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Abstract 19 

Objectives: To use a musculoskeletal model of the lower limb to evaluate the effect of a 20 

strength training intervention on the muscle and joint contact forces experienced by untrained 21 

women during landing. 22 

Methods: Sixteen untrained women between 18 and 28 years participated in this cohort 23 

study, split equally between intervention and control groups. The intervention group trained 24 

for eight weeks targeting improvements in posterior leg strength. The mechanics of bi- and 25 

uni-lateral drop-landings from a 30 cm platform were recorded pre and post intervention, as 26 

was the isometric strength of the lower limb during a hip extension test. The internal muscle 27 

and joint contact forces were calculated using FreeBody, a musculoskeletal model. 28 

Results: The strength of the intervention group increased by an average of 35% (p < 0.05; 29 

pre: 133±36 N, post: 180±39 N), whereas the control group showed no change (pre: 152±36 30 

N, post: 157±46 N). There were only small changes from pre to post test in the kinematics 31 

and ground reaction forces during landing that were not statistically significant. Both groups 32 

exhibited a post test increase in gluteal muscle force during landing, and a lateral to medial 33 

shift in tibiofemoral joint loading in both landings. However, the magnitude of the increase in 34 

gluteal force and lateral to medial shift was significantly greater in the intervention group. 35 

Conclusion: Strength training can promote a lateral to medial shift in tibiofemoral force 36 

(mediated by an increase in gluteal force) that is consistent with a reduction in valgus 37 
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loading. This in turn could help prevent injuries that are due to abnormal knee loading such 38 

as anterior cruciate ligament ruptures, patella dislocation and patellofemoral pain. 39 

 40 

 41 

Summary Box 42 

 Strength training of the lower limb resulted in a lateral to medial shift of tibiofemoral 43 

forces during drop-landing. 44 

 This appeared to be mediated by an increased force in the gluteal musculature during 45 

landing. 46 

 Musculoskeletal modelling of the lower limb can demonstrate changes in lower limb 47 

mechanics during drop-landing that have not been reported using traditional methods. 48 

 49 

50 
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Introduction 51 

Abnormal knee joint loading has been shown to be a mechanism of injury in a range of 52 

complaints including anterior cruciate ligament (ACL) rupture, patella dislocation and 53 

patellofemoral pain [1–4]. Consequently, there has been great interest in finding ways to 54 

modify internal joint loading in order to prevent these injuries. However, the outcome 55 

measures of such studies have generally been the calculation of external kinematics and 56 

kinetics or inter-segmental mechanics (i.e. joint angles, inter-segmental forces and moments 57 

calculated by inverse dynamics analysis, or ground reaction forces; GRF [5–7]). Although 58 

useful, these calculations do not indicate the actual loading experienced by the internal 59 

structures of the knee (i.e. the forces experienced by muscle-tendon units, ligaments and 60 

bones). For instance, ACL injury prevention programmes have been shown to successfully 61 

modify kinematic outcomes towards movement strategies of lower risk [7,8] and there is 62 

epidemiological evidence that such interventions effectively reduce the ACL injury rate [9–63 

11] however, the effect of such programmes on the actual internal joint loading is largely 64 

unknown. 65 

Muscle strength and activation are variables that can be directly changed by training 66 

programmes [12], and can provide protection against injury in activities like landing from a 67 

jump. For instance, previous ACL injury research has described the importance of gluteal and 68 

hamstring strength [13,14] and increased hamstring activation pre- and post-landing [15] in 69 

reducing injury.  Similarly, gluteal activation and strength have been related to a reduction of 70 
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knee valgus [16], patellofemoral pain [17,18] and patellar dislocation [19] in various 71 

activities. Despite these positive associations however, the literature relating to the effect of 72 

strength training alone on kinematics and GRF during movement is equivocal [20,21] and the 73 

effect on internal knee joint forces is again unknown.  To this end, this study employed a 74 

posterior lower limb focussed training intervention which would be expected to increase the 75 

strength of the gluteal and hamstring musculature. 76 

One technique that can be utilised to estimate internal forces is musculoskeletal modelling 77 

and musculoskeletal modellers envisage a future where their work can inform clinical 78 

practice [22,23].  For instance, there have been a number of studies that have sought to 79 

quantify the forces present in the knee during landing [24–29]. However, no study has used 80 

musculoskeletal modelling technology to assess the effect of a posterior thigh musculature 81 

focused training intervention on the forces experienced by the internal structures of the knee. 82 

The objective of this study was therefore to evaluate the effects of a leg strength training 83 

intervention on internal knee forces during landing (tibiofemoral joint reaction forces; TF) 84 

using a publicly available musculoskeletal model of the lower limb [30]. We hypothesized 85 

that the intervention would result in a lateral to medial shift in TF that is consistent with the 86 

changes in landing mechanics that have previously been seen after strength training [21,31]. 87 
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Methods 88 

Experimental approach 89 

This study was divided into three phases undertaken at St Mary’s University. Firstly, during 90 

the pre test the performance of the participants in a landing task was assessed alongside a 91 

measure of their posterior lower limb strength. Next, the experimental group took part in an 92 

eight-week training intervention designed to increase their posterior lower limb strength 93 

whereas the control group kept up with their usual recreational activities. Finally, all 94 

participants were retested using the same protocol as in the pre test.  The experimenters were 95 

not blinded as to the participant groups. 96 

Participants 97 

Sixteen young, healthy students participated in this study (Table 1) and were assigned to 98 

either the control group (CG) or intervention group (IG) based upon their availability to take 99 

part in the intervention training programme. The recruitment criteria stipulated that the 100 

participants were female, between 18 and 28 years of age, free from musculoskeletal injuries 101 

over the preceding 6 months, right foot dominant, and only took part in recreational physical 102 

activity (i.e. no heavy resistance or injury prevention training for at least 6 months prior to the 103 

study, and that they participated in mainly leisure sports at most four times per week). All 104 

participants provided informed written consent prior to the experiment and the ethics sub-105 

committee of St Mary’s University approved the study. 106 
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Table 1.  Participant characteristics (mean ± standard deviation).  There were no significant 107 
differences between groups (p > 0.05). 108 
 109 
 Age (years) Body mass (kg) Height (m) 
Control group 22.9 ± 2.4 62.2 ± 8.3 1.66 ± 0.07 
Intervention group 22.0 ± 3.2 65.4 ± 7.1 1.68 ± 0.03 
 110 

Instrumentation 111 

Evaluation of drop landing performance: The kinematics describing the time history of the 112 

position of 18 reflective markers (14 mm) placed on key anatomical landmarks of the right 113 

leg and pelvis [30] according to the guidelines of Van Sint Jan [32,33] was obtained using a 114 

Vicon 3D motion analysis system (Vicon MX System, Vicon Motion Systems Ltd, UK) 115 

incorporating 11 cameras. The GRFs during landing were measured with a force plate 116 

(Kistler 9287BA Plate, Kistler Instruments Ltd., UK) synchronized with the Vicon system. 117 

All data was collected at 200 Hz.  118 

Lower limb strength testing:  The strength of the posterior aspect of the lower limb was tested 119 

in a closed kinetic chain task as described below using the same Kistler force plate as for the 120 

evaluation of the drop landings.  121 

Procedures 122 

After performing a 10-minute supervised, dynamic warm up including running, high knees, 123 

buttock kicks, lunges, squats, straight leg walks and hop and stick, the participants practiced 124 

the drop landings for up to five attempts both bi- and unilaterally. A three to five minute rest 125 

followed, in which the reflective markers were placed on the anatomical landmarks with 126 
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double-sided adhesive tape. Drop landing data was collected during controlled falls from a 30 127 

cm platform placed 0.5 cm in front of the force plate. Participants first completed five 128 

bilateral landings (BLs) and then five unilateral landings (ULs) having been instructed to step 129 

forward from the platform with their dominant right foot (and not to jump forwards or step 130 

down), land naturally with only their dominant foot touching the force plate and stay in this 131 

landing position for at least 2 seconds. During BLs, the participants were asked to land with 132 

both feet at the same time (Figure 1A – note the position of the feet with just the dominant 133 

foot on the force plate). Incorrect landings contrary to the description above were repeated. 134 

The rest periods between the five drop landings for each condition were at least 60 seconds 135 

long, and at least two minutes rest was taken between the BLs and ULs. 136 
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Figure 1.  Experimental arrangements: A. Bi- and unilateral drop landing tasks; B. 137 

Assessment of posterior thigh strength utilising a hip extension test. 138 

 139 

After a three to five minute rest period, the strength of the right posterior thigh was assessed 140 

in a hip extension test. The hip was positioned at a flexion angle of 30° (note in this article 141 

we use the convention that when the subject is stood in the anatomical position their ankle, 142 

knee and hip joint angles are 0°, and that flexion of the joint is represented by a positive 143 

angle). The ankle was positioned neutrally (i.e. at a flexion angle of 0°) with the heel at the 144 

centre of a wooden block that was on top of the force plate (Figure 1B). The participants were 145 

then encouraged to push the heel downwards with maximum force for a period of at least six 146 
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seconds and the peak force was recorded. A two minute rest period was taken between the 147 

three trials. This hip extension test was chosen as it has previously been shown to be reliable 148 

[34] and tests the strength of the limb in a closed kinetic chain task at similar joint angles to 149 

those found at initial contact during BL in females [35,36].  150 

Exercise intervention: Eight participants performed an eight-week posterior leg strength 151 

programme (Table 2), attending three hourly sessions per week that were supervised by a UK 152 

Strength and Conditioning Association qualified coach. Loading was progressed weekly by 153 

increasing the load lifted based on individual responses to training (strength, experience and 154 

motivation), but sets, reps, rest and perceived exertion were similar within the group. 155 

Table 2.  The strength training programme followed by participants in the intervention group. 156 
 157 
Week 1-4 Week 5-8 Sets Reps Rest 

Session 1 
   

Split Squat Lunge 3 10 2 min 
Good Morning Ecc/con leg pull&push in pairs  3 10 2 min 
SL SLDL Bulgarian Split Squat 3 10 2 min 

Session 2 
   

Step up (L to M height 
plyometric box) 

Step up (M to H height 
plyometric box) 

3 10 2 min 

Nordic hamstring (ecc+con) Nordic hamstring (ecc+con)  3 6/8 2 min 
SL Bridge SL Good Morning 3 10 2 min 

Session 3 
   

Squats Squats 3 10 2 min 
SLDL SLDL 3 10 2 min 
SL Good Morning SL Hip thrust 3 10 2 min 
          
SL= single leg, SLDL= stiff leg deadlift, ecc= eccentric, con= concentric, L= low, M= 
medium, H= high  

 158 

Data analysis 159 
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Musculoskeletal model: In order to compare predicted muscle and joint reaction forces pre 160 

and post intervention, the data collected was analysed using a publicly available 161 

musculoskeletal model of the lower limb [30,37–40] (FreeBody; www.msksoftware.org.uk).  162 

The validation and verification of FreeBody has been described previously [41–44], with a 163 

focus on the accuracy of the TF predictions [41] and the sensitivity  of the model to the input 164 

kinematic data and its muscle force upper bounds [43]. 165 

FreeBody represents the lower limb as a linked chain of five rigid segments. The position and 166 

orientation of the pelvis, thigh, calf and foot segments at each moment in time are determined 167 

from the marker data (the position of each segment has 3 degrees of freedom and its 168 

orientation has a further 3 degrees of freedom). The position and orientation of the patella 169 

segment is determined based upon the knee flexion angle [30], using relationships developed 170 

from previous literature [45,46]. The anthropometry of each segment is determined from the 171 

work of de Leva [47]. Given the time history of the position and orientation of each segment 172 

and its anthropometry, the kinematics of each segment is calculated using the method of 173 

Dumas and colleagues [48]. Next, the data of Klein Horsman and colleagues [49] is used to 174 

determine the origins, insertions and lines of actions of 163 muscle elements and 14 175 

ligaments. 176 

Following the above steps the equations of motion governing the movement of the segments 177 

can be determined (Equation 1; Appendix). However, there are more unknown forces (193) 178 

than there are equations (22), and thus this is an indeterminate problem with many possible 179 
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solutions. The next step is therefore to pick the most physiologically likely solution. Firstly, 180 

the potential solution set is narrowed by imposing physiologically based constraints then the 181 

most physiologically likely solution is determined by using an optimization procedure 182 

developed [37] from the work of Crowninshield and Brand [50] and Raikova [51] that is 183 

implemented using MATLAB (R2013a, Mathworks, 1 Apple Hill Drive, Natick, MA 01760, 184 

US). The optimization is predicated upon finding the solution that minimises a cost function 185 

based upon maximising muscular endurance (Equation 2; Appendix).  186 

Data processing: For each subject, each landing (BL, UL) and both pre and post tests, the 187 

trial that resulted in the lowest peak GRF was selected for analysis (as this was taken to be 188 

the most successful landing). A 4th order dual low pass Butterworth filter with a cut off 189 

frequency of 6 Hz was used to filter the kinematic and kinetic data. The filtered data was then 190 

processed through FreeBody. The strength capabilities of FreeBody (as represented by the 191 

maximum force that each muscle and ligament was permitted to experience) were scaled to 192 

reflect the participants' strength testing results).  Following the example of our previous work, 193 

if the optimization routine employed by FreeBody (fmincon routine in MATLAB) could not 194 

find a feasible solution for a particular frame then we raised the strength upper bound for the 195 

frame until a solution could be found.  This was only necessary for a limited number of 196 

frames. 197 

Statistical Analysis 198 
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Statistical analysis was performed using IBM SPSS Statistics (version 22, International 199 

Business Machines Corp., New Orchard Road, Armonk, NY 10504, US) and MATLAB 200 

(R2013a, Mathworks, 1 Apple Hill Drive, Natick, MA 01760, US).  ANOVA was used to 201 

check for differences in age or anthropometry between the groups at pre-test.  An ANCOVA 202 

was used to evaluate the change in strength of the right posterior thigh musculature where 203 

baseline strength was included as a covariate.  The alpha level was set at p < 0.05 a priori and 204 

normality was confirmed by Shapiro-Wilk tests. 205 

The output data from the musculoskeletal model was first normalised with regards to time. A 206 

cubic spline was then fitted to each data series and used to interpolate the normalised curves 207 

to obtain values at regular intervals. The mean and the 95% confidence interval (CI) at each 208 

time point was then calculated for each data series.  A significant difference between curves 209 

was determined when there was no overlap between the confidence intervals. 210 

 211 

Results 212 

During the intervention the strength of the IG increased by 35% (p = 0.001; pre: 133±36 N, 213 

post: 180±39 N). There was no change in the strength of the CG (pre: 152±36 N, post: 214 

157±46 N). The participants attended 94% of the planned sessions.  215 
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Figure 2.  Strength testing results (error bars indicate the standard deviation).  † indicates a 216 

significant difference between the pre and post test scores of the intervention group (p = 217 

0.001). 218 

 219 

Both CG and IG exhibited an increased use of the gluteal musculature from pre to post test 220 

(Figure 3). However, the magnitude of the increase was greater for the IG in both BLs and 221 

ULs, and there was also little overlap of CIs (whereas for the CG it was considerable). There 222 

were no other strong trends in terms of changes in muscle forces from pre to post test (Web 223 

Supplementary Material). 224 
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Figure 3.  Force in the gluteal musculature during bilateral and unilateral landings. The 225 

vertical error bars represent the 95% CI for the pre test, whereas the light dotted lines 226 

represent the 95% CI for the post test. 227 

 228 

During the pre test, the peak lateral tibiofemoral joint contact force (lateral TF) was greater 229 

than the peak medial tibiofemoral joint contact force (medial TF) for all groups (Figure 4).  230 

For the CG, the lateral TF then dropped below the medial TF after the first local peak in GRF 231 

during both landings. For the IG BL, the lateral TF dropped below the medial TF after the 232 

second local peak in GRF, whereas for the IG UL, the lateral TF was greater than the medial 233 

TF throughout the analysed time period. During the post test, the lateral TF fell relative to the 234 
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medial TF for all groups, however the magnitude of this change was greater for the IG than 235 

the CG, and greater for the UL than the BL. For the IG, the lateral TF was equal to or lower 236 

than the medial TF throughout the time period for both landings.  237 

Figure 4.  Lateral and medial tibiofemoral joint reaction forces during bilateral and unilateral 238 

landings. The vertical error bars represent the 95% CI for the medial tibiofemoral force, 239 

whereas the light dotted lines represent the 95% CI for the lateral tibiofemoral force. 240 

 241 

There were only minor differences between the pre and post intervention GRFs for both 242 

landing styles and groups (Web Supplementary Material). There was a trend towards slightly 243 

higher peak GRFs post intervention during the BLs for both groups (approximately 0.3-0.4 × 244 

body weight; BW). In addition, the GRF for the CG UL was marginally lower during the post 245 

test (around 0.2-0.3 × BW for most of the time during the landing period).  This study was 246 

largely unable to demonstrate changes in kinematics between the pre and post test, although 247 

both groups showed a trend towards lower hip and knee flexion during BL (Web 248 

Supplementary Material).  249 
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Discussion 250 

This study supports the hypothesis that TF patterns would be altered following a strength 251 

intervention and that these changes would be consistent with the kinetic and kinematic 252 

changes that have been previously found to occur after strength training. In particular, we 253 

found changes in gluteal muscle forces, and a lateral to medial shift in TF. In contrast, there 254 

were only small changes in GRF and the kinematics of landing. 255 

A lateral to medial shift in tibiofemoral joint loading 256 

The most novel result in this study is the change in the pattern of TF after the intervention.  257 

Both groups experienced a reduced lateral TF during the post test, however the decrease was 258 

greater in the IG than in the CG. In addition, the IG experienced an increase in the medial TF 259 

at post test, whereas the medial TF remained similar for the CG. Taken together, these data 260 

indicate a lateral to medial shift in knee loading which was of significantly greater magnitude 261 

in the IG. Such a shift is consistent with a reduction in knee valgus, although we were unable 262 

to detect differences in kinematics. Both groups also experienced an increase in gluteal force 263 

post intervention and it has been suggested that increased gluteal force can reduce valgus 264 

loading of the knee. The changes in both groups may be explained by a learning effect of the 265 

tasks in the post test, however, the fact that the IG experienced greater changes in gluteal 266 

force and lateral to medial shift suggests that there was an effect of the intervention. The 267 

results of the present work tend to support the link between gluteal force and the 268 
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medial/lateral loading distribution of the tibiofemoral joint. In addition, these results suggest 269 

that strength training can facilitate women in using the gluteal musculature during landing in 270 

a way that possibly exhibits a lower risk of knee joint injuries such as ACL rupture, patella 271 

dislocation and patellofemoral pain. 272 

The fact that a lateral to medial shift in knee loading was found when there was an increased 273 

gluteal force (in both groups) is remarkably consistent with contemporary thinking. For 274 

instance, studies have identified relationships between increased hip strength/activation and 275 

improved neuromuscular alignment and control of the legs [17] and increased gluteus medius 276 

activation and decreased TF [52]. These studies in combination with our results suggest that a 277 

stronger posterior hip musculature can result in greater gluteal force expression, altered 278 

lateral to medial TF distribution and potentially affect valgus loading.  279 

Effect of strength training on landing kinematics and GRF 280 

There were only small differences in landing kinematics pre to post intervention in both 281 

groups (frontal, sagittal and transverse plane), which is similar to another study that could not 282 

demonstrate knee valgus/varus and knee/hip extension/flexion changes following a strength 283 

training programme [20]. In contrast, one other study did show kinematic alterations of 284 

increased hip flexion at initial contact, and peak hip and knee flexion after a basic strength 285 

training programme [21] (it should be noted that the programme employed in that study also 286 

included flexibility and balance training). The majority of prevention studies that found 287 
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consistent alterations in kinematics included neuromuscular and feedback training which 288 

were not employed in our study [7,53,54]. The lack of kinematic differences in this study, 289 

despite the changes of internal kinetics, are important and suggest that either strength training 290 

in isolation does not affect kinematics, that kinematics are less sensitive to strength changes 291 

than internal kinetics or that musculoskeletal models of the type employed here are more 292 

sensitive to changes in internal kinetics than kinematics.  293 

As described above, the inability of this study to demonstrate statistically significant 294 

differences in knee varus/valgus is consistent with previous studies that have looked at the 295 

effect of strength training [20,21]. One reason for this may be the fact that optical motion 296 

capture methodologies are less able to discriminate between differences in internal/external 297 

rotation and ab/adduction than between differences in joint flexion and extension due to the 298 

measurement error associated with soft tissue artefact [55]. In contrast, we have previously 299 

shown that the forces predicted by the model employed here are sensitive to small changes in 300 

kinematics (in particular, that they are sensitive to small changes in the internal/external 301 

rotation of the tibia [43]). It is thus entirely credible to suggest that musculoskeletal models 302 

may be more sensitive to changes in internal kinetics than more traditional approaches are to 303 

changes in kinematics. This may have important consequences for future assessment 304 

methods, particularly if ACL and knee injury risks are only assessed through a consideration 305 

of kinematic factors; in particular suggesting that clinical assessment methods should also 306 

incorporate the prediction of internal joint kinetics. The greater sensitivity could be used as 307 
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an early indicator to prevent knee injuries and may detect smaller changes following 308 

intervention programmes. Consequently, this new perspective on joint conditions may offer 309 

greater detail in clinical diagnoses. 310 

We were also unable to identify changes in GRF patterns pre and post intervention - this is in 311 

agreement with results of other studies that studied limb strengthening interventions [20,21], 312 

although contrary to a study that also focussed on posterior thigh musculature [56]. Our 313 

findings suggest that either the change in force distribution between the joints altered due to 314 

internal modifications as GRF patterns stayed relatively constant or that the internal forces 315 

are particularly sensitive to small changes in GRF. Studies that found changes in GRF mostly 316 

included feedback or plyometric training, that probably included landing feedback training 317 

[53,54,57]. This might suggest the necessity to incorporate direct feedback of landing 318 

technique if substantive changes in ground force application are a goal for the patient or 319 

athlete. 320 

Role of musculoskeletal modelling in clinical research 321 

As far as we are aware, this is the first study that has used musculoskeletal modelling 322 

technology to assess the results of an exercise intervention. The unique finding of this study 323 

is the change in lateral to medial loading of the tibiofemoral joint following strength training. 324 

This is an observation that is previously unreported, probably due to the fact that other similar 325 

studies have relied upon kinematic measurements. Similarly, we have recently successfully 326 
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employed the same musculoskeletal model as in this study to report the effects of an acute 327 

intervention on muscular forces during explosive activity [58]. Taken together, these studies 328 

therefore demonstrate the unique sensitivity and potential for musculoskeletal models to 329 

improve the understanding of problems with clinical relevance. However, to date we have 330 

only used this model to study differences at the cohort level. The employed model 331 

incorporates limited subject-specific detail, and thus is currently unable to be used at a 332 

subject-specific level. Future work should establish the detail that is necessary to produce 333 

such specified results. 334 

Conclusions 335 

In summary, this study demonstrates that a training intervention with a focus on posterior 336 

thigh strength resulted in a greater estimated use of the gluteal musculature during drop 337 

landings. This was commensurate with an altered pattern of joint loading; in particular, there 338 

was a change in force distribution at the tibiofemoral joint with a shift from lateral TF to 339 

medial TF, a change that is consistent with a reduced valgus and an increased hip joint 340 

loading. Potentially, this could reduce abnormal knee loading injuries that are related to 341 

valgus/varus forces such as ligament injuries (i.e. ACL), kneecap dislocation, menisci and 342 

cartilage damage. To our knowledge, this is the first time a change in the medial/lateral 343 

loading of the knee has been observed following a period of strength training. It is 344 

noteworthy that the changes in the internal force loading of the lower limbs were found 345 

despite there being only small concurrent changes in GRF and kinematics. This suggests that 346 
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the joint loading may be more sensitive to changes in strength than kinematic measures, and 347 

that clinicians should be mindful when relying solely on kinematic measures. 348 
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𝑎ො௞ linear acceleration of the centre of mass of segment k 

𝑐̂௞ vector from centre of rotation of joint at proximal end of segment k to centre of mass of segment k 

𝑑መ௞ vector from centre of rotation of joint at proximal end of segment k to centre of rotation joint at distal end of segment k 

𝑑ሚ௞ skew-symmetric matrix of vector 𝑑ሚ௞ 

𝑑ሚ௟
ଷ skew-symmetric matrix of vector from centre of rotation of hip to tibiofemoral joint contact l 

𝐸ଷ×ଷ 3×3 matrix of zeros 

𝑓ሚଷ skew-symmetric matrix of vector from centre of rotation of hip to contact point of patella with the femur 

𝐹௜ magnitude of force in muscle i 

𝐹𝑚𝑎𝑥௜ maximum possible force in muscle i (upper bound) 

𝑔ො acceleration due to gravity 

ℎ෨௟
ଶ skew-symmetric matrix of vector from centre of rotation of knee to tibiofemoral joint contact l 

i muscle number 

𝐼ଷ×ଷ 3×3 identity matrix 

j ligament number 

J cost function 
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k segment number 

𝐿௝ magnitude of force in ligament j 

𝐿𝑚𝑎𝑥௝ maximum possible force in ligament j (upper bound) 

𝑚௞ mass of segment k 

M total number of muscles 

N total number of ligaments 

𝑝̂௜
௞ unit vector representing the line of action of force created by muscle i that acts on segment k (zero if muscle does not insert 

on segment k) 

pat patella 

pt patellar tendon 

𝑞ො௝
௞ unit vector representing the line of action of force created by ligament j that acts on segment k (zero if ligament does not 

insert on segment k) 

𝑟̂௜
௞ vector from centre of rotation of joint at proximal end of segment k to point of action of muscle i on segment k (zero if 

muscle does not insert on segment k) 

𝑅෠௞ vector representing x, y and z components of reaction force acting at proximal end of segment k 
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𝑅෠௟
௞ vector representing x, y and z components of reaction force l acting at proximal end of segment k 

𝑠̂௝
௞ vector from centre of rotation of joint at proximal end of segment k to point of action of ligament j on segment k (zero if 

ligament does not insert on segment k) 

−𝑆መ௞ inter-segmental force acting on proximal end of segment k 

−𝑊෡ ௞ inter-segmental moment acting on proximal end of segment k 

𝑌ଷ×ଷ
௞  inertia tensor of segment k 

𝜌௜ ratio of patella to quadriceps tendon forces for muscle i (zero if the muscle is not part of the quadriceps muscle group) 

𝜑ො̇ ௞ angular velocity of segment k 

𝜑ො̈ ௞ angular acceleration of segment k 

 

 


