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ABSTRACT 1 

Objectives 2 

To compare the acute perceptual and blood pressure responses to: 1) light load blood flow 3 

restriction resistance exercise (BFR-RE) in non-injured individuals and anterior cruciate ligament 4 

reconstruction (ACLR) patients; and 2) light load BFR-RE and heavy load RE (HL-RE) in ACLR 5 

patients. 6 

 7 

Design 8 

Between-subjects, partially-randomised. 9 

 10 

Methods 11 

This study comprised 3 groups: non-injured BFR-RE (NI-BFR); ACLR patients BFR-RE 12 

(ACLR-BFR); ACLR patients HL-RE (ACLR-HL). NI-BFR and ACLR-BFR performed 4 sets 13 

(30, 15, 15, 15 reps, total=75 reps, 30s inter-set rest) of unilateral leg press exercise at 30% 1RM 14 

with continuous BFR at 80% limb occlusive pressure. ACLR-HL performed 3 x 10 reps (Total=30 15 

reps, 30s inter-set rest) of unilateral leg press exercise at 70% 1RM. Perceived exertion (RPE), 16 

muscle pain, knee pain and pre- and 5-min post-exercise blood pressure were measured. 17 

 18 

Results 19 

RPE was higher in ACLR-BFR compared to NI-BFR (p<0.05). Muscle pain was higher in NI-20 

BFR and ACLR-BFR compared to ACLR-HL (p<0.05). Knee pain was lower in ACLR-BFR 21 

compared to ACLR-HL (p<0.01). There were no differences in blood pressure. 22 

 23 

Conclusion 24 

These responses to BFR exercise may not limit application and favourably influence knee pain 25 

throughout ACLR rehabilitation training programmes. These findings can help inform 26 

practitioners’ decisions to utilise this tool. 27 
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 3 

INTRODUCTION 1 

 2 

Light load blood flow restriction (BFR) exercise involves partial restriction of arterial inflow and 3 

full restriction of venous outflow from the working muscle during exercise (Scott, Loenneke, 4 

Slattery, & Dascombe, 2015). BFR is typically achieved using a pneumatic BFR system, 5 

comprised of a cuff connected to an inflation device (Hughes, Rosenblatt, Gissane, Paton, & 6 

Patterson, 2018). BFR is commonly applied in combination with light load resistance exercise 7 

(RE) using loads corresponding to 20-30% of the individual’s one repetition maximum (1RM) 8 

(Loenneke, Wilson, Marín, Zourdos, & Bemben, 2012). Light load BFR-RE can stimulate greater 9 

increases in skeletal muscle strength and hypertrophy compared to light load RE alone (Loenneke 10 

et al., 2012), with some studies reporting adaptations that are similar in magnitude to heavy load 11 

RE (Bryk et al., 2016; Kim et al., 2017; Laurentino et al., 2012). A recent meta-analysis 12 

demonstrated that light load BFR-RE is equally effective at increasing muscle mass as heavy load 13 

RE, and may provide an effective approach for increasing muscle strength in the absence of heavy 14 

load RE (Lixandrão et al., 2018). Light load BFR-RE is utilised as a rehabilitation tool in load 15 

compromised populations, such as pre-sarcopenic older adults (Libardi et al., 2015), knee 16 

osteoarthritis patients (Bryk et al., 2016; Segal, Williams, Davis, Wallace, & Mikesky, 2015; 17 

Segal, Davis, & Mikesky, 2015) and anterior cruciate ligament reconstruction (ACLR) patients 18 

(Ohta et al., 2003). BFR is reportedly used by practitioners for ACLR rehabilitation in particular 19 

(Patterson & Brandner, 2017). One focus of ACLR rehabilitation is attenuating atrophy and 20 

regaining muscle mass and strength to restore knee joint stability (Saka, 2014), which typically 21 

requires resistance loads of >65% 1RM (Folland & Williams, 2007; Garber et al., 2011). It has 22 

been demonstrated that light load BFR-RE is effective for increasing strength in populations with 23 

clinical muscle weakness (Hughes, Paton, Rosenblatt, Gissane, & Patterson, 2017), and may be 24 

used as an alternative to heavy load RE in the early post-surgery phases of ACLR rehabilitation 25 

(Hughes, Rosenblatt, Paton, & Patterson, 2018). 26 

 27 
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In clinical BFR application patients must be monitored for pain and hypertension (Hughes et al., 28 

2017). Research in non-injured populations demonstrates amplified exercise-induced increases in 29 

heart rate, systolic/diastolic blood pressure and mean arterial pressure in light load BFR-RE 30 

compared to matched workloads without BFR (Takano et al., 2005; Hollander et al., 2010; Kacin 31 

and Strazar, 2011; Vieira et al., 2013; Araújo et al., 2014; Downs et al., 2014). Additionally, 32 

perceptual responses to light load RE appear to be augmented with BFR (Loenneke et al., 2011; 33 

Loenneke et al., 2012; Staunton et al., 2015). However these responses are not necessarily high; 34 

research comparing the cardiovascular and perceptual responses to light load BFR-RE and heavy 35 

load RE suggests such responses are similar in magnitude (Brandner, Kidgell, & Warmington, 36 

2015; Hollander et al., 2010; Neto, Santos, et al., 2014; Poton & Polito, 2016). Thus, in non-37 

injured populations light load BFR-RE may provide no greater risk than an equivalent form of 38 

exercise at a higher intensity (Jessee et al., 2017). 39 

 40 

Much of the research to date comprises heterogeneous protocols and is almost exclusively 41 

conducted in non-injured populations. It is unclear if the acute perceptual and blood pressure 42 

responses to light load BFR-RE are similar in injured populations, such as ACLR patients, and 43 

non-injured populations. It has been hypothesised that the physiological responses to BFR 44 

exercise may dictate work volume and patient adherence (Martín-Hernández et al., 2017). Thus, 45 

it is important to understand how the acute responses compare to non-injured populations, as this 46 

may have implications for decisions regarding application in rehabilitation. Moreover, it is 47 

unknown if the acute physiological responses to light load BFR-RE and heavy load RE are similar 48 

in ACLR patients, as reported in non-injured populations. If BFR-RE is to be considered as an 49 

alternative to heavy load RE for strength rehabilitation in ACLR patients, it is important to 50 

examine and compare the acute physiological responses to these exercise modalities, including 51 

injury specific aspects such as knee pain (Aglietti, Buzzi, D’Andria, & Zaccherotti, 1993; 52 

Shelbourne & Trumper, 1997). Therefore, the aims of this study are to compare the acute 53 

physiological responses to 1) light load BFR-RE in non-injured individuals vs. ACLR patients, 54 
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and 2) light load BFR-RE vs. heavy load RE in ACLR patients. We hypothesised that the acute 55 

perceptual response to light load BFR-RE would be 1) higher in ACLR patients compared to non-56 

injured individuals; and 2) similar to HL-RE in ACLR patients, with no differences in post-57 

exercise blood pressure.58 



 6 

METHODOLOGY 1 

 2 

Participant information 3 

 4 

A total of 30 participants were recruited for this study, which comprised 3 groups: 1) Non-injured 5 

individuals performing light load RE with BFR (NI-BFR); 2) ACLR patients performing light 6 

load RE with BFR (ACLR-BFR); and 3) ACLR patients performing heavy load RE (ACLR-HL). 7 

Participant characteristics for each group are detailed in Table 1. Non-injured participants were 8 

active non-smokers free from cardiovascular, pulmonary and metabolic diseases and 9 

musculoskeletal injuries in the past 12 months. These aspects also applied to the ACLR patients 10 

with the exception that they had undergone ACLR surgery for a unilateral ACL tear. All ACLR 11 

surgeries were performed using hamstring autografts (n=20) (Table 1). In the ACLR groups, all 12 

participants were assessed to determine they met the criteria required to perform leg press exercise 13 

in the early post-surgery phases (weeks 2-3), including minimal swelling, a range of motion of 0-14 

90°, the ability to perform a single leg raise without knee extensor lag and the ability to 15 

unilaterally weight bear without pain (Cavanaugh & Powers, 2017). Recent research highlights 16 

that early and accelerated post-surgery rehabilitation may improve patient outcomes (Grant, 2013; 17 

Tennent et al., 2017), and may begin in the first 2-3 weeks post-surgery when following a criteria-18 

driven approach (Cavanaugh & Powers, 2017; Hughes, Rosenblatt, Paton, et al., 2018). On 19 

average, patients in the ACLR-BFR and ACLR-HL groups were 22 ± 2 and 21 ± 3 days post-20 

surgery, respectively, at the time of the familiarisation. Additionally, patients were free from: 21 

multiple reconstructive procedures (i.e. multiple ligaments), rheumatoid arthritis, history of deep 22 

vein thrombosis or vascular pathology in any lower limb, and the use of anticoagulant 23 

medications. All participants refrained from strenuous exercise, caffeine and alcohol in the 24 h 24 

prior to testing, and maintained normal dietary habits. All participants provided signed informed 25 

consent, in compliance with the Declaration of Helsinki, 7th version, October 2013 (World 26 
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Medical Association, 2013). All protocols were approved via the relevant NHS (REC reference: 27 

16/YH/0066) and University ethical committees (SMEC-2015-16-118). 28 

 29 

 30 

Table 1. Participant group characteristics (Mean ± SD) 31 

 NI-BFR ACLR-BFR ACLR-HL 

Number of participants (M/F) 

Age (y) 

Body mass (kg) 

Height (cm) 

Body mass index (kg.m2) 

Blood pressure (Systolic/diastolic 

mmHg) 

Mean arterial pressure (mmHg) 

Time from surgery to familiarisation 

(days) 

Graft type, n 

Hamstring autograft (%) 

10 (10/0) 

28 ± 5 

82.6 ± 13.4 

180.55 ± 6.83 

25.25 ± 3.20 

126 ± 10/76 ± 8 

 

93 ± 5 

- 

 

 

- 

10 (6/4) 

29 ± 5 

76.5 ± 15.7 

172.18 ± 7.67 

25.69 ± 4.16 

125 ± 3/80 ± 2 

 

95 ± 2 

22 ± 2 

 

 

10 (100%) 

10 (7/3) 

31 ± 7 

80.7 ± 12.3 

177.68 ± 7.57 

23.51 ± 3.38 

122 ± 3/81 ± 4 

 

95 ± 3 

21 ± 3 

 

 

10 (100%) 

 32 

 33 

Study design and randomisation 34 

 35 

This study was a between-subjects, partially randomised design. At a post-surgery consultant 36 

surgeon appointment, ACLR participants were block randomised to either heavy load RE (n=10) 37 

or light load BFR-RE (n=10) by an independent member of the research team using 5 x opaque 38 

envelopes each with 4 folded slips inside (2 x heavy load RE, 2 x light load BFR-RE). 39 

 40 

 41 
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Experimental procedures 42 

 43 

Familiarisation and medical screening 44 

All participants attended a familiarisation session and health screening, followed by one 45 

experimental session, separated by a minimum of 48 h. During the familiarisation, body mass and 46 

height were recorded to the nearest 0.1 kg and 0.01 cm, respectively; blood pressure was measured 47 

in a supine position at the brachial artery; unilateral concentric 10RM was recorded; and 48 

participants were familiarised to the RE protocols. Due to the nature of ACLR surgery, 10RM 49 

was calculated and used to predict each individual’s 1RM (Wathan, 1994) to prescribe RE load 50 

for a safer approach to strength testing. 51 

 52 

Exercise protocols 53 

All participants performed a warm-up of 5 min of unloaded cycling at a free cadence followed by 54 

10 repetitions of unilateral leg press exercise at a self-selected weight, with a subsequent 5 min 55 

rest period. ACLR participants performed the exercise on their injured limb, and non-injured 56 

participants on their dominant limb. RE protocols were designed consistent with standard 57 

protocols for each type of RE (Fahs, Loenneke, Rossow, Tiebaud, & Bemben, 2012), which is in 58 

line with previous studies examining the perceptual and hemodynamic responses to BFR-RE 59 

(Brandner & Warmington, 2017; Pinto & Polito, 2016). Participants in the NI-BFR and ACLR-60 

BFR groups then performed 4 sets (30, 15, 15 and 15 repetitions, respectively, with 30 s inter-set 61 

rest periods) of unilateral leg press exercise at 30% 1RM throughout 0-90° ROM and a contraction 62 

cycle of 1 s concentric/1 s eccentric with BFR applied continuously at 80% limb occlusive 63 

pressure (LOP). This set/repetition scheme is common in the BFR literature (Yasuda et al., 2006, 64 

2010, 2012; Loenneke et al., 2012, 2016) and doubling the volume does not appear to augment 65 

any adaptations (Loenneke, Fahs, Wilson, & Bemben, 2011; Martín-Hernández et al., 2013). 66 

Moreover, completing BFR-RE to volitional failure (Loenneke et al., 2014; Fahs et al., 2015) 67 

may not be practical in an early post-surgery setting. The rest period duration of 30 s was selected 68 
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as strength gains occur with 30 s inter-set rest periods (Loenneke, Wilson, et al., 2012) and this 69 

reflects recommendations for achieving skeletal muscle hypertrophy (Kraemer & Ratamess, 70 

2004). The pressure of 80% LOP was selected based on research suggesting higher pressures 71 

maximise fast twitch fibre recruitment and strength adaptations to BFR-RE (Lixandrão et al., 72 

2015; Suga et al., 2012). Participants in the ACLR-HL group performed unilateral leg press 73 

exercise (3 x 10 repetitions with 30 s inter-set rest periods) throughout a 0-90° ROM at 70% 1RM, 74 

which is a recommended protocol design for improving muscle strength (Garber et al., 2011). 75 

Previous research has also suggested that heavy loading following ACLR surgery may not 76 

negatively affect knee joint laxity (Bieler et al., 2014) and may be required to increase muscle 77 

strength to a satisfactory level (Thomeé et al., 2011). 78 

 79 

10RM testing 80 

Participants’ isotonic 10RM strength was tested on a spring-loaded leg press (Technogym, 81 

Bracknell, UK). Prior to testing participants performed a warm-up of 5 min light cycling followed 82 

by 10 repetitions of unilateral leg press at a self-selected weight, separated by 1 min of rest. 83 

Concentric 10RM was defined as the maximum load that could be lifted through controlled, full 84 

ROM (0-90°) with correct form. Beginning at 80% of predicted 10RM, 10RMs were achieved 85 

within 5 attempts, with 3 min of rest between attempts to ensure full muscle recovery (Tobalina, 86 

Calleja-GonzÁlez, De Santos, FernÁndez-López, & Arteaga-Ayarza, 2013). 87 

 88 

Blood flow restriction 89 

BFR was achieved using an automatic personalised tourniquet system (PTS) for BFR (Delfi 90 

Medical, Vancouver, BC, Canada), comprised of a dual-purpose easy-fit variable contour nylon 91 

cuff (11.5 cm x 86 cm, 5 mm thick) connected by airtight hose tubing to a PTS device with LOP 92 

calculation sensors and software. The PTS automatically adjusts pressure around the set pressure 93 

(McEwen, Jeyasurya, & Owens, 2016) and effectively regulates interface pressure within 94 

acceptable limits during BFR-RE (Hughes, Rosenblatt, Gissane, et al., 2018). The Delfi PTS 95 
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system automatically calculates LOP by increasing the cuff pressure in stepwise increments, 96 

analysing the pneumatic pressure pulsations in the cuff bladder by the arterial pressure pulsations 97 

at each cuff pressure increment, and uses these characteristics to determine LOP (McEwen, Masri, 98 

Day, & Younger, 2015).  Previous research demonstrates that measurement of lower limb LOP 99 

with this system concurs with the gold standard doppler technique of calculating LOP (McEwen 100 

et al., 2015). LOP was calculated with the participants in the position for exercise to ensure 101 

accurate calculation of LOP (Hughes, Jeffries, Waldron, et al., 2018). 102 

 103 

Perceptual responses 104 

Perceptual responses were assessed following each set using Borg’s ratings of perceived exertion 105 

(RPE) and pain (RPP) scales (Borg & Löllgen, 1998). Participants received verbal instructions 106 

on rating both during the familiarisation visit and were reminded at the experimental session. The 107 

pain scale ranges from 0 to 11; for muscle pain, participants were instructed that 10 was their 108 

reference point representing their previous worst felt pain, and a score of 11 represented worse 109 

pain than any they had ever felt before, similar to previous research examining discomfort during 110 

BFR (Dankel et al., 2017; Jessee et al., 2017). This same explanation was used to instruct patients 111 

on how to rate knee pain. Muscle pain was assessed in all 3 groups. Participants in the ACLR-112 

BFR and ACLR-HL groups were also asked to provide a score for knee pain; participants were 113 

instructed that this score represented any pain felt within the knee joint capsule. ACLR 114 

participants were also contacted 24 hr post-exercise to provide a knee pain score. Knee pain was 115 

not assessed in the NI-BFR group as any knee pain during the familiarisation session likely 116 

indicated a musculoskeletal problem that was grounds for exclusion from the study. For RPE, 117 

participants were instructed that a rating of 6 meant they felt no exertion, and 20 meant they were 118 

giving maximal effort and could not exert themselves any further (Dankel et al., 2017). For both 119 

pain and RPE the final exercising values were used for analysis to provide session ratings, which 120 

is line with previous studies (Brandner & Warmington, 2017; Neto, Sousa, et al., 2014; Vieira et 121 

al., 2014). 122 
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Blood pressure 123 

Systolic and diastolic blood pressure (mmHg) was measured at the brachial artery at pre-exercise 124 

and 5 min post-exercise using a Mobil-O-Graph ambulatory blood pressure monitor connected to 125 

a laptop with Hypertension Management software (IEM, Cockerillstrasse, Stolberg, Germany). 126 

This system measures peripheral blood pressure and records the systolic and diastolic data. 127 

 128 

Statistical analysis 129 

All data was stored on the password protected servers at the NHS hospital and university. All data 130 

were analysed using IBM SPSS Statistics Version 24.0 (IBM Corp, Chicago IL, United States of 131 

America). Data are presented as mean ± standard deviation with 95% confidence intervals (CIs) 132 

unless otherwise stated. Normal distribution of data was assessed using Shapiro-Wilks test 133 

(p>0.05), and homogeneity of variances (where appropriate) was assessed using Levene’s Test of 134 

Homogeneity of variances (p>0.05). Pearson’s r correlation test was used to examine any 135 

relationship between total exercise volume and each perceptual measure. Final RPE and muscle 136 

pain scores were assessed using one-way between subjects’ ANOVAs. Data for 24 h post-exercise 137 

knee pain was non-normally distributed; a logarithmic transformation was applied and the 138 

normally distributed (p>0.05) data for knee pain was assessed using a two-way between subjects’ 139 

ANOVA. LOP, 1RM, exercise load and volume were assessed using independent samples’ t-140 

tests. Blood pressure was assessed using one-way between subject’s ANOVAs. For any 141 

statistically significant interaction determined by ANOVA, Bonferroni post-hoc analysis was 142 

performed to examine the differences. Alpha significance was set a priori p<0.05.143 
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RESULTS 1 

 2 

Participants 3 

 4 

All 30 participants completed the study with no adverse events. Correlation analysis found no 5 

significant relationship between total exercise volume and perceptual measures. Mean ± SD for 6 

RE loads, volume and BFR pressures are detailed in Table 2. 7 

 8 

 9 

Table 2. Exercise load, volume and BFR pressures (mean ± SD). 10 

 NI-BFR ACLR-BFR ACLR heavy 

1RM (kg) 

Exercise load (kg) 

Exercise volume (Reps) 

LOP (mmHg) 

80% LOP (mmHg) 

161 ± 44 

48 ± 13 

75 ± 0 

173 ± 22 

138 ± 18 

61 ± 28* 

16 ± 9* 

64 ± 13* 

186 ± 28 

148 ± 22 

57 ± 17* 

38 ± 11* 

30 ± 0*† 

- 

- 

*=significantly lower than NI-BFR group (p<0.05); †=significantly lower than ACLR-BFR group (p<0.05) 11 

 12 

 13 

RPE 14 

 15 

RPE was statistically significantly different between the groups, F(2, 27) = 6.098, p<0.01. RPE was 16 

higher in the ACLR-BFR group compared to the NI-BFR group, a mean difference of 3.4 ± 1 17 

(95% CI: 0.825 to 5.975, p<0.01). There were no differences in RPE between the ACLR-BFR 18 

group and the ACLR-HL (mean difference of 2.5 ± 1, 95% CI: -0.075 to 5.075, p>0.05). There 19 

were no differences in RPE between the ACLR-HL and NI-BFR groups (mean difference of 0.9 20 

± 1 (95% CI: -1.675 to 3.475, p>0.05) (Figure 1). 21 
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 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

Muscle pain 31 

 32 

Muscle pain was statistically significantly different between the groups, F(2, 27) = 16.084, p<0.01. 33 

Muscle pain was higher in the ACLR-BFR group compared to the NI-BFR group, a mean 34 

difference of 2.7 ± 1 (95% CI: 0.292 to 5.058, p<0.05). Muscle pain was higher in the ACLR-35 

BFR group compared to the ACLR-HL group, a mean difference of 5 ± 1 (95% CI: 2.942 to 36 

7.758, p<0.01). Muscle pain was higher in the NI-BFR group compared to the ACLR-HL group, 37 

a mean difference of 3 ± 1 (95% CI: 0.242 to 5.058, p<0.05) (Figure 2). 38 

 39 

 40 

 41 

 42 

 43 

 44 

 45 

 46 

 47 

Figure 2. Session rating of muscle pain in the 3 groups (mean ± SD). * indicates a significant 

difference compared to NI-BR group (p<0.05); † indicates a significant difference compared to 

ACLR-HL group (p<0.01); ‡ indicates a significant difference compared to ACLR-HL group 

(p<0.05) 

Figure 1. Session rating of perceived exertion in the three groups (mean ± 

SD). † indicates a significant difference (p<0.01). 
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Knee pain 48 

 49 

There was no statistically significant interaction between the groups and timepoints for knee pain, 50 

F(1, 36) = 0.123, p>0.05. A main effect of treatment on knee pain was found, F(1, 38) = 21.992, 51 

p<0.001. Knee pain was lower in the ACLR-BFR group compared to the ACLR-HL group, a 52 

mean difference of 1.3 (95% CI: -1.890 to -0.750, p<0.01) (Figure 3 and Figure 4). 53 

 54 

 55 

 56 

 57 

 58 

 59 

 60 

 61 

 62 

 63 

 64 

 65 

 66 

 67 

 68 

 69 

 70 

 71 

 72 

 73 

 74 

Figure 3. Session knee pain score in the ACLR groups (mean ± SD). * indicates a 

significant difference (p<0.05). 

Figure 4. 24 hr post-exercise knee pain scores in the ACLR-BFR and ACLR-HL 

groups (median ± IQR). † indicates a significant difference (p<0.01). 
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Blood pressure 75 

 76 

There were no differences in pre- and post-exercise blood pressure between any groups (Table 77 

3). 78 

 79 

Table 3. Pre- and 5 min post-exercise blood pressure in each group (mean ± SD). 80 

 Pre-exercise blood pressure (mmHg) Post-exercise blood pressure 

(mmHg) 

 Systolic Diastolic Systolic Diastolic 

NI-BFR 127 ± 10 80 ± 3 129 ± 13 78 ± 5 

ACLR-BFR 130 ± 9 78 ± 6 131 ± 12 82 ± 7 

ACLR-HL 139 ± 9 85 ± 4 139 ± 9 82 ± 4 

81 
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DISCUSSION 1 

 2 

 3 

This study was the first to compare the acute perceptual and hemodynamic responses to heavy 4 

load RE and light load BFR-RE in clinical populations. The main findings were: 1) RPE was 5 

higher in the ACLR-BFR group compared to the non-injured BFR group, but similar to the 6 

ACLR-HL group; 2) Muscle pain was higher in both BFR groups compared to the ACLR-HL 7 

group; 3) Session knee pain and 24 hr post-exercise knee pain was lower in the ACLR-BFR group 8 

compared to the ACLR-HL group; and 4) There were no differences in pre- and post-exercise 9 

blood pressure between the groups. 10 

 11 

Research in non-injured populations suggests the perceptual responses to light load BFR-RE are 12 

similar to, or greater than, heavy load RE (Brandner & Warmington, 2017; Hollander et al., 2010; 13 

Loenneke et al., 2015; Vieira et al., 2014). In a randomised crossover design, Hollander et al. 14 

(2010) demonstrated comparable increases in RPE response to an acute bout of light load BFR-15 

RE (30% 1RM) and heavy load RE (70% 1RM) in non-injured populations, which is in line with 16 

the findings of Loenneke et al. (2015). The present study demonstrates similar findings, 17 

suggesting that the acute RPE response to light load BFR-RE is not greater than heavy load RE 18 

in ACLR patients. It has been demonstrated that proximal arterial occlusion of a limb during 19 

exercise results in overestimation of perceived force (Takarada, Nozaki, & Taira, 2006), which 20 

may explain the findings of the present study and previous research. Although the mechanisms 21 

of increased estimation of effort with light loads and BFR are not fully understood, it has been 22 

proposed that impeded conduction in peripheral nerves due to mechanical deformation during 23 

compression and inhibition of cutaneous sensory nerves may alter the response of somatic efferent 24 

neurons (Hollander et al., 2010; Takarada et al., 2006). Additionally, post-surgery volitional 25 

muscle activation failure (Perraton et al., 2017) caused by failure of the central nervous system to 26 

activate the knee extensor muscles (Mizner, Petterson, Stevens, Vandenborne, & Snyder-27 
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Mackler, 2005) may contribute to a greater RPE response in the ACLR-BFR group compared to 28 

the non-injured BFR group at the same relative exercise load. 29 

 30 

In the present study, muscle pain scores were higher in both the non-injured BFR and ACLR-31 

BFR groups compared to the ACLR-HL group. There is an increase in pain perception with light 32 

load BFR exercise alongside increased muscle activation (Wernbom, Järrebring, Andreasson, & 33 

Augustsson, 2009) which has been attributed to metabolite accumulation due to venous occlusion 34 

and hypoxia (Suga et al., 2009). It is hypothesised that this may stimulate group III and IV afferent 35 

fibres, increasing sympathetic nervous system activity (Takarada et al., 2000). The observation 36 

of higher pain scores in the present study is in contrast to previous work demonstrating similar 37 

perceptions of pain between light load BFR-RE (30% 1RM) and heavy load (70% 1RM) exercise 38 

(Hollander et al., 2010). However, the restriction pressures used in the present study (173 and 186 39 

mmHg for the NI-BFR and ACLR-BFR groups, respectively) were likely higher than those used 40 

by Hollander et al. (20% below systolic blood pressure). Higher pressures may cause greater 41 

accumulation of metabolites (Yasuda, Abe, et al., 2010), which may increase perception of 42 

discomfort (Jessee et al., 2017). Moreover, in the present study a greater total volume of work 43 

was completed by the BFR groups, which may have influenced pain responses due to greater time 44 

under BFR. Regarding the BFR groups only, muscle pain and strains that are observed following 45 

ACLR surgery (D’Alessandro, Wake, & Annear, 2013) may contribute to the higher pain scores 46 

observed in the ACLR-BFR group compared to the non-injured BFR group, particularly if the 47 

ACLR-BFR group were present with some degree of muscle pain prior to exercise.  48 

 49 

Knee pain is widely reported following ACLR surgery, particularly in the anterior knee 50 

compartment (Chmielewski et al., 2008), and may predict a more difficult and prolonged 51 

rehabilitation process (Dunn et al., 2010). Knee pain has been linked to concomitant injuries such 52 

as bone bruising and cartilage/meniscal damage (Hughes, Rosenblatt, Paton, et al., 2018), and 53 

pain intensity is associated with self-reported function following surgery and successful return to 54 
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sport (Chmielewski et al., 2008; Czuppon, Racette, Klein, & Harris-Hayes, 2014). Thus, 55 

minimising knee pain in early strength rehabilitation is important. In the present study, the ACLR-56 

BFR group experienced less knee pain during RE, likely due to the lower loads (30% vs. 70% 57 

1RM) and lower knee joint forces during RE. Interestingly, the ACLR-BFR group also reported 58 

less knee pain in the 24 hours following exercise. This suggests light load BFR-RE in the early 59 

post-surgery phases may not exacerbate pain or inflammation within the knee joint on subsequent 60 

days after training, which may positively influence exercise volume during sessions and patient 61 

adherence to a rehabilitation programme (Juan Martín-Hernández et al., 2017). Therefore, 62 

similarly to research in non-injured populations, light load BFR-RE may be used more frequently 63 

than heavy load RE, such as twice daily (Abe, Kawamoto, et al., 2005; Yasuda, Fujita, et al., 64 

2010). Adaptations in muscle strength and mass have been observed in short time frames such as 65 

two weeks (Abe, Yasuda, et al., 2005; Yasuda et al., 2005) and even one week (Abe, Kawamoto, 66 

et al., 2005; Fujita, Brechue, Kurita, Sato, & Abe, 2008), thus the findings of the present study 67 

may have important implications for the use of BFR in early ACLR rehabilitation. 68 

 69 

Collectively, the findings of the present study suggest that the perceptual responses to light load 70 

BFR-RE are similar or greater than heavy load RE in ACLR patients. Previous research suggests 71 

that exacerbated perceptual responses subside after a few exercise sessions with BFR (Clarkson, 72 

Conway, & Warmington, 2017; Fitschen et al., 2014; Weatherholt, Beekley, Greer, Urtel, & 73 

Mikesky, 2013), suggesting an adaptive effect facilitating tolerance with exposure (Brandner et 74 

al., 2018). Moreover, there appears to be a similar time course of adaptation to perceptual 75 

responses between light load BFR-RE and heavy load RE (Juan Martín-Hernández et al., 2017). 76 

Although it is unknown if the time course of adaptation in ACLR populations is similar, 77 

collectively these reports and the findings of the present study suggest that high initial perceptual 78 

responses may not be a limiting factor when using BFR in an ACLR rehabilitation programme 79 

(Loenneke et al., 2016). 80 

 81 
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Finally, the present study found no differences in post-exercise blood pressure between the 82 

groups. This is in line with previous research demonstrating similar blood pressure responses in 83 

light load BFR-RE and heavy load RE (Brandner et al., 2015; Neto, Santos, et al., 2014; Poton & 84 

Polito, 2016; Sardeli et al., 2017). Thus, light load BFR-RE likely provides no greater 85 

hemodynamic risk than heavy load RE (Jessee et al., 2017). Moreover, these findings are in line 86 

with previous work indicating return to baseline of mean arterial pressure following BFR-RE with 87 

the Delfi PTS device (Hughes, Rosenblatt, Gissane, et al., 2018). However, it is of note that the 88 

blood pressure response to unilateral exercise is likely lower than bilateral exercise with greater 89 

muscle mass involvement (Adams, Cline, Hubbard, McCullough, & Hartman, 2006), therefore 90 

the findings of the present study may be specific to unilateral exercise only. 91 

 92 

There are several limitations to this study. Firstly, total exercise volume was heterogeneous 93 

between groups, therefore a volume effect on perceptual responses cannot be disregarded; 94 

however, the protocols used reflect current guidelines for light load BFR-RE and heavy load RE 95 

for improving muscle strength and mass. Secondly, we could not quantify overall presence or 96 

severity of any concomitant pathologies, which may also impact upon the perceptual responses 97 

to RE; however, post-surgery pathologies vary in incidence and severity in ACLR patients and 98 

thus are difficult to account for (Tahami & Rad, 2015). Thirdly, our NI-BFR group was composed 99 

of males only. Literature suggests that the perceptual response to relative RE load is similar 100 

between males and females (Pincivero, Coelho, & Campy, 2003), however at present there is a 101 

lack of research concerning gender differences in the perceptual response to BFR exercise which 102 

may impact the findings of the present study. Finally, the findings of the present study may be 103 

specific to the RE protocols used. 104 

 105 

 106 

 107 

 108 
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CONCLUSION 1 

 2 

Collectively, the findings of present study suggest that the hemodynamic and perceptual 3 

responses to light load BFR-RE in ACLR patients may not be a limiting factor for clinician 4 

concern in a rehabilitation setting, and that this mode of exercise may favourably influence knee 5 

pain during and throughout a training programme. Future research should monitor these responses 6 

over the course of a rehabilitation training programme.7 
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