LUKE HUGHES (Orcid ID: 0000-0002-3215-1319)

Article type : Original article

Interface pressure, perceptual and mean arterial pressure responses to different blood flow restriction systems.

Running title: Pressure in blood flow restriction systems

Luke Hughes^{1,3}, Benjamin Rosenblatt², Conor Gissane¹, Bruce Paton³, Stephen David Patterson¹

¹ School of Sport, Health and Applied Science, St Mary's University, London, UK, TW1 4SX*

² The Football Association, St. George's Park, Burton-Upon-Trent, UK

³ Institute of Sport, Exercise and Health, 170 Tottenham Court Road, London, UK

Corresponding author: Mr Luke Hughes luke.hughes@stmarys.ac.uk * = full postal address for correspondence

As the corresponding author, I can confirm that this manuscript has been read and approved by all the listed co-authors. The manuscript contains original material that has not been previously published and is not currently under consideration elsewhere until a final decision by the editorial board as to its suitability for this journal has been made.

Abstract word count: 249 Number of tables and figures: 5

1 Abstract

2 This study examined the cuff to limb interface pressure during blood flow restriction (BFR), and the 3 perceptual and mean arterial pressure responses, in different BFR systems. Eighteen participants 4 attended three experimental sessions in a randomised, crossover, counterbalanced design. Participants 5 underwent inflations at 40% and 80% limb occlusive pressure (LOP) at rest and completed 4 sets of 6 unilateral leg press exercise at 30% of one repetition maximum with BFR at 80% LOP. Different BFR 7 systems were used each session: an automatic rapid-inflation (RI), automatic personalised tourniquet 8 (PT) and manual handheld pump and sphygmomanometer (HS) system. Interface pressure was 9 measured using a universal interface device with pressure sensors. Perceived exertion and pain were 10 measured after each set, mean arterial pressure (MAP) was measured pre-, 1-min post- and 5-min post-11 exercise. Interface pressure was lower than the set pressure in all BFR systems at rest (p<0.05). Interface pressure was, on average, 10 ± 8 and 48 ± 36 mmHg higher than the set pressure in the RI and HS 12 13 system (p < 0.01), with no differences observed in the PT system (p > 0.05), during exercise. Pain and 14 exertion were greater in sets 3 and 4 in the RI and HS system compared to the PT system (p < 0.05). MAP 15 was higher in the RI and HS system compared to the PT system at 1-min and 5 min post-exercise 16 (p<0.05). BFR systems applying higher pressures amplify mean arterial pressure and perceptual 17 responses. Automatic BFR systems appear to regulate pressure effectively within an acceptable range 18 during BFR exercise.

19

20 Key words: occlusion, pressure control, tourniquet pressure, effectiveness

1 Introduction

2 The technique of blood flow restriction (BFR) applied both passively and in combination with exercise 3 has become a world-wide research interest. Passive application of BFR may attenuate decreases in limb circumference ¹ and strength loss ² during periods of unloading. Combining BFR with light load 4 5 resistance training can improve muscle strength in load-compromised individuals without the 6 traditionally required heavy loading of a limb³, leading to suggestions of its use as a clinical rehabilitation tool ^{3,4}. Different cuff types and sizes influence perceptual ⁵ and cardiovascular (CV) ⁶ 7 8 responses to BFR exercise, thus BFR is commonly applied as a relative percentage of total arterial limb 9 occlusive pressure (LOP) to standardise occlusion across cuffs and cohorts ⁷. The cuffs used to achieve BFR in this manner are typically part of a pneumatic BFR system, which also includes a device used for 10 11 inflation of the cuff. Within the literature, a variety of BFR systems are used, including automatic rapid-12 inflation, manual handheld sphygmomanometer and automatic personalised tourniquet systems.

13

14 However, several aspects of these BFR systems are unknown. The actual pressure between the cuff and 15 the limb during application of BFR in the different BFR systems is unclear and has not been 16 systematically examined to date. It is conceivable that if differences between the set pressure on the 17 system and the cuff-to-limb interface pressure exist and vary between different BFR systems, this may 18 influence perceptual and CV responses to exercise. The distribution of pressure under a tourniquet can 19 result in structural damage to underlying nerves and tissues if exposed to higher shear forces from mechanical compression for prolonged periods of time^{8,9}. Although BFR exercise is typically of short 20 21 duration (~5-10 minutes) and thus the risk is likely small (particularly when BFR is individualised to 22 LOP), the risk may be exacerbated during rare reports of prolonged continuous passive BFR application (>30 mins)¹⁰. Though the safety of BFR training has been reviewed³, any changes in interface pressure 23 24 during BFR both passively and concomitantly with exercise may contribute to the risk of subcutaneous 25 tissue injury. It is therefore important to examine the interface pressure during BFR in different BFR systems commonly used, and the influence on physiological responses. Thus, the overall objective of 26 27 this study was to examine the cuff to limb interface pressure during passive BFR and BFR exercise, and 28 the perceptual and mean arterial pressure (MAP) responses, in different pneumatic BFR systems.

29

30 Materials and methods

31 Participants

Eighteen male participants (Mean ± standard deviation: age = 27 ± 5 y; body mass = 88.5 ± 25.9 kg;
height = 174.86 ± 23.29 cm; body mass index = 28.94 ± 3.28 kg.m²; blood pressure = 129 ± 9/77 ± 9
mmHg) volunteered to participate. Participants were recreationally active, all had performed resistance
exercise previously and were currently averaging 3 days/week. All were active, non-smokers, free from
cardiovascular, pulmonary and metabolic diseases and musculoskeletal injuries in the past 12 months.
Participants refrained from strenuous exercise, caffeine and alcohol in the 24 h prior to testing sessions,

and maintained normal dietary habits for the study duration. All participants provided signed informed
 consent, in compliance with the Declaration of Helsinki, 7th version, October 2013¹¹. All protocols
 were approved by the University ethical committee.

4

5 Experimental protocol

6 Participants first attended a familiarisation session, including a medical health screening. This was 7 followed by three testing sessions in a randomised crossover counterbalanced design, each including a 8 rest and exercise trial. All sessions were separated by a minimum of 48 h. In the familiarisation, height 9 and body mass were recorded to the nearest 0.01 cm and 0.1 kg, respectively; blood pressure was 10 measured in a supine position at the brachial artery; unilateral concentric one repetition maximum 11 (1RM) of the dominant leg was tested according to previous procedures ¹² and participants were 12 familiarised to the BFR protocols.

13

14 The same experimental protocol was implemented for all three testing sessions, using a different BFR 15 system and its respective cuff each time: an automatic rapid-inflation (RI) system (E20 rapid cuff 16 inflator, Hokanson, Bellevue, WA, USA) with a straight nylon RI cuff (13 cm x 124 cm, 0.5 mm thick); 17 an automatic personalised tourniquet (PT) system (Delfi Medical, Vancouver, BC, Canada) with a 18 variable contour nylon cuff (11.5 cm x 86 cm, 2.5 mm thick); a manual handheld (HS) pump and 19 sphygmomanometer system with straight nylon cuff (8 cm x 100 cm, 1.5 mm thick) (Occlusion Cuff, 20 Sussex, London, UK). Each BFR system comprises a method of pressure regulation: the RI system 21 adjusts pressure automatically; the PT system automatically adjusts pressure around the set pressure ¹³; 22 and the manual HS system does not automatically regulate pressure. Cuff thickness was measured 23 manually with the cuff unraveled; as it was not possible to measure the thickness of the layer of cuff 24 material that would be in contact with the skin without damaging the cuffs, thus our measures likely 25 accounted for double the thickness of the actual layer in contact with the skin, we halved our measures 26 to more appropriately represent this layer. Tubing lines were inserted into the bladders of all cuffs and 27 sealed with airtight UV bonds to allow pressure within the cuff bladders to be measured. In a supine 28 position, the cuff was placed on the proximal portion of the upper dominant leg. Limb circumference 29 was measured at the midpoint of each cuff then divided by 4 to provide the positions for taping pressure 30 sensors medially, anteriorly, laterally and posteriorly, to examine all tissue areas compressed by the cuff ¹⁴ at the midpoint where perineural pressures peak ¹⁵. Preliminary pilot work determined individual 31 sensors provided a reliable and valid measure of interface pressure. The cuff was replaced on the leg, 32 33 the cuff bladder port was connected to the sensor device, and LOP was calculated using Doppler ultrasound at the posterior tibial artery according to previous procedures ¹⁶ (Figure 1). For the rest trial, 34 35 lying supine on a treatment bed participants underwent 2 x 1 min inflations at 40% and 80% LOP, in that order, separated by 5 min of rest ^{17,18}. Participants then moved to the leg press, resting for 10 min 36 37 before beginning the exercise trial. The exercise experimental protocols involved unilateral leg press exercise and were matched for load (30% 1RM), sets (4), repetitions (75), pressure (80% LOP) and
contraction cycle (1 s concentric/1 s eccentric) using a metronome. No manual adjustments to pressure
were made on any BFR system during any trials.

4

5 Perceptual and mean arterial pressure response

Ratings of perceived exertion (RPE) (6-20)¹⁹ and pain (0-10)¹⁹ were measured following each set. 6 7 Participants received verbal instructions on rating both during the familiarisation visit and were 8 reminded on each subsequent visit. For pain, participants were informed that 10 was their reference 9 point which represented their previous worst felt pain, and that they could give a score of 11 if the pain 10 was worse than any they had ever felt before, which is similar to previous research examining discomfort during BFR^{20,21}. For RPE, it was explained to participants that a rating of 6 meant they felt no exertion, 11 12 and 20 meant they were giving maximal effort and could not exert themselves any further ²¹. MAP was 13 measured pre-, 1-min post- and 5-min post-exercise using a Mobil-O-Graph ambulatory blood pressure 14 monitor connected to Hypertension Management Software (IEM, Cockerillstrasse, Stolberg, Germany) 15 on a laptop. This monitor measures peripheral (brachial) blood pressure and collects the heart beat (rate), 16 systolic and diastolic data from the individual, recording the peripheral pulse wave. The Hypertension 17 Management software utilizes a general transfer function to derive an ascending aortic pulse wave, 18 which is used alongside the various measurements to calculate a range of central arterial indices, 19 including MAP.

20

21 Measurement of interface pressure

22 The pressure measurement system comprised a wireless digital connection system, a universal interface 23 device and Pasco Capstone software (Sparklink, Pasco Scientific, Roseville, CA, USA). Interface 24 pressure during BFR was measured using the interface device, connected to two Pasco quad pressure 25 sensors. One sensor had four flexible circular pillow pads attached (Microlab Elettronica, Ponte S. 26 Nicolo, PD, Italy); the other sensor had a channel to connect to a tube line from the cuff bladder, which 27 was inserted into the bladder of each cuff and sealed with an airtight UV bond. Each pad has a 2 cm 28 diameter, connected to the sensor with 50 cm of hard, non-compressible tubing 3 mm in diameter. A 29 four-way giving tap was connected 5 cm from each tube attachment to the quad sensor to allow 30 introduction and removal of air into and out of the pillow pads by an empty 50 ml giving syringe. Prior 31 to application the pad and tubing were completely deflated, 10 ml of air was introduced and then the 32 four-way tap was closed, and the syringe removed; this was repeated for all channels. The interface 33 device was connected to Capstone data collection software (Capstone Version 3.2.1, Pasco, Roseville, 34 CA, USA) which sampled sensor signals continuously at a rate of 20 Hz to produce a pressure trace. 35 Prior to each trial sensors were calibrated to 0 mmHg following application of the cuff to the leg, to 36 control for any possible confounding effect of initial pressure due to securing of the cuff around the 37 limb. Mean \pm SD (mmHg) for BFR inflation periods were calculated for the middle 30 s of each 1 min inflation at REST, to account for cuff inflation time to the set pressure and to restrict measurement to
the period in which full inflation was maintained ¹⁴. Pressure was measured continuously during
exercise; the Capstone software calculated the mean ± SD for interface pressure from the beginning of
the first repetition to the end of the final repetition for each set of exercise.

5

6 Statistical analyses

Pressure data was analysed using the R package (V3.4.0). The Bland and Altman method ²² was used to 7 8 examine differences between the set pressure and the interface pressure for the 2 x rest trials and the 4 9 sets in the exercise trial for each BFR system. Limits of agreement (LOA) were established to assess the 10 relative bias (mean difference) and random error (1.96 SD of the difference) between the set pressure and interface pressure with 95% confidence intervals (CI). A clinical limit of \pm 15 mmHg was set a 11 priori, as this is the recommended maximum/minimum pressure window for a surgical tourniquet 12 designed to safely and effectively restrict blood flow ²³. A paired sample t-test investigated differences 13 14 between the set pressure and interface pressure. Analysis of MAP and perceptual responses was 15 performed with IBM SPSS Statistics Version 22.0 using two-way (cuff x time) repeated measures 16 ANOVAs. For any statistically significant two-way interaction, paired sample t-tests with Bonferroni 17 correction were used for post-hoc analysis to determine individual differences. Alpha significance was 18 set *a priori* p<0.05.

19

20 **Results**

All 18 participants completed the study with no adverse events. All 75-repetitions were completed in all
 participants across all exercise trials. No order effect was noted for ratings of perceived pain and
 exertion. Mean ± SD for BFR pressures, load, leg circumference and sensor placement are detailed in
 Table 1. Data were normally distributed for all trials across all three BFR systems (p>0.05).

25

26 Interface pressure

27 Rest

For the RI system, interface pressure was 5 ± 5 mmHg lower than the set pressure (95% CI, -13.84-4.50, p<0.05) at 40% LOP, and 5 ± 5 mmHg lower than the set pressure (95% CI, -15.19-5.41, p<0.05) at

- 30 80% LOP (Figure 2, A & B, respectively). For the PT system, interface pressure was 8 ± 4 mmHg lower
- 31 than the set pressure (95% CI, -16.84 to -0.17, p<0.05) at 40% LOP, and 9 ± 4 mmHg lower than the
- 32 set pressure (95% CI, -16.80 to -0.32, p<0.05) at 80% LOP (Figure 2, C and D, respectively). For the
- HS system, interface pressure was 20 ± 10 mmHg lower than the set pressure (95% CI, -39.16 to -1.40,
- p<0.05) at 40% LOP, and 37 ± 13 mmHg lower than the set pressure (95% CI, -62.12 to -11.88, p<0.05)
- at 80% LOP (Figure 2, E and F, respectively). Mean differences between set pressure and interface
- 36 pressure were within the \pm 15 mmHg limit for both the RI and PT systems.
- 37

1 Exercise

- 2 For the RI system, compared to the set pressure the interface pressure was 11 ± 7 mmHg higher (95%) 3 CI, -2.80-24.91, p<0.01), 10 ± 8 mmHg higher (95% CI, -5.77-25.66, p<0.01), 10 ± 8 mmHg higher 4 (95% CI, -6.66-26.44, p<0.01), and $10 \pm 9 \text{ mmHg higher}$ (95% CI, -6.61-26.72, p<0.01) for sets 1, 2, 3 5 and 4, respectively (Figure 3, G, H, I and J, respectively). Mean differences between set pressure and 6 interface pressure was statistically significant across all sets (p<0.01) and were within the limit of ± 15 7 mmHg. For the PT system trial, there were no significant differences between the set pressure and interface pressure during all exercise sets (Figure 3, K, L, M, N for set 1, 2, 3 and 4, respectively, all 8 9 p>0.05). Pressure differences were within the limit of ± 15 mmHg. For the HS system, compared to the 10 set pressure the interface pressure was 62 ± 35 mmHg higher (95% CI, -6.79-130.57, p<0.01), 47 ± 38 mmHg higher (95% CI, -27.52-121.96, p<0.01), 44 ± 34 mmHg higher (95% CI, -23.11-111.89, 11 12 p < 0.01), and 37 ± 36 mmHg higher (95% CI, -33.79-108.01, p < 0.01) for sets 1, 2, 3 and 4, respectively
- 13 (Figure 3, O, P, Q and R, respectively). All differences between set pressure and interface pressure were
- 14 statistically significant across all sets (p < 0.01) and exceeded the limit of ± 15 mmHg.

15

16 Pain

- 17 There was a statistically significant two-way interaction between the type of BFR system and time ($F_{(3.05)}$ $_{51,800} = 6.72$, p<0.01). There was a tendency for pain to be higher in the HS system compared to the PT 18 19 system trial after set 1 (3.0 ± 1.6 vs 2.0 ± 1.4 , respectively, 95% CI 0.202 to 1.731, p=0.01) (Table 2). 20 There was no significant difference in mean pain scores after set 2 of exercise (p=0.07) (Table 2). After 21 set 3, pain was higher in the RI system compared to the PT system (6.3 ± 2.8 vs 4.8 ± 1.8 , 95% CI, 0.449 22 to 2.551, p<0.01), and higher in the HS system compared to the PT system (7.0 ± 2.5 vs 4.8 ± 1.8 , 95% 23 CI, 0.887 to 3.558, p<0.01) (Table 2). After set 4, pain was higher in the RI system compared to the PT 24 system $(7.9 \pm 2.3 \text{ vs } 5.7 \pm 2.0, 95\% \text{ CI}, 0.212 \text{ to } 3.171, p<0.01)$, and higher in the HS system compared 25 to the PT system $(8.3 \pm 2.3 \text{ vs } 5.7 \pm 2.0, 95\% \text{ CI}, 1.359 \text{ to } 3.808, p<0.01)$ (Table 2).
- 26

27 RPE

- 28 There was a statistically significant two-way interaction between the type of BFR system and time (F_{G15} 29 $_{53,500} = 30.53$, p=0.03). There were no significant differences in RPE after set 1 of exercise (p>0.01). 30 RPE was higher in the HS system compared to the PT system after set 2 (14 \pm 1 vs. 13 \pm 0, 95% CI, 31 0.517 to 2.705, p<0.01) (Table 2). RPE was higher in the HS system compared to the PT system after 32 set 3 (16 \pm 2 vs. 14 \pm 2, 95% CI, 0.234-2.988, p=0.02) (Table 2). RPE was higher in the HS system 33 compared to the PT system trial after set 4 (17 ± 2 vs 15 ± 2 , 95% CI, 0.794 to 3.095, p<0.01) (Table 34 2). RPE was higher in the RI system compared to the PT system after set 4 (17 ± 2 vs. 15 ± 2 , 95% CI, 35 0.725 to 2.053, p<0.01) (Table 2).
- 36

37 Mean arterial pressure

- There was a statistically significant two-way interaction between the type of BFR system and time ($F_{(4)}$ 1 2 $_{68)}$ = 4.30, p<0.01). MAP was not statistically significantly different between the BFR systems at the 3 pre-exercise time point (p>0.01) (Table 2). At 1-min post-exercise, MAP was significantly higher in the 4 RI system compared to the PT system, a mean difference of 10 ± 6 mmHg (95% CI, 5.030 to 15.748, 5 p < 0.01), and significantly higher in the HS system compared to the PT system, a mean difference of 11 6 \pm 6 mmHg (95% CI, 5.558 to 16.190, p<0.01) (Table 2). At 5-min post-exercise, MAP was significantly 7 higher in the RI system compared to the PT system, a mean difference of 9 ± 7 mmHg (95% CI, 2.701 8 to 14.410, p < 0.01), and significantly higher in the HS system compared to the PT system, a mean 9 difference of 11 ± 5 mmHg (95% CI, 5.854 to 15.813, p<0.01) (Table 2). At 5-min post-exercise, MAP 10 was higher compared to pre-exercise in the HS system, a mean difference of 6 ± 8 mmHg (95% CI, 2.166 to 10.056, p<0.01), and lower compared to 1-min post-exercise in the PT system, a mean 11 12 difference of -6 ± 7 mmHg (95% CI, -9.325 to -2.675, p<0.01) (Table 2).
- 13

14 Discussion

15 The present study was, to the author's knowledge, the first in-vivo study of the interface pressure during 16 BFR exercise across different BFR systems. The main findings were: 1) interface pressure was lower 17 than the set pressure at both 40% and 80% LOP in all three systems during passive BFR; 2) interface 18 pressure was higher than the set pressure in both the RI system and HS system exercise trials, exceeding 19 the limit of ± 15 mmHg in the HS system, with no significant differences observed in the PT system; 3) 20 Higher perceptual responses were observed in the RI system and HS exercise trials compared to the PT 21 system; and 4) A greater post-exercise MAP response was observed in the RI system and HS system 22 exercise trials compared to the PT system.

23

24 The passive application of BFR in early post-surgical contexts before ambulation may maintain muscle 25 strength². In the present study, there was a global drop in interface pressure compared to set pressure 26 during passive BFR in all three BFR systems; the pressure difference was within the clinical limit of ± 27 15 mmHg in only the RI system and PT systems. Ex-vivo studies have demonstrated that pressure decreases as depth within the compressed tissues increases ²⁴, however the present study demonstrates 28 29 a pressure difference is already apparent during transference from cuff to limb. This was evidenced in a 30 study that measured cuff-limb interface pressure in tourniquets applied during surgery ¹⁴. Comparison 31 of the set pressure and cuff bladder pressure in the present study indicated small differences in all three 32 BFR systems, suggesting that pressure is likely not lost during transference from the inflation device to 33 the inside of the cuff. A more compelling explanation is that pressure is lost during transference from 34 cuff to limb, perhaps due to cuff material and thickness. Cuffs composed of more durable material, such 35 as the thicker (2.5 mm) nylon cuff in the PT system, likely provide greater cushioning, and each layer 36 of cushioning may divert a portion of the exerted pressure which therefore is no longer passed onto the underlying limb¹⁴. This would support the findings of the present study, as the straight nylon RI cuff 37

1 was the thinner than the variable contour cuff in the PT system and straight nylon cuff in HS system 2 (0.5mm vs 2.5 mm vs 1.5 mm, respectively) and provided the smallest deviation from the set pressure 3 during passive BFR. However, the method of pressure control within the BFR system (i.e automatic or 4 manual) may also have an influence on the deviation from the set pressure, with the systems designed 5 to automatically adjust pressure likely contributing to smaller deviations from the set pressure. 6 Additionally, cuff material may reduce pressure maintenance within the cuff itself, which may partially 7 explain the substantial loss of pressure in the straight nylon cuff within the HS system. The shape of the 8 cuff may also contribute to the observed drop in pressure; contoured cuffs that lie more snugly around 9 the limb may attenuate pressure loss given the greater circumferential proximity with the limb. At 10 present this is speculative and the influence of specific cuff materials, shape and thickness on cuff-to-11 limb pressure transference during BFR has not been systematically examined. Additionally, other 12 factors such as limb position, composition and contractile state may have an influence. However, what 13 is known from the present study is that the RI nylon cuff was the thinnest (0.5 mm) and the nylon 14 variable-contour cuff was contoured, with both applying pressure more effectively compared to the 15 straight nylon cuff within the HS system. Although speculative at present, the greater thickness of the 16 HS system cuff compared to the RI system cuff (1.5 mm vs 0.5 mm), and the straight vs contoured fit 17 compared to the nylon cuff within the PT system, may have had a synergistic effect contributing to the 18 greater loss of interface pressure. Thus, a thinner or contoured cuff may be best for use in passive BFR 19 application.

20

21 During exercise the interface pressure was significantly higher than the set pressure in both the RI and 22 HS systems across all sets of exercise. No significant differences were found between the set pressure 23 and interface pressure in the PT system, again across all sets of exercise. However, based on the results 24 of the present study, pressure appears to exceed the clinically acceptable limit in the HS system only. The results of the present study suggest that the RI and HS systems may be applying higher pressures: 25 26 however, the set pressures on the device and cuff bladder pressures were similar. Thus, a more feasible 27 explanation is that the increase in interface pressure is due to a synergistic combination of concentric 28 muscle action against the inflated cuff and the BFR systems method of pressure control. Given the 29 dynamic nature of BFR exercise, it is deducible that there will be fluctuations in interface pressure with 30 concentric and eccentric muscle action. In BFR systems that are not designed to automatically adjust 31 pressure by deflating during the concentric phase of contraction, such as the HS system, an increase in 32 interface pressure would be observed. The PT system is designed to automatically regulate pressure by deflating during the concentric phase of contraction, which would explain the observation of no 33 34 difference between the set pressure and interface pressure during exercise. Although the RI system 35 similarly adjusts pressure in this manner, it is possible that the deflation response to underlying 36 concentric muscle contraction is not as rapid as that of the PT system. Higher pressures may result in 37 complete arterial occlusion; it has been hypothesised that this may increase the risk of an adverse event 1 ²¹, and excessive and prolonged pressures risk damage to structures beneath the cuff ⁸. Therefore, it 2 seems a sensible and desirable conclusion that a BFR system can adjust pressure in response to any 3 increase in interface pressure that may be caused by muscle contraction against the system's cuff, as 4 this may help minimise any risk of tourniquet-induced injury. Although our findings are specific to the 5 BFR systems included in the present study, which itself is not without its limitations, they suggest that 6 interface pressure may be different to the set pressure in other BFR systems with different methods of 7 pressure control used within the literature.

8

9 When implementing tourniquet occlusion clinically, patients should be monitored continuously for pain and hypertension⁸ which may dictate work volume and patient adherence²⁵. In the present study, pain 10 was significantly higher in the RI and HS systems compared to the PT system in sets 3 and 4, when 11 12 cuffs were set at the same relative pressure of 80% LOP. The RI and HS systems were found to elicit 13 pressures that were 9-11 mmHg and 37-62 mmHg higher than the set pressure, respectively, which may 14 contribute to the exacerbated pain response in the load and repetition matched conditions. Research has shown increases in discomfort with higher pressures ^{20,26}. Higher BFR pressures may cause greater 15 metabolite accumulation²⁷; it has been suggested that the resultant acidic intramuscular environment 16 17 can increase sympathetic nervous system activity, partially mediated by group III and IV afferent fibres 18 ²⁸. Jessee et al. (2017) recently suggested that higher pressures and stimulation of these group afferents 19 in this manner may increase perception of discomfort. Wider cuffs were less painful than narrow cuffs 20 when set at relative pressures in a crossover study ²⁹, likely owing to the fact that they provide better transmission of tissue compression ³⁰ and require less pressure to effectively occlude blood flow ²⁰. This 21 22 may explain why the straight nylon cuff in the HS system, which was the narrowest at 8 cm width and 23 had the highest LOP, produced the highest pain. In contrast, Rossow et al. (2012) reported that wide 24 cuffs caused greater pain responses compared to narrow cuffs when set at a relative pressure of 130% 25 brachial systolic blood pressure. It is possible that a combination of the method of pressure control in 26 the BFR system and the properties of the two different cuffs may explain the findings of this study. In 27 the present study, the RI cuff was wider (13 cm) and had a lower LOP compared to the narrower PT 28 cuff (11.5 cm) yet caused significantly more pain during sets 3 and 4 of exercise. The higher interface 29 pressures observed in the RI system may partially explain the increased pain. Additionally, Buckner et 30 al. (2017) examined the acute perceptual response to upper limb BFR exercise in narrow elastic and 31 nylon cuffs of similar width (3 cm vs. 5 cm, respectively), observing greater discomfort in sets 2, 3 and 32 4 in the elastic cuff despite both cuffs set at a relative pressure. The authors suggested that higher 33 pressures applied by the elastic cuff and differences in the material and pliability of cuff type throughout 34 the range of motion may contribute to exacerbated perception of pain. These findings are contrary to 35 that of Loenneke and colleagues, who reported no differences in acute perceptual responses to lower limb BFR exercise between nylon and elastic cuffs ³¹. This may be due in part to anatomical limb 36 37 differences or the use of pressures based on thigh circumference, as opposed to relative to LOP, in the

lower-limb study. Finally, although cuffs of different material but similar width require similar arterial 1 occlusion pressures ³², contoured cuffs may fit the limb better. This may increase comfort and evenly 2 distribute pressure, which may contribute to reduced pain observed in the PT system. It is of note that 3 4 the pain scores observed in the present study appear higher compared to previous studies. This may be 5 due to selection of a high pressure (80% LOP) and the volume of exercise: in previous research 6 participants typically do not complete all reps in the later BFR sets. In the present study, the participants 7 completed all reps in the later sets and thus spent more time under BFR, which may contribute to higher 8 perceptions of pain alongside a high set pressure and also the changes in interface pressure during 9 exercise, caused in part by the method of pressure control. However, more research is required to further 10 understand the interactions between factors such as cuff properties, participants factors and BFR 11 controlling system factors.

12

13 Increases in perceived exertion are typically associated with increased load ³³. RPE during BFR exercise 14 is reported to be similar across relative pressures at matched loads ⁵. The present study found differences 15 in RPE between the cuffs during sets 1, 3 and 4, despite matched loads and volume. Research reports that RPE is amplified by increasing pressure and load²⁰, evidenced by rises in RPE, alongside increases 16 in discomfort, as pressure increased from 10-90% LOP during load-matched upper body exercise at 17 18 30% 1RM ²⁶. Although the present study set relative pressures of 80% LOP for all three BFR systems, 19 analysis of interface pressure revealed that pressures applied to the limb in the RI and HS systems were 20 higher than the set pressure; these cuffs also produced higher pain scores compared to the PT system. It 21 has been proposed that ischemic pain and decreased metabolite clearance, potentially caused by higher 22 pressures and greater mechanical compression in the present study, may create a heightened perception 23 of discomfort and exertion ³⁴. This signifies a possible synergistic effect of pressure and mechanical 24 compression on both perceived exertion and pain. It should be acknowledged that these ratings are not 25 particularly high, and that perceptual responses to light load (30% 1RM) BFR exercise are lower compared to an equivalent form of exercise at heavier loads (70%1RM)³⁴. Together with demonstration 26 27 of a similar time course of adaptation to perceptual responses between light load BFR and heavy load exercise ²⁵, this supports the feasibility of BFR as a clinical rehabilitation tool. 28

29

Higher BFR pressures may evoke greater CV responses ³⁵. Efforts to reduce concerns of amplified CV 30 responses suggest that relative pressures be used ^{20,21}. The present study demonstrated greater post-31 32 exercise MAP responses in the RI and HS systems, with both remaining elevated at 5-min post-exercise 33 compared to the PT system, when all BFR systems were set at a relative pressure of 80% LOP. As 34 previously stated, 80% LOP was higher in the PT system compared to the RI system, yet it produced a 35 smaller post-exercise MAP response that had returned to baseline by 5 min post-exercise. Recent research demonstrated similar levels of blood flow reduction at rest between different cuffs when set at 36 37 relative pressures between 40-90% LOP³⁶. Although speculative at present, the dynamic nature of BFR 1 exercise and associated increase in interface pressure in certain BFR systems may contribute to greater 2 mechanical compression, which could possibly influence limb blood flow at relative pressures in 3 different BFR systems and contribute to an augmented MAP response. It is of note that CV responses are similar during light load BFR training to heavy load training ³⁷. Additionally, peak CV response to 4 unilateral BFR exercise is likely lower than observed in bilateral exercise with greater muscle mass 5 involvement ³⁸. The MAP responses to different BFR systems may only provide cause for concern if 6 7 higher applied pressures place an individual under complete arterial occlusion, or when BFR is applied in patients who are hypertensive ³⁹ or have heart disease ⁴⁰, where augmentation of exercise-induced 8 9 heart rate increases have been observed.

10

11 The present study is not without limitations. The pressure sensors used have their own associated error 12 (± 1 mmHg), therefore the results of pressure changes within each BFR system are likely specific and 13 relative to the pressure sensor system used. Additionally, our method of deriving an average of the 14 interface pressure across all sets in the entire exercise bouts does not allow for us to examine specifically 15 the magnitude of increases with concentric contraction and decreases with eccentric contraction, and the 16 respective influence of each in the calculation of the mean pressure. Future research is needed to 17 determine the magnitude of pressure change throughout different muscle contractile phases. The 18 differing cuff properties in each BFR system may influence control of pressure by the inflation device; 19 as these were not compared directly, discussion of the potential influence is speculative at present. We 20 could not quantify leg blood flow during BFR exercise, thus our suggestions on how interface pressure 21 changes during dynamic exercise may influence vasculature compression are hypothetical. Although 22 we believe a maximum pressure limit is necessary for safe BFR application, we acknowledge the ± 15 23 mmHg regulation limit discussed in the present study may be small for the variation likely observed 24 during exercise. Finally, our results may be specific to the male population as no females were included 25 in the present study, and factors such as subcutaneous tissue composition and the menstrual cycle may 26 affect aspects such as blood pressure and pressure control during BFR. Although correlational analysis 27 indicated no relationship between BMI and the pressure difference in the present study, investigation of 28 the influence of BMI on pressure control within BFR systems may have important implications for BFR 29 prescription.

30

To conclude, interface pressure appears to be different in different BFR systems when applied passively, likely owing to cuff material, thickness and shape, and other potential factors relating to the participant and the pressure control system within each BFR system. Higher interface pressure during exercise may be attributed to a combination of muscle contraction, method of pressure control, cuff properties and participant factors. A BFR system that automatically adjusts pressure during exercise and causes reduced perceptual and MAP responses is likely the most beneficial clinical tool that may positively influence patient tolerance and adherence to a BFR rehabilitation programme.

1 Perspectives

2 Interface pressure between the cuff and the limb in different BFR systems, and the influence on 3 perceptual and MAP responses, has not been examined to date. It is important to examine interface 4 pressure during passive BFR and dynamic BFR exercise as excessive pressures may increase the risk of tourniquet-induced injury ^{8,9}, and may also influence perceptual and MAP responses to BFR exercise 5 which in turn may influence exercise tolerance and adherence to a clinical BFR rehabilitation 6 7 programme²⁵. In this study, we examined the interface pressure during passive BFR and BFR exercise 8 in three different BFR systems commonly used in the literature. Interface pressure appears to be lower 9 than the set pressure in all systems when BFR is applied passively, which we hypothesize may be a 10 result of pressure control and cuff properties within the BFR systems. Additionally, it appears that interface pressure can be higher than the set pressure during BFR exercise, likely due to the method of 11 12 pressure control, cuff properties and contraction cycle, which appears to influence the perceptual and 13 MAP response to BFR exercise.

14

Acknowledgments

This study was supported by Delfi Medical Innovations Inc. who provided a pneumatic variable contour cuff and PT system device for the study, and inserted UV bond sealed lines into the bladders of all cuffs to allow us to measure pressure inside the cuff bladders.

Conflicts of interest

The authors declare no conflicts of interest

References

- Kubota A, Sakuraba K, Sawaki K, Sumide T, Tamura Y. Prevention of disuse muscular weakness by restriction of blood flow. *Med Sci Sports Exerc*. 2008;40(3):529-534. doi:10.1249/MSS.0b013e31815ddac6.
- Kubota A, Sakuraba K, Koh S, Ogura Y, Tamura Y. Blood flow restriction by low compressive force prevents disuse muscular weakness. J Sci Med Sport. 2011;14(2):95-99. doi:10.1016/j.jsams.2010.08.007.
- Hughes L, Paton B, Rosenblatt B, Gissane C, Patterson SD. Blood flow restriction training in clinical musculoskeletal rehabilitation: A systematic review and meta-analysis. *Br J Sports Med.* 2017;51(13):1003-1011. doi:10.1136/bjsports-2016-097071.
- Patterson SD, Hughes L, Head P, Warmington S, Brandner C. Blood flow restriction training: A novel approach to augment clinical rehabilitation: How to do it. *Br J Sports Med.* 2017;51(23):1648-1649. doi:10.1136/bjsports-2017-097738.
- 5. Loenneke JP, Kim D, Mouser JG, et al. Are there perceptual differences to varying levels of blood flow restriction? *Physiol Behav.* 2016;157:277-280. doi:10.1016/j.physbeh.2016.02.022.
- 6. Brandner CR, Kidgell DJ, Warmington SA. Unilateral bicep curl hemodynamics: Low-pressure continuous vs highpressure intermittent blood flow restriction. *Scand J Med Sci Sport*. 2015;25(6):770-777. doi:10.1111/sms.12297.
- Fahs CA, Loenneke JP, Rossow LM, Thiebaud RS, Bemben MG. Methodological considerations for blood flow restricted resistance exercise. *J Trainology*. 2012;1:14-22. doi:10.17338/trainology.1.1_14.
- Sharma J, Salhotra R. Tourniquets in orthopedic surgery. *Indian J Orthop*. 2012;46(4):377. doi:10.4103/0019-5413.98824.
- Rorabeck CH, Kennedy JC. Tourniquet-induced nerve ischemia complicating knee ligament surgery. *Am J Sports Med.* 1980;8(2):98-102. doi:10.1177/036354658000800207.
- Patterson SD, Brandner CR. The role of blood flow restriction training for applied practitioners: A questionnairebased survey. *J Sports Sci.* 2017;36(2):123-130. doi:10.1080/02640414.2017.1284341.
- 11. World Medical Association. World Medical Association declaration of Helsinki: Ethical principles for medical research involving human subjects. *J Am Med Assoc*. 2013;310(20):2191-2194. doi:10.1001/jama.2013.281053.
- 12. Loenneke JP, Thiebaud RS, Fahs CA, Rossow LM, Abe T, Bemben MG. Blood flow restriction does not result in prolonged decrements in torque. *Eur J Appl Physiol*. 2013;113(4):923-931. doi:10.1007/s00421-012-2502-x.
- McEwen JA, Jeyasurya J, Owens J. How can personalised tourniquet systems accelerate rehabilitation of wounded warriors, professional athletes and orthopaedic patients? In: 39th of The Canadian Medical and Biological Engineering Conference.; 2016.
- 14. Roth KE, Mandryka B, Maier GS, et al. In-vivo analysis of epicutaneous pressure distribution beneath a femoral tourniquet An observational study. *BMC Musculoskelet Disord*. 2015;16(1):1. doi:10.1186/s12891-015-0454-0.
- 15. Graham B, Breault MJ, McEwen JA, McGraw RW. Perineural pressures under the pneumatic tourniquet in the upper extremity. *J Hand Surg Am.* 1992;17(3):262-266. doi:10.1016/0266-7681(92)90111-E.
- Loenneke JP, Fahs CA, Rossow LM, et al. Effects of cuff width on arterial occlusion: Implications for blood flow restricted exercise. *Eur J Appl Physiol.* 2012;112(8):2903-2912. doi:10.1007/s00421-011-2266-8.
- Jessee MB, Buckner SL, Dankel SJ, Counts BR, Abe T, Loenneke JP. The Influence of Cuff Width, Sex, and Race on Arterial Occlusion: Implications for Blood Flow Restriction Research. *Sport Med.* 2016;46(6):913-921. doi:10.1007/s40279-016-0473-5.
- Shimizu R, Hotta K, Yamamoto S, et al. Low-intensity resistance training with blood flow restriction improves vascular endothelial function and peripheral blood circulation in healthy elderly people. *Eur J Appl Physiol.* 2016;116(4):749-757. doi:10.1007/s00421-016-3328-8.
- Borg G. Borg's Perceived Exertion and Pain Scales. Human Kinetics; 1998. doi:10.1097/00005768-199809000-00018.

- Jessee MB, Dankel SJ, Buckner SL, Mouser JG, Mattocks KT, Loenneke JP. The Cardiovascular and Perceptual Response to Very Low Load Blood Flow Restricted Exercise. *Int J Sports Med.* 2017;38(8):597-603. doi:10.1055/s-0043-109555.
- 21. Dankel S, Buckner S, Counts B, et al. The acute muscular response to two distinct blood flow restriction protocols. *Physiol Int*. 2017;104(1):64-76. doi:10.1556/2060.104.2017.1.1.
- 22. Bland MJ, Altman DG. Statistical Methods for Assessing Agreement Between Two Methods of Clinical Measurement. *Lancet*. 1986;327(8476):307-310. doi:10.1016/S0140-6736(86)90837-8.
- McEwen JA. Complications of and improvements in pneumatic tourniquets used in surgery. *Med Instrum*. 1981;15(4):253-257.
- 24. McLaren AC, Rorabeck CH. The pressure distribution under tourniquets. *J Bone Joint Surg Am.* 1985;67(3):433-438.
- 25. Martín-Hernández J, Ruiz-Aguado J, Herrero AJ, et al. Adaptation of Perceptual Responses to Low-Load Blood Flow Restriction Training. *J Strength Cond Res.* 2017;31(3):765-772. doi:10.1519/JSC.000000000001478.
- Mattocks KT, Jessee MB, Counts BR, et al. The effects of upper body exercise across different levels of blood flow restriction on arterial occlusion pressure and perceptual responses. *Physiol Behav.* 2017;171:181-186. doi:10.1016/j.physbeh.2017.01.015.
- Yasuda T, Abe T, Brechue WF, et al. Venous blood gas and metabolite response to low-intensity muscle contractions with external limb compression. *Metabolism*. 2010;59(10):1510-1519. doi:10.1016/j.metabol.2010.01.016.
- 28. Takarada Y, Nakamura Y, Aruga S, et al. Rapid increase in plasma growth hormone after low-intensity resistance exercise with vascular occlusion restriction Rapid increase in plasma growth hormone after low-intensity resistance exercise with vascular occlusion. *J Appl Physiol.* 2000;88:61-65.
- 29. Estebe JP, Le Naoures A, Chemaly L, Ecoffey C. Tourniquet pain in a volunteer study: Effect of changes in cuff width and pressure. *Anaesthesia*. 2000;55(1):21-26. doi:10.1046/j.1365-2044.2000.01128.x.
- 30. McEwen JA, Inkpen K. Safety preventing skin injuries. Surg Technol. 2002;34(August 2002):7-15.
- 31. Loenneke J, Thiebaud RS, Fahs CA, Rossow LM, Abe T, Bemben MG. Blood flow restriction: Effects of cuff type on fatigue and perceptual responses to resistance exercise. *Acta Physiol Hung.* 2014;101(2):158-166. doi:10.1556/APhysiol.101.2014.2.4.
- 32. Loenneke JP, Thiebaud RS, Fahs CA, Rossow LM, Abe T, Bemben MG. Effect of cuff type on arterial occlusion. *Clin Physiol Funct Imaging*. 2013;33(4):325-327. doi:10.1111/cpf.12035.
- Lins-Filho ODL, Robertson RJ, Farah BQ, Rodrigues SL., Cyrino ES, Ritti-Dias RM. Effects of Exercise Intensity on Rating of Perceived Exertion During a Multiple-Set Resistance Exercise Session. *J Strength Cond Res*. 2012;26(2):466-472. doi:10.1519/JSC.0b013e31822602fa.
- Hollander DB, Reeves G V., Clavier JD, Francois MR, Thomas C, Kraemer RR. Partial occlusion during resistance exercise alters effort sense and pain. *J Strength Cond Res.* 2010;24(1):235-243. doi:10.1519/JSC.0b013e3181c7badf.
- 35. Rossow LM, Fahs CA, Loenneke JP, et al. Cardiovascular and perceptual responses to blood-flow-restricted resistance exercise with differing restrictive cuffs. *Clin Physiol Funct Imaging*. 2012;32(5):331-337. doi:10.1111/j.1475-097X.2012.01131.x.
- Mouser JG, Dankel SJ, Jessee MB, et al. A tale of three cuffs: the hemodynamics of blood flow restriction. *Eur J Appl Physiol.* 2017;117(7):1493-1499. doi:10.1007/s00421-017-3644-7.
- Brandner CR, Warmington SA, Kidgell DJ. Corticomotor Excitability is Increased Following an Acute Bout of Blood Flow Restriction Resistance Exercise. *Front Hum Neurosci.* 2015;9:1-18. doi:10.3389/fnhum.2015.00652.
- Adams J, Cline MJ, Hubbard M, McCullough T, Hartman J. A new paradigm for post-cardiac event resistance exercise guidelines. *Am J Cardiol*. 2006;97(2):281-286. doi:10.1016/j.amjcard.2005.08.035.

- Cezar MA, De Sá CA, Corralo V da S, Copatti SL, Santos GAG dos, Grigoletto ME da S. Effects of exercise training with blood flow restriction on blood pressure in medicated hypertensive patients. *Mot rev educ fis.* 2016;22(2):9-17. doi:10.1590/S1980-6574201600020002.
- Madarame H, Kurano M, Fukumura K, Fukuda T, Nakajima T. Haemostatic and inflammatory responses to blood flow-restricted exercise in patients with ischaemic heart disease: A pilot study. *Clin Physiol Funct Imaging*. 2013;33(1):11-17. doi:10.1111/j.1475-097X.2012.01158.x.

	RI	РТ	HS
BFR pressures (mmHg)			
LOP	163.33 ± 17.06	$176.56 \pm 19.22^*$	$215.56 \pm 20.36^{\#\uparrow}$
Exercise trial			
80% LOP (Set pressure)	130 ± 14	141 ± 15	172 ± 16
80% LOP (Interface pressure)	$+10\pm8^{b}$	-2 ± 7	$+48\pm36^{\mathrm{b}}$
Rest trial			
80% LOP (Set pressure)	130 ± 14	141 ± 15	172 ± 16
80% LOP (Interface pressure)	-5 ± 5^{a}	-9 ± 4^{a}	-37 ± 13^{a}
40% LOP (Set pressure)	65 ± 7	71 ± 8	85 ± 9
40% LOP (Interface pressure)	-5 ± 5^{a}	-8 ± 4^{a}	-20 ± 10^{a}
Load (kg)			
1RM		178 ± 57	
30% 1RM		53 ± 17	
Leg circumference (cm)			
Proximal	61 ± 5	64 ± 4	61 ± 4
Distal	52 ± 5	55 ± 5	57 ± 5
Midline	58 ± 5	59 ± 5	59 ± 5
Distance between sensors (cm)	14.7 ± 1.0	14.7 ± 1.0	14.9 ± 1.2

Table 1. BFR pressures, load, leg circumference and sensor distance across the three different BFR cuffs (Mean \pm SD)

* = significantly higher than RI system (p<0.05); # = significantly higher than RI system (p<0.01); \dagger = significantly higher PT system (p<0.01); a = significantly different to set pressure (p<0.05); b = significantly different to set pressure (p<0.01).

	RI	РТ	HS
Pain (au)			
Set 1	2.4 ± 1.4	2.0 ± 1.4	3.0 ± 1.6
Set 2	$4.1 \pm 2.0^{*}$	$3.5 \pm 1.6^{*}$	$4.6 \pm 1.8^{*\dagger}$
Set 3	$6.8\pm2.8^{*\dagger}$	$4.8 \pm 1.8^{*}$	$7.0 \pm 2.5^{*\dagger}$
Set 4	$7.9\pm2.3^{*\dagger}$	$5.7\pm2.0^*$	$8.3\pm2.3^{*\dagger}$
RPE (au)			
Set 1	11 ± 2	11 ± 2	12 ± 2
Set 2	$14 \pm 2^*$	$13 \pm 0^{*}$	$14 \pm 1^{*\dagger}$
Set 3	$15 \pm 2^{*}$	$14 \pm 2^*$	$16 \pm 2^{*\dagger}$
Set 4	$17 \pm 2^{*\dagger}$	$15 \pm 2^{*}$	$17\pm2^{*\dagger}$
MAP (mmHg)			
Pre-exercise	102 ± 9	100 ± 9	104 ± 7
1-min post	$116 \pm 10^{\mathrm{a}\dagger}$	105 ± 9	$116 \pm 9^{a\dagger}$
5-min post	$108\pm5^{\dagger}$	99 ± 11^{a}	$110\pm9^{a\dagger}$

Table 2: Pain, RPE and MAP across the three different BFR systems (Mean \pm SD)

* = significantly higher than previous set (p<0.05); \dagger = significantly higher than PT cuff trial (p<0.01); a = significantly different to pre-exercise (p<0.05).

Figure 1. Set up of BFR cuff and pressure sensors for the rest and exercise trials

Figure 2. Bland and Altman plot of the mean difference between set pressure and interface pressure (mmHg) with 95% LOAs during the rest trial (RI system at 40% and 80% LOP = A and B, respectively; PT system at 40% and 80% LOP = C and D, respectively; HS system at 40% and 80% LOP = E and F, respectively).

Figure 3. Bland and Altman plots of the mean difference between set pressure and interface pressure (mmHg) with 95% LOAs across 4 sets during the exercise trial for the RI system (G, H, I and J), PT system (K, L, M and N), and HS system (O, P, Q and R), respectively.