13,0.17 0.615 

RA Area, cm2 11.2(9.9,12.8) 10.8(8.8,12)† 10.5(9.4,12.2)* <0.001 

Right Ventricular Function 

Systole – Right Ventricle     

 RVFAC, % 48.1(45.3,54.7) 49.4(45.7,53.5) 52.1(46.6,55.2) 0.412 

 Basal S’, cm.s-1 0.16(0.15,0.17) 0.15(0.14,0.17) 0.15(0.13,0.17) 0.54 

 TAPSE, mm 2.9(2.6,3.1) 2.8(2.3,3.1) 2.6(2.3,2.9)† 0.012 

P values represent a significant slope across all three measurements.  *significant 589 

difference from pre-marathon (P<0.05); † denotes a significant difference from pre-590 

marathon (P<0.01); ‡ denotes a significant difference from 4 weeks post marathon 591 

(P<0.05). RV = right ventricular; RVAd = right ventricular area in diastole; RVOT1 = 592 

proximal right ventricle outflow tract; RVOT2 = distal right ventricle outflow tract; 593 

RVPLAX = parasternal long axis view of the right ventricle; RA = right atrium; RVFAC 594 

= right ventricular fractional area change; S’ = peak systolic tissue velocity; TAPSE = 595 

tricuspid annular plane systolic excursion. 596 
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