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Abstract 34 

Humans can rapidly discriminate complex scenarios as they unfold in real time, for example during 35 

law enforcement or, more prosaically, driving and sport. Such decision-making improves with 36 

experience, as new sources of information are exploited. For example, sports experts are able to 37 

predict the outcome of their opponent’s next action (e.g. a tennis stroke) based on kinematic cues 38 

“read” from preparatory body movements. Here, we explore the use of psychophysical classification-39 

image techniques to reveal how participants interpret complex scenarios. We used sport as a test 40 

case, filming tennis players serving and hitting ground strokes, each with two possible directions. 41 

These videos were presented to novices and club-level amateurs, running from 0.8 seconds before to 42 

0.2 seconds after racquet-ball contact. During practice, participants anticipated shot direction under 43 

a time limit targeting 90% accuracy. Participants then viewed videos through Gaussian windows 44 

("bubbles") placed at random in the temporal, spatial or spatiotemporal domains. Comparing bubbles 45 

from correct and incorrect trials revealed how information from different regions contributed toward 46 

a correct response. Temporally, only later frames of the videos supported accurate responding (from 47 

~0.05 seconds before ball contact to 0.1+ seconds afterwards). Spatially, information was accrued 48 

from the ball’s trajectory and from the opponent’s head. Spatiotemporal bubbles again highlighted 49 

ball trajectory information, but seemed susceptible to an attentional cuing artefact, which may 50 

caution against their wider use. Overall, bubbles proved effective in revealing regions of information 51 

accrual, and could thus be applied to help understand choice behavior in a range of ecologically valid 52 

situations. 53 

 54 

55 
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Imagine yourself driving your car one evening. As you turn a bend, a cat appears in your 56 

headlights. Should you brake hard, or perhaps swerve left or right? Seemingly without your conscious 57 

intervention, your body has decided, and you are relieved to find that your reaction has avoided the 58 

cat without causing a more dangerous collision.  59 

 60 

Successful speeded decision-making of this kind has been fundamental to our survival as a 61 

species, and continues to pervade everyday life. However, it is not always obvious what particular 62 

information is exploited to make speeded choices, and which potentially relevant cues are left unused. 63 

For example, when avoiding the cat, was the upcoming curvature of the road or the presence of 64 

another vehicle in the rear-view mirror taken into account? If not, might a better driver have exploited 65 

these cues? 66 

 67 

In real-life scenarios, many cues to speeded decision-making are subtle, and training or 68 

extensive experience may be required to facilitate their use. Competitive sport provides a good 69 

example. How is it that experts are able to quickly and accurately discriminate sporting scenarios as 70 

they unfold? Previous research has revealed that elite athletes make use of visual information from 71 

their opponents’ bodies in order to predict what will happen next, for example using the movement 72 

of a cricket bowler’s arm and hand, just before ball release, to anticipate the trajectory of the ball that 73 

will be delivered (Abernethy & Russell, 1984; Muller, Abernethy, & Farrow, 2006; Yarrow, Brown, & 74 

Krakauer, 2009). 75 

 76 

Our knowledge about this sport’s “expert anticipatory advantage” has been garnered through 77 

the application of the spatial and temporal occlusion paradigms, developed by experimental 78 

psychologists (e.g. Abernethy, 1988; Jones & Miles, 1978). However, there are several issues with 79 

these paradigms as a general-purpose methodology to reveal regions of information accrual in 80 

complex real-world scenarios. In the remainder of the introduction, we briefly describe these 81 
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traditional approaches, then use their limitations to motivate the introduction of a method that has 82 

thus far been applied mainly to low-level psychophysical problems: Classification-image analysis 83 

(Ahumada Jr & Lovell, 1971). We go on to describe one specific variant of this approach (“bubbles”; 84 

Gosselin & Schyns, 2001) which we will test here, using tennis as a representative decision-making 85 

scenario, in order to assess its applicability to the more general problem of measuring information 86 

extraction in complex situations where one from a discrete set of choices must be rapidly selected. 87 

 88 

The spatial and temporal occlusion paradigms 89 

In competitive sports, time is of the essence. While an unfolding scenario might ultimately 90 

provide unambiguous information about the appropriate response, this will often come too late for 91 

an athlete to simply wait and then react with certainty. Examples include reacting to bowling in cricket, 92 

pitching in baseball, serving in tennis, or penalty taking in soccer. In each case, the ball’s trajectory 93 

provides the clearest information about the appropriate reaction, but the interval of time between 94 

receiving this information and having to initiate a response is very brief. This necessitates some degree 95 

of guessing if the ball is to be intercepted effectively. However, this guessing may still be informed by 96 

additional cues, for example the kinematics of the opponent’s body prior to ball contact or release. To 97 

investigate this issue, multiple exemplars of a sports scenario can be filmed from a decision maker’s 98 

perspective – for example, tennis serves coming to either forehand or backhand – so that a realistic 99 

decision with n (in this case 2) possible responses can be elicited. The videos can then be deliberately 100 

degraded, under the logic that the decision, which is trivially easy when the video is played in its 101 

entirety, will become much harder as critical cues are removed (ultimately falling to chance levels of 102 

performance). 103 

 104 

Early studies degraded videos by limiting information in the temporal domain, known as 105 

temporal occlusion. For example, in tennis (the sport we investigate here) one early study showed 106 

that experts were above chance (and better than intermediate or novice players) at guessing the 107 
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landing position of a serve when the video was stopped at (and thus information was occluded from) 108 

0.042 s before ball contact (Jones & Miles, 1978). The implication was that some useful information 109 

must have been accrued before this moment. Typically, temporal occlusion involves stopping the 110 

video at one or several different time points, but some authors have also introduced discrete windows 111 

(e.g. 0.3 s periods of visibility) that occlude both earlier and later information (e.g. Farrow, Abernethy, 112 

& Jackson, 2005). 113 

 114 

Temporal occlusion approaches can be complemented by spatial occlusion, where the video 115 

is shown after having removed a spatially constrained source of information, in order to assess its 116 

impact. In tennis, this is typically accompanied by full (temporal) occlusion following racquet-ball 117 

contact in order to isolate the spatial location of cues utilised for pre-trajectory prediction. For 118 

example, Jackson and Mogan (2007) showed that experts still discriminated the direction of tennis 119 

serves at above-chance levels following removal of body regions such as the entire lower body, but 120 

not when the ball’s toss was occluded. Experts were also impaired (but to a lesser extent) by removal 121 

of the arm and racquet. Removal of this latter region has also been found to impair expert 122 

performance when predicting the direction of ground strokes, rather than serves (Shim, Carlton, & 123 

Kwon, 2006). 124 

 125 

The temporal and spatial occlusion approaches have provided important information about 126 

how experts extract and use information in numerous sporting domains. In principal the approaches 127 

could even be generalised beyond sporting scenarios. However, they have some drawbacks as widely 128 

applicable methods. First, they depend upon the researcher’s intuitions regarding the location of 129 

relevant information – the researcher is choosing what to occlude. It may be desirable to have sources 130 

of information emerge in a more bottom-up fashion, to make sure that cues are not overlooked (and 131 

avoid concerns over experimenter confirmation bias). Second, the creation of stimuli is time intensive. 132 
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Video manipulation of this kind, particularly for spatial occlusion, is difficult to automate, providing a 133 

barrier to potential users from new fields of experimentation. 134 

 135 

Spatial and temporal occlusion techniques were developed by researchers in applied cognitive 136 

psychology. However, as we outline next, parallel developments in other fields, most notably sensory 137 

psychophysics, provide a natural complement to these techniques that relies on a very similar basic 138 

logic, but replaces deliberate image occlusion with random degradation. 139 

 140 

Classification-image techniques 141 

Traditional psychophysics (e.g. Graham, 1989) has three general paradigms for probing the 142 

properties of visual mechanisms: summation, masking, and adaptation. All three paradigms require a 143 

visual target that observers can detect. In m-alternative, forced-choice designs, where there is 1 target 144 

and m–1 foils, non-target stimuli added to the target typically produce a decrease in the detection 145 

threshold (i.e. less of the target is required for successful detection). This is known as summation. 146 

Selectivity of the detection mechanism can be inferred from the relationship between non-target 147 

content and threshold decrease. In the masking paradigm, non-target stimuli are added to all m 148 

alternatives. This typically (but not always) elevates detection threshold, and selectivity of the 149 

detection mechanism can be inferred from the relationship between non-target content and 150 

threshold elevation. The adaptation paradigm is like masking, except the non-target stimuli are 151 

presented prior to the m alternatives. 152 

 153 

Unlike m-alternative designs, each trial in a classification design contains only 1 target (there 154 

are no foils). The observer must classify this stimulus into one of n possible categories (note the 155 

similarity to the occlusion paradigms described previously). With only a target (and no foils) there is 156 

no difference between masking and summation. Non-target stimuli added to the target can bias the 157 

observer’s response and/or reduce its reliability. In a typical experiment, non-target content is 158 
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manipulated systematically, and its effect on response bias and response reliability can provide clues 159 

to the observer’s decision process.  160 

 161 

Instead of manipulating non-target content systematically, Ahumada and colleagues 162 

(Ahumada Jr & Lovell, 1971; Ahumada, 2002) pioneered the use of stochastic manipulation. In their 163 

studies, the selectivity of classification mechanisms was inferred from the trial-by-trial relationship 164 

between each individual sample of the non-target or “mask” and the observer’s response. In some 165 

cases (e.g. Abbey, Eckstein, & Bochud, 1999) a simple linear combination of non-target stimuli (called 166 

the “classification image”) could be guaranteed to provide an unbiased estimate of the classifier’s 167 

“template” or receptive field. Essentially, the random noise that happened to be added to the image 168 

when observers got things right (and indeed the random noise added when they got things wrong) 169 

can be extremely informative about how they are forming their decisions. 170 

 171 

The traditional classification-image approach in visual psychophysics makes use of pixel-by-172 

pixel additive luminance noise, and is conceptually closely related to the technique of spike-triggered 173 

averaging applied to single-cell recordings in neurophysiology (Marmarelis & Naka, 1972; Simoncelli, 174 

Paninski, Pillow, & Schwartz, 2004). It is sometimes referred to as “reverse correlation”, and can 175 

appear mathematically intimidating to the uninitiated. However, a closely related approach, based on 176 

the stochastic application of multiplicative noise, is (arguably) more intuitive. In the “bubbles” 177 

approach, the entire information space (e.g. a 2D image) is initially masked (e.g. set to average image 178 

luminance) before specific regions are revealed through randomly located Gaussian windows (the so-179 

called bubbles) that vary from trial to trial (see Figure 1 for illustration). As we expand in the methods 180 

section below, a comparison of the bubbles that were present on trials where participants succeeded 181 

with those present on trials where they failed can be used to produce a classification image yielding a 182 

map of the informative regions driving correct decisions. For example, bubbles have been used to 183 
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show which regions of the human face are used by observers when they make decisions about gender 184 

(Gosselin & Schyns, 2001). 185 

  186 

The current study: Testing bubbles for real-world decisions 187 

 The bubbles technique has previously been applied mainly to static images, although bubbles 188 

with temporal or spatiotemporal profiles have sometimes been applied in order to reveal information 189 

use through time (e.g. Blais, Arguin, & Gosselin, 2013; Fiset et al., 2009; Vinette, Gosselin, & Schyns, 190 

2004). Occasionally, dynamic stimuli more akin to a video have been investigated (e.g. Blais, Roy, Fiset, 191 

Arguin, & Gosselin, 2012; Thurman & Grossman, 2008). However, given the psychophysical tradition 192 

within which classification-image analysis evolved, the tendency has been to work with austere and 193 

tightly controlled stimuli. Here, we investigate the use of bubbles to reveal informative regions within 194 

real-world video stimuli. We also apply different bubbling methods (temporal, spatial, and 195 

spatiotemporal) to the same task to see how each performs. Furthermore, we deliberately adopt a 196 

sample size and experimental duration typical of experimental psychology, rather than sensory 197 

psychophysics, as classification-image approaches have tended to be used with small samples but very 198 

large numbers of trials (but see e.g. Butler, Blais, Fiset & Gosselin, 2010; Smith, Cesana, Farran, 199 

Karmiloff-Smith, & Ewing, 2017), something that may appear as a barrier to researchers with a more 200 

applied focus (who may depend on specialist populations). We use sports, specifically tennis, as a test 201 

case, with the intention of assessing the applicability of this kind of approach to a wider range of 202 

decision-making scenarios. 203 

 204 

Methods 205 

 206 

Participants 207 

30 participants (7 women and 23 men) aged 19-62 (mean = 32) took part in the various stages 208 

of this experiment (with 29 participants completing each of the stages, and most participants 209 
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completing all three). Participants were recruited and assigned to one of two groups on the basis of 210 

their tennis playing experience/skill. Those in the novice group (5 women and 10 men) aged 20-51 211 

years (mean = 30) had no experience of playing tennis competitively. Those in the tennis group (2 212 

women and 13 men) aged 19 – 62 years (mean = 33) had 2-35 (mean = 11) years of experience playing 213 

competitive tennis and currently played between 0 and 150 (mean = 30) competitive matches per 214 

year.1 Players also indicated their current International Tennis Number (ITN), which is an index of their 215 

standard of play and ranges from ITN 1 (a player with extensive professional tournament experience 216 

and who currently holds or is capable of holding an ATP/WTA ranking) to ITN 10 (a player that is just 217 

starting to play competitively). Tennis-playing participants had an average ITN of 4 (range 2-7). 218 

Informed consent was obtained from all participants, who were paid £10/hour for their time. Ethical 219 

approval was granted by the Dept. of Psychology Research Ethics Committee, City, University of 220 

London. 221 

 222 

Apparatus & Stimuli 223 

 Video stimuli (available on request) were recorded at a tennis club using a tripod-mounted 224 

camera (frame rate 120 Hz, frame size 1280x720 pixels). Four club coaches/hitters of a good but not 225 

elite standard acted as models, and were instructed to “hit winners” without attempting explicit 226 

deception. They were situated near the baseline, and recorded against a largely uniform blue 227 

backdrop. They were recorded serving (from the right-hand side of the court) or playing forehand 228 

ground strokes (running rightwards from a central position to return near the singles side line), 229 

directing their shots towards an imaginary receiver’s forehand or backhand. To increase image 230 

resolution, the camera was positioned at the net, on a line projecting from the filmed player to the 231 

imaginary receiver at the opposite baseline (height = 1.6 m, left of centre line by 1.25 m for ground 232 

strokes, right of centre line by 1.5 m for serves). Balls were called in or out to facilitate later rejection 233 

of videos where the ball landed out. For ground strokes, one player delivered to all of the other three 234 

                                                           
1 One participant failed to provide this information. 
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models, to ensure as constant a delivery as possible, and also called for line/cross strokes (i.e. towards 235 

the right-handed model’s backhand and forehand, respectively) immediately after delivery to prevent 236 

early decisions that might introduce unnatural or pre-emptive postural cues. Only these three models 237 

were included in the experimental trials (see below). The final player received deliveries from a 238 

different model, and was consequently included only in practice trials. 239 

 Videos were first transformed to eight-bit greyscale. Of 350 initial videos, 215 contained shots 240 

that landed in. These videos were retained and then rated by two authors in order to pick a subset 241 

that were unambiguous (regarding the direction of the shot – line/cross for ground strokes, T/cross 242 

for serves), relatively homogeneous in terms of the position of the players at the time of ball contact, 243 

and lacking in artefactual cues that might allow the videos to be easily remembered for future 244 

classification (e.g. an unusual delivery trajectory for ground strokes). In each video, the frame 245 

corresponding to ball contact and the position at which the ball struck the racquet head on this frame 246 

were manually identified for use in subsequent presentation and analysis (see below).  247 

 The experiment was controlled by a PC running scripts written in Matlab (The Mathworks, 248 

Natick, U.S.A.) using the Psychophysics Toolbox extension (Brainard, 1997; Kleiner et al., 2007; Pelli, 249 

1997). Video stimuli were presented on a CRT monitor (1024x768 pixels, ~40x30 cm, with a vertical 250 

refresh rate of 120 Hz). Only a central 600 x 400 pixel region of each video that excluded irrelevant 251 

peripheral information was presented. The screen was elevated to eye level via an adjustable support 252 

and viewed at a distance of ~100 cm in order to present the opposing tennis player with a height 253 

subtending ~4° visual angle (approximating their size as seen from the baseline during actual play). 254 

Participants responded by stepping rightward or leftward, thus lifting the corresponding foot from 255 

one of two digital pedals, monitored at 100,000 Hz via a 16 bit A/D card (National Instruments X-series 256 

PCIe-6323). 257 

 258 

Design & Procedure 259 
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 Participants completed three variants of the task in separate sessions, with a constant order 260 

(temporal, then spatial, then spatiotemporal).2 Sessions took around two hours, and consisted of four 261 

blocks: One practice and one experimental block presenting videos of only serves, and the same for 262 

ground strokes (with order of shot type counterbalanced across participants). During practice, 263 

participants viewed 100 videos (50% to forehand, 50% to backhand) containing all four players (8 264 

possible videos per player) but with a preponderance of videos (70%) from one player (see stimuli, 265 

above) and fewer videos (10% each) from the remaining three players, who were saved mainly for the 266 

experimental trials (see below). Videos were presented in a random order, and selection was carried 267 

out with replacement (such that individual videos for each player did not necessarily occur with equal 268 

frequencies). 269 

Videos presentations began at −0.8 s relative to racquet-ball contact, and terminated at 0.2 s 270 

after racquet-ball contact, or at the time of response if earlier than this. We wished to push 271 

participants to respond as quickly as was feasible for them, while retaining some ability to perform 272 

the task, so as to extract sources of information that might be used during actual play. The practice 273 

block therefore served not only as a warm up, but also to estimate the time window within which 274 

participants could respond with ~90% accuracy. This was achieved via a QUEST staircase (Watson & 275 

Pelli, 1983) modified to assume a cumulative Gaussian psychometric function. An adjustable value 276 

defined the middle of a 0.3 s window within which participants were encouraged to respond via on-277 

screen feedback (which also indicated correctness and the exact time they took to act). QUEST varied 278 

this value, based on the correctness of previous decisions (but only those decisions that had been 279 

made within the target window) in order to estimate an appropriate response deadline for the 280 

subsequent experimental block (being the upper limit of the target window). The initial target value 281 

was 0.4 s from racquet-ball contact. Further QUEST parameters, in particular the slope of the assumed 282 

                                                           
2 We viewed this systematic confound as acceptable, as we intended to assess the broad viability and 
compatibility of each approach, rather than make a detailed comparison between them, but we recognise that 
this choice was not ideal. 
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psychometric function (σ−1 = 7.5 s−1) were estimated from pilot work, in which the target window for 283 

one author was manipulated systematically, via the method of constant stimuli.  284 

 For the experimental blocks, 24 new videos (8 per player, 50% to forehand and 50% to 285 

backhand) were selected from the three players seen less often during practice. These videos were 286 

presented 16 times each in a random order, yielding a block of 384 trials. Participants were required 287 

to respond by their previously established deadline, and trials where they failed to do so (along with 288 

any trials with presentation glitches, i.e. where one or more frames were dropped after the −0.2 s 289 

time point) were re-randomised and repeated at the end of the block. Feedback about response times 290 

and correctness was provided after every trial. 291 

Importantly, during experimental trials, the videos were subjected to random masking via the 292 

application of bubbles (see Figure 1, and supplementary Videos S1a, b, c). In different sessions, 293 

individual bubbles were combined to generate bubbles profiles in one (temporal), two (spatial) or 294 

three (spatiotemporal) dimensions. The number of bubbles presented (B) began at 12. This number 295 

was then adjusted (up to ceiling values of 20, 20, and 90 for temporal, spatial, and spatiotemporal 296 

sessions, respectively) via a QUEST staircase varying the number of bubbles in order to maintain 297 

participants’ performance at around 75% correct (i.e. bubbles were added if the task was too hard, or 298 

removed if it was too easy). The profile of each individual bubble was that of a 1, 2, or 3-dimensional 299 

Gaussian density function, scaled to have unit height. In the temporal sessions its width (σ) was 3 300 

frames; in the spatial sessions its width was 12 pixels (vertically and horizontally); and in the 301 

spatiotemporal sessions its widths were 5 frames and 12 pixels.3  302 

  303 
 Bubble mean positions were generally selected at random within a domain extending 304 

throughout the relevant space of the video. However, in the spatiotemporal session, mean bubble 305 

positions were excluded from the first 25 frames of the video, and were further constrained to a 306 

                                                           
3 To speed calculations, each bubble was rounded to zero beyond 4 (temporal) or 3 (spatial and 
spatiotemporal) σ from its centre. We selected a larger temporal bubble width in spatiotemporal compared to 
temporal sessions because a larger value allowed us to utilise less bubbles, and this proved important in terms 
of the time taken to generate each trial of the experiment. 
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rectangular spatial region of the video that varied across frames, capturing all player motion, in order 307 

to generate fewer bubbles in regions of null information.4 Bubbles profiles were determined by 308 

combining the individual bubbles together. This was achieved by first reflecting bubble magnitudes 309 

around 0.5, then multiplying them together, and finally re-reflecting: 310 

 311 

(1) Bubbles = 1 − ∏ (1 − bubble𝑏
𝐵
𝑏=1 ) 312 

 313 

Pixel intensities were then calculated for display as the mean pixel intensity plus the difference 314 

between original and mean intensities (at each point) multiplied by the Bubbles profile (at that same 315 

point). Expressed in terms of Weber contrasts, pixels were displayed at their original weber contrasts 316 

multiplied by the Bubbles profile. 317 

 318 

Data Analysis 319 

 The saved Bubbles profiles from each trial formed the starting point in generating 320 

classification sequences, images, or videos (for temporal, spatial and spatiotemporal sessions 321 

respectively), which reveal the regions from which information supporting a correct response has 322 

been extracted. We collectively term these classification arrays. First, for spatial and spatiotemporal 323 

sessions only, Bubbles were re-centred so that the profile (saved in video coordinates) was translated 324 

to a new coordinate frame centred on the ball at the time of racquet-ball contact. This has the effect 325 

of reducing noise in subsequent estimation, but to a degree that depends upon the proximity of any 326 

potential region of information to the middle of the new coordinate frame.5 Essentially, it addresses 327 

the problem that when multiple videos are used, it is not necessarily absolute spatial position that 328 

                                                           
4 Motion in each video was detected via algorithm, and the estimated regions were then expanded slightly to 
ensure that no body motion was missed. 
5 In principal, this reframing can maximise power to detect information accrual at multiple points of interest in 
a series of analyses, but here we present data from a single coordinate transform for a relatively simple 
demonstration. We did explore a body-centred frame (using the navel) but it did not reveal additional sources 
of information missed by the analysis we present here. 
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matters – it might, for example, be the position of a body part, which is best captured by a body-329 

centred frame of reference. 330 

 331 

Next, for each participant, a weighted sum of (re-centred) Bubbles profiles (weighting profiles 332 

from correct trials positively and profiles from incorrect trials negatively) yielded the raw classification 333 

array: 334 

 335 

(2)   RCA =  ∑ Bubbles𝑐  − ∑ Bubbles𝑖
𝐼
𝑖=1

𝐶
𝑐=1  336 

 337 

However, in order to provide more intuitive values for visualising and combining data across 338 

participants (and to make the method generalizable to cases where different participants completed 339 

different numbers of trials) raw classification arrays were normalised to a z-like format. This was 340 

achieved via a permutation approach. On each of 2000 iterations, correct/incorrect labels were 341 

randomly re-assigned (without replacement) to individual trials. The means and standard deviations 342 

at each point (i.e. each frame and/or pixel) calculated over these 2000 permutations were used to z-343 

score the classification array. This yielded an array varying about zero, with positive values indicating 344 

regions of possible information accrual. 345 

In order to draw statistical inferences across large arrays while controlling familywise type 1 error 346 

appropriately, data from all participants were combined and assessed via both cluster and tmax (also 347 

known as pixel or single-threshold) corrected permutation tests (Blair & Karniski, 1993; Groppe, 348 

Urbach, & Kutas, 2011; Nichols & Holmes, 2002). The first step for both tests was to transform the z-349 

scores at each point into a one-sample t statistic (i.e. the ratio of the mean to the standard error across 350 

observers). For the tmax test, each of these t statistics was then compared with a “null” distribution of 351 

tmax, the calculation of which is described below. Individual values of t greater than the 95th percentile 352 

of this null distribution were deemed significant, according to the tmax test. Under the null hypothesis, 353 

t scores should fluctuate randomly around zero. Permutation tests rely upon the construction of a null 354 



15 
 

distribution consistent with the null hypothesis. Hence, prior to computing each value of tmax for the 355 

null distribution, the z-transformed classification array from each observer was multiplied by –1 with 356 

probability 0.5. A new t statistic (summarizing the results from all participants) was then computed 357 

for each point in the array. The maximum (across points) of these values (unsigned) is deemed tmax. 358 

For our tmax test, we used a null distribution of 1999 values computed in this manner. 359 

For the cluster test, a cluster was defined as the sum of contiguous t values where t exceeded an 360 

(arbitrary) 5% threshold (two-tailed). Note that neither the particular way in which a cluster is defined, 361 

nor the particular threshold that defines inclusion in a cluster, affect the logic by which the procedure 362 

yields control over type 1 errors (so long as multiple definitions and/or thresholds are not tried out in 363 

order to cherry pick a preferred result). Contiguity was defined as adjacent frames in the 1D case. In 364 

the 2D case it was defined as 4-connected6 pixels. Finally, in the 3D case it was defined as 4-connected 365 

pixels per frame, but only the largest cluster across all frames of the video was used to form the null 366 

distribution7. Clusters whose summed t values exceeded the 95th percentile in a null distribution of 367 

cluster sums were deemed significant. Sums for the null distribution were computed in a manner 368 

analogous to the computation of tmax, i.e. following a random reassignment of sign: the random 369 

multiplication of each observer’s z-transformed classification array by –1 with probability 0.5. Just like 370 

the null distributions of tmax, our null distributions of cluster sums were formed from 1999 371 

recomputations of t following this random reassignment of sign.  372 

Subsets of trials forming repeated-measures comparisons (e.g. information accrued from shots to 373 

forehand vs. shots to backhand) were compared by subjecting differences of classification arrays to 374 

the procedure outlined above. For comparisons between groups (e.g. tennis players vs. novices) the 375 

same procedure was followed, with modifications following standard principles for permutation 376 

                                                           
6 “4-connected” is a term from image processing and describes the manner in which connectivity is 
determined in a 2D or 3D space. Four-connected pixels are considered neighbours to (i.e. connected with) 
pixels that share a side, but not pixels that share only a corner. 
7 One typical approach to clustering in 3D data would be to use 3D connectivity to establish 3D clusters. Here, 
we instead used 2D connectivity per frame to establish 2D clusters for each frame of the video. Because we 
retained only the largest such cluster from the entire video for our null distribution, our 3D cluster test is, 
strictly, a 2D cluster test that has itself been tmax corrected for multiple frames. 
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testing (i.e. group labels were randomly shuffled on each permutation). Matlab code for our 377 

experiments and analyses are available at http://www.hexicon.co.uk/Kielan/#research. 378 

 379 

Results 380 

 381 

Display characteristics and response times 382 

 Response deadlines where imposed in experimental sessions, based on performance during 383 

practice, in order to ensure that participants used the earliest information source available to them. 384 

Deadlines in each group, experiment and condition are shown in Table 1, along with mean RTs on 385 

accepted trials (which are necessarily lower than the deadlines). Table 1 also shows mean accuracy 386 

and mean number of bubbles during experimental blocks. Novices and tennis players differed 387 

significantly on only one of these metrics (mean RT was lower for tennis players than novices in the 388 

ground-strokes trials of the spatiotemporal experiment: independent t[28] = 2.451, p = 0.021). 389 

However, given the familywise context (i.e. 24 such tests) the Dunn-Šidák corrected p value was not 390 

significant (p = 0.395). 391 

Although our QUEST staircase aimed to generate 75% performance, the somewhat lower 392 

accuracy scores are likely the result of the caps we imposed on the maximum number of bubbles, in 393 

combination with the response deadline. Nonetheless, performance was above chance in all 394 

conditions, implying scope for bubbles to reveal the sources of information that were informing 395 

correct decisions.  396 

 397 

Temporal bubbles: Informative regions 398 

 The mean z-scored classification arrays (for the entire sample) for the temporal experiment 399 

are shown in Figure 2. Positive values indicate video frames that are candidates for periods of 400 

information extraction. For the ground strokes, two regions are promising. The most obvious one 401 

extends from around frame 90 (so approximately 0.050 s before racquet-ball contact) until around 402 

http://www.hexicon.co.uk/Kielan/#research
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frame 108 (so approximately 0.1 s after racquet-ball contact). A much smaller region of positivity 403 

occurs around frame 64 (approximately 0.267 s before racquet-ball contact, when the swing is being 404 

initiated). 405 

The statistical significance of these regions was assessed using cluster and tmax permutation tests. 406 

Tmax tests are well suited for detecting strong and highly localised regions of information, while cluster 407 

tests are well suited for detecting more diffuse regions (Chauvin, Worsley, Schyns, Arguin, & Gosselin, 408 

2005). Both control familywise error across a classification array, but cluster tests do not guarantee 409 

strong familywise error rate control at every constituent point (Groppe et al., 2011; Nichols & Holmes, 410 

2002). The permutation approach avoids strong distributional assumptions. It revealed that only the 411 

latter putative information-carrying region represented a significant cluster (extending from frame 91 412 

to frame 108; p = 0.0005). Note, however, that the bubbles technique introduces smear (dependent 413 

on the extent of the individual bubbles) such that the recovered classification array should be 414 

considered a filtered approximation of the information it attempts to represent. Hence we can 415 

conclude that information was extracted somewhere within this temporal region, but should not infer 416 

that each and every one of these frames provided useful information for the classification of shot 417 

direction, even for those significant by tmax test. We revisit and expand upon this issue (via a set of 418 

simulations) in the final section of the results. 419 

Analysing responses to the serve stimuli generated a similar result (Figure 2, bottom). While there 420 

is a suggestion of information accrual early on during the ball toss, around frame 20, only the large 421 

and striking region from frame 90 onwards forms a significant cluster (p = 0.0005). From these data, 422 

we can conclude that participants were basing their decisions on information presented late on in the 423 

videos, most likely from after the ball had been struck, but perhaps also from slightly before this point. 424 

 425 

Temporal bubbles: Regions of contrast 426 

Just as with other forms of data, we can perform contrasts on classification arrays to determine 427 

whether particular regions are utilised more in one condition than in another. For the temporal data, 428 
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we present an example of a between-participants contrast, by comparing the tennis-playing 429 

participants to the novices when responding to videos of serves. Results are illustrated in Figure 3. It 430 

is apparent that, slightly surprisingly, classification sequences are very similar between tennis players 431 

and novices (Figure 3, top).8 There is perhaps a suggestion that novices make slightly more use of ball 432 

trajectory information towards the very end of the videos, but this difference is not significant by 433 

cluster or tmax test (Figure 3, bottom). 434 

 435 

Spatial bubbles: Informative regions 436 

 Figure 4 illustrates the classification image and inferential statistical results emerging from the 437 

spatial experiment. For concision, we present data from only the ground-stroke session, but the 438 

services session yielded a broadly similar outcome. The classification image is shown at the top of the 439 

figure, and implies a region centred roughly over the racquet head from which useful information may 440 

be being extracted. This is clearer in the bottom part of the figure, where statistical thresholding has 441 

been applied to produce a 2D representation. The cluster is highly significant (p = 0.005) and covers 442 

the region occupied by the racquet, arm, and head at the time of racquet-ball contact. As with the 443 

temporal results, smear generated by the experimental and analytical techniques means that we 444 

should be cautious about inferring that information has been extracted from all points within a 445 

significant cluster. The spatial analysis also tells us nothing about the time at which information was 446 

extracted from within this cluster. However, in concert with the relevant temporal results (Figure 1, 447 

top) it seems likely that the significant spatial cluster may be capturing primarily the early trajectory 448 

of the ball as it leaves the racquet head. However, the fact that it extends to the player’s head region 449 

suggests that the models in our video may have followed the ball with their eyes/heads after hitting 450 

it, providing another potential cue for our participants to exploit when guessing shot direction. 451 

 452 

                                                           
8 We also found no differences between these groups for serves, or in our spatial and spatiotemporal 
experiments, but do not illustrate all null results in order to maintain a focussed presentation. 
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Spatial bubbles: Regions of contrast 453 

 Previously, for the temporal experiments, we presented an example of a between-participants 454 

contrast of classification sequences. It is also possible to run within-participant contrasts on the data 455 

from bubbles experiments. For example, we might ask whether different regions of the video drove 456 

decisions when the ball was delivered to forehand (on one half of all trials) compared to when it was 457 

delivered to backhand (on the other half). The results of this contrast are shown in Figure 5 for the 458 

spatial experiment involving predictions about service direction. 459 

 460 

For contrasts of this kind, both directions of difference are potentially interesting, but a 3D 461 

visualisation (Figure 5 part A) is better suited to illustrate one direction at a time (in this case leftward 462 

shots > rightwards shots). The heat plot in Figure 5 part B captures both directions of difference well, 463 

but it is difficult to see where, on the video, these differences lie. Figure 5 part C is complementary to 464 

parts A and B, but statistical thresholding has been applied, with clusters of significant difference 465 

overlaid on an averaged video frame. Together, the various visualisations show how regions to the left 466 

of the video, covering positions the ball might initially traverse when being hit towards a right hander’s 467 

backhand, were more informative for exactly the subset of trials in which that stroke occurred (and 468 

vice versa for regions to the right of the video). From left to right, the four clusters are significant at p 469 

= 0.0065, p = 0.0045, p = 0.0045 and p = 0.039 respectively. 470 

 471 

Spatiotemporal bubbles 472 

Illustrative results from the inferential analysis applied to the spatiotemporal experiment are 473 

shown in Figure 6. Results are shown for the ground strokes session, but were qualitatively similar for 474 

the session in which participants responded to serves. The classification video appears to reveal a 475 

spatiotemporal cluster located in the vicinity of the point of ball contact, which spans the entire 476 

timecourse of the video (excluding the first 25 frames, where no bubbles were applied for this 477 

experiment). However, cluster tests were applied at the level of the individual frame, rather than the 478 
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entire video, and thresholding on this basis yields significant clusters in frames that form two 479 

temporally contiguous regions, the first from frame 27 to frame 85 (so around −0.6 to −0.1 s relative 480 

to racquet-ball contact) and the second from frame 95 (or 91 by tmax test) to frame 105. The latter 481 

region appears highly consistent with the results from the temporal and spatial sessions, suggesting 482 

information accrual from the trajectory of the ball and/or racquet head starting around the time the 483 

ball is struck. 484 

 485 

The earlier cluster in Figure 6 is puzzling, because this region of the video should have contained 486 

no useful information to inform guesses about the subsequent shot’s direction. The ground-stroke 487 

experiment was particularly revealing in this regard, because the player never occupied the region 488 

that is being marked as significant until much later on. Hence the result appears to be an artefact of 489 

some kind. We see three possibilities. First, this may simply be a false positive. However, we believe 490 

that our procedures against inflating familywise error were robust, and a similar region emerged in 491 

both ground-stroke and service sessions. 492 

 493 

Secondly, our videos may have contained subtle differences that we failed to note, which, given 494 

that each video was presented several times, observant participants might have learnt in order to aid 495 

their discriminations. We cannot rule this out, as we did not attempt any formal investigation of 496 

potential information in this region via an ideal-observer approach. However, the earlier region of the 497 

video highlighted in Figure 6 mostly covers a blue background which was largely uniform and thus 498 

unlikely to have contained useful cues (except for chance differences in ball trajectory shortly before 499 

ball contact, which are visible here towards the end of the relevant period and might perhaps have 500 

been memorised across experiments). 501 

 502 

This region is, however, remarkably consistent, spatially, with the later-emerging region that 503 

appears (based on the preceding analysis of our spatial and temporal experiments) to be a genuine 504 
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locus of information accrual. Hence we suggest that the earlier region of significance may reflect an 505 

artefact caused by spatiotemporal bubbles sometimes acting as an exogenous attentional cue (Posner, 506 

1980). A bubble occurring in this area of the video early during presentation would have revealed little 507 

useful information, but might, as a spatially localised transient event, have grabbed a participant’s 508 

attention. On trials when a subsequent bubble at the same location then revealed useful information, 509 

attention would already be at this spatial location in order to assist with information extraction, thus 510 

increasing the likelihood of a correct response. Alternatively, or additionally, the earlier bubbles might 511 

not only be pointing the attentional spotlight to a relevant location, but also providing a visual 512 

predictive context for what comes next, potentially making it easier to utilise the information that was 513 

subsequently revealed in this location. 514 

 515 

Simulations to illustrate the impact of spatiotemporal smear 516 

 We have noted in previous sub-sections of the results that the informative regions suggested 517 

by a classification array should be treated with some caution, i.e. as containing, but potentially 518 

exaggerating in scale, regions of a video that contain information utilised by decision makers. Formally, 519 

we might consider the classification array a convolution of information-carrying regions with a filter. 520 

The properties of this filter reflect the spatiotemporal extent of the bubbles used to mask the video. 521 

While this idea is familiar to bubbles aficionados, having received discussion from the outset in the 522 

bubbles literature, it is likely less obvious to potential users from other fields. Hence, to illustrate this 523 

idea, we ran a set of simulated experiments and analyses, focussing on temporal and spatial (rather 524 

than spatiotemporal) experimental procedures (as these appear more likely to yield artefact-free 525 

results). In one set of simulations, all useful information was assumed to be contained in a single frame 526 

(temporally) or pixel (spatially). Observers’ behaviour (i.e. their chance of guessing correctly) was 527 

modelled as a cumulative Gaussian psychometric function of image visibility (i.e. the Bubbles profile) 528 

at the critical point, p, in time or space. This function was assumed to asymptote at 90% correct (as 529 

per our experimental design): 530 
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 531 

(3) Pr("Correct") = 0.5 + 0.4. Φ(
Bubbles𝑝−𝜇

𝜎𝑃𝐹
) 532 

 533 

 Where φ denotes the Standard Normal cumulative density function with mean µ and standard 534 

deviation σPF. 535 

Mean simulated data are presented in Figure 7a (temporal simulations) and 7b (spatial 536 

simulations), varying the width of bubbles for observers modelled by a single arbitrarily selected 537 

psychometric function (σPF = 0.1, μ = 0.2; the pattern of results would be similar for other choices of 538 

these parameters). Notice how the resulting classification arrays are always spread out relative to the 539 

(point) information source, but even more so for bubbles with a larger width. 540 

 541 

From the left-hand  panels of Figure 7, a reasonable conclusion would be that we should use many 542 

small bubbles rather than few large bubbles, at least to the extent that the Bubbles profile can still be 543 

calculated within a reasonable period of time during an experiment. However, this is based on the 544 

assumption of a single point source informing a decision. In reality, information at various scales may 545 

prove informative. Hence we ran a second set of simulations, in which performance was modelled as 546 

a function of seeing both of two points of information, p1 and p2, separated by 24 frames (temporal) 547 

or ~71 pixels (spatial): 548 

 549 

(4) Pr("Correct") = 0.5 + 0.4. Φ (
Bubbles𝑝1−𝜇

𝜎𝑃𝐹
) . Φ(

Bubbles𝑝2−𝜇

𝜎𝑃𝐹
) 550 

 551 

This approximates situations in which the start and end of a larger contiguous region must be 552 

perceived to support accurate responding. Results are shown in Figure 7c and d. In cases like this, 553 

small bubbles, while precise, may reduce the magnitude of the mean classification array (and thus 554 
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power to detect larger regions of information) relative to large bubbles. We would expect this 555 

difference to be exaggerated further if information from an entire contiguous region was critical. 556 

 557 

Discussion 558 

Here, we set out to evaluate whether the bubbles variant of classification-image analysis (Gosselin 559 

& Schyns, 2001) could be an effective and practical tool for revealing the information extracted from 560 

real-world video stimuli to inform a speeded discrimination. We used predictions about tennis-shot 561 

direction for both forehand ground strokes and serves as a test case, bubbling our video stimuli either 562 

temporally, spatially, or spatiotemporally in a series of experiments. The results from the temporal 563 

and spatial bubbles experiments are extremely promising – the regions that emerged were consistent 564 

with the use of ball trajectory information immediately after racquet-ball contact, just as one might 565 

expect.  566 

Our results demonstrate that the bubbles technique generalises successfully from tightly 567 

controlled psychophysical stimuli (e.g. Fiset et al., 2009; Gosselin & Schyns, 2001; Smith et al., 2017) 568 

to videos of real-world decision-making scenarios. Although we tested just two closely related 569 

scenarios here (tennis serves and forehand ground strokes) it seems likely that the method could be 570 

further generalised. The most obvious application would be other sports, as a complement to 571 

traditional temporal and spatial occlusion paradigms. Although we did not see the anticipated 572 

differences between our novice and tennis-playing participants (for example use of kinematic 573 

information from the opponent’s body by tennis players, c.f. Jackson & Mogan, 2007) this may simply 574 

reflect the nature of our tennis-playing sample, which was non-elite. It is also possible to envisage a 575 

range of other applications (e.g. in driving, and law-enforcement or military scenarios) where 576 

information extraction might helpfully be assessed. However, the results from the spatiotemporal 577 

experiment were cautionary, suggesting that this particular variant of the bubbles technique may 578 

introduce an exogenous attentional cuing artefact (c.f. Posner, 1980) that can undermine 579 

interpretation of the resulting classification videos (although other interpretations of our result cannot 580 
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be ruled out). Based on the data presented here, we tentatively recommend the use of only temporal 581 

and spatial bubbles in order to avoid artefactual inferences. We speculate that by revealing regions 582 

where information is being extracted, in combination with expert knowledge about additional cues 583 

which are not being utilised, techniques like this could help inform bespoke training regimens in the 584 

future. 585 

The strengths and limitations of bubbles need to be considered carefully when any new 586 

application is being planned. Relative to traditional spatial occlusion, the demands of stimulus 587 

preparation (i.e. frame by frame video manipulation) are reduced by a stochastic methodology. 588 

However, the bubbles method is correspondingly more complex, so the front-end investment may not 589 

be worthwhile unless a lab plans to test a range of scenarios across several experiments. We have 590 

highlighted some other considerations, for example the spatiotemporal scale of the bubbles. Small 591 

bubbles reveal information sources with high acuity, but may lack power to detect spatially or 592 

temporally extended cues. We have investigated only a single bubble size here, but some variation 593 

and/or combination of bubble sizes within a single experiment may prove more optimal when the 594 

scale of relevant information sources is hard to predict. Several ideas along these lines can be gleaned 595 

from previous work employing the bubbles technique (Blais, Roy, Fiset, Arguin, & Gosselin, 2012; 596 

Chauvin et al., 2005). 597 

Our work here points to a possible attention-cuing artefact for spatiotemporal bubbles, albeit one 598 

that requires further verification. However, such an artefact would really be an extreme version of a 599 

general limitation with any masking approach, which is that the masking might itself influence an 600 

observer’s strategy (or their automatic processing of information) by making the image unnatural. It 601 

remains to be seen whether other forms of masking (e.g. the additive noise used in reverse 602 

correlation) could prove less disruptive in the spatiotemporal case. Clearly, tennis players do not in 603 

general see the world through bubbles, and may adapt substantially when faced with this situation. 604 

While the possible cuing artefact in our spatiotemporal experiments appears particularly egregious, it 605 

should be borne in mind that any information source revealed by bubbles reflects performance only 606 
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during a bubbles experiment, not during natural viewing. For example, consider the use of information 607 

from the head/gaze, found here when predicting the direction of forehand returns. Clearly our 608 

participants can use this information, but it is unclear whether they would do so if bubbles did not 609 

interfere with other sources, such as ball trajectory. In general, triangulation with other 610 

complementary methodologies to assess information use (e.g. eye-tracking techniques) would be 611 

desirable, as any single technique will face interpretative limitations. 612 

To conclude – we have demonstrated that a combination of spatial and temporal bubbles in 613 

separate experiments can be used to determine the sources of information that guide correct 614 

decisions during the real-world scenario of tennis-shot anticipation. We recommend this approach 615 

more generally, as it does not require that experimenters are required to intuit potential sources of 616 

information in advance or deliberately manipulate videos in accord with these hunches. Although 617 

initially challenging, the technique is easily adapted once it has been implemented, and has potential 618 

for much wider application within psychological and human-factors research. 619 
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Tables 700 

 701 

Table 1. Mean (standard deviation) of response deadlines, reaction times (RT), accuracy, and number 702 

of bubbles for novices and experts responding to ground strokes (G.S.) and serves in temporal, spatial, 703 

and spatiotemporal experiments. Response deadlines and reaction times are relative to the point of 704 

racquet-ball contact. 705 

 706 

  Novices  Tennis players 

  Deadline 
(s) 

RT 
(s) 

Correct 
(%) 

Bubbles 
(N) 

 Deadline 
(s) 

RT 
(s) 

Correct 
(%) 

Bubbles 
(N) 

Temporal G.S. 0.40 
(0.08) 

0.24 
(0.05) 

69 
(5) 

12 
(5) 

 0.36 
(0.07) 

0.20 
(0.05) 

68 
(4) 

11 
(5) 

Serves 0.43 
(0.08) 

0.25 
(0.05) 

69 
(5) 

11 
(5) 

 0.43 
(0.07) 

0.23 
(0.08) 

71 
(6) 

10 
(4) 

Spatial G.S. 0.42 
(0.09) 

0.25 
(0.11) 

66 
(7) 

14 
(4) 

 0.42 
(0.06) 

0.26 
(0.04) 

68 
(3) 

13 
(3) 

Serves 0.45 
(0.08) 

0.27 
(0.08) 

68 
(6) 

13 
(6) 

 0.47 
(0.06) 

0.28 
(0.04) 

70 
(3) 

13 
(4) 

Spatio- 
temporal 

G.S. 0.43 
(0.08) 

0.29 
(0.06) 

66 
(6) 

59 
(22) 

 0.38 
(0.06) 

0.22 
(0.09) 

62 
(9) 

61 
(24) 

Serves 0.50 
(0.09) 

0.30 
(0.08) 

60 
(7) 

79 
(10) 

 0.46 
(0.09) 

0.24 
(0.08) 

59 
(7) 

77 
(11) 

 707 

  708 
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Figures 709 

 710 

Legend to Figure 1. Example trial from a bubbles experiment, in which Gaussian profiled windows of 711 

visibility are placed at random positions. a) Original video sequence; b) temporal bubbles, revealing 712 

information only at specific times; c) spatial bubbles, revealing information only in specific positions; 713 

d) spatiotemporal bubbles – spatially constrained regions of information have limited lifetimes. 714 

  715 
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 716 

Legend to Figure 2. Mean classification sequences for all participants in temporal bubbles 717 

experiments. A. Ground strokes. B. Serves. Shaded regions were significant in cluster/tmax permutation 718 

testing, suggesting information was extracted from this part of the video sequence. Error bars denote 719 

95% confidence intervals around classification arrays. 720 

  721 
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 722 

Legend to Figure 3. A. Mean classification sequences shown separately for tennis players and novice 723 

groups in the temporal bubbles experiment involving serves. B. Mean difference in classification 724 

sequences between the two groups. No significant differences emerged. Error bars denote 95% 725 

confidence intervals around classification arrays. 726 

  727 
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 728 

Legend to Figure 4. Classification image for all participants in the spatial bubbles experiment 729 

involving ground strokes. Results are overlaid on an image of the mean of all presented videos for 730 

the frames capturing racquet-ball contact, centred on the point of racquet-ball contact (hence 731 

constituent images do not perfectly align). However, the results of the spatial analysis are not 732 

specific to any one time point. A. Transparent red (grey) peaks denote mean classification-image 733 

intensity normalised to the cluster threshold value used in permutation testing (i.e. values more 734 

extreme than +/−1 formed potential clusters). B. Solid coloured regions were significant in 735 

cluster/tmax permutation testing, suggesting information was extracted from this part of the video. 736 

Transparent red (grey) regions denote non-significant clusters. 737 
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 738 

Legend to Figure 5. An illustrative within-participants contrast of classification images (rightward 739 

serves to forehand vs. leftward serves to backhand) for all participants in the spatial bubbles 740 

experiment. A. Transparent red (grey) peaks denote mean classification-image differences, 741 

normalised to the cluster threshold value used in permutation testing (i.e. values more extreme than 742 

+/−1 formed potential clusters). Results are overlaid on an image of the mean of all presented videos 743 

for the frames capturing racquet-ball contact, centred on the point of racquet-ball contact. B. An 744 

alternative illustration of mean classification-image differences, normalised (as per part A) but 745 

trimmed at +/−1 (the cluster threshold) and presented in 2D to better illustrate both positive and 746 

negative differences between conditions.  C. Solid-coloured regions were significant in cluster/tmax 747 

permutation testing, suggesting that these parts of the video where more informative for one 748 
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direction of shot than for the other. Compare with part B to ascertain the direction of the 749 

differences. Transparent red (grey) regions denote non-significant clusters. 750 

  751 
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 752 

Legend to Figure 6. Thresholded classification video for all participants in the spatiotemporal bubbles 753 

experiment involving ground strokes. Results are overlaid on the mean of all presented videos (for 754 

each frame) centred on the point of racquet-ball contact (which occurred in frame 96). Solid 755 

red/yellow (dark/light grey) coloured regions were significant in cluster/tmax permutation testing 756 

respectively, suggesting information was extracted from these parts of the video (but see main text 757 

for caveat). Transparent red (grey) regions denote non-significant clusters. In the bottom part of the 758 
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figure, three frames have been selected and magnified to illustrate the loss and re-emergence of 759 

cluster significance. 760 

  761 
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 762 

Legend to Figure 7. Results from illustrative simulations showing how the choice of bubble size 763 

affects the resulting classification array. Results are shown for simulations where information comes 764 

from a single frame/pixel (A, B) or must be seen at both of two frames/pixels (C, D). The width of 765 

bubbles was varied in units of frames (A, C: 1 vs 3 vs 5) or pixels (B, D: 4 vs 20). Smaller bubbles offer 766 

greater resolution for isolating small sources of information, but lack power (see especially part D) 767 

when information must be accrued across larger spatiotemporal scales. 768 

  769 
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Supplementary materials legends 770 

Legend to Supplementary Videos S1a, b, c 771 

Video examples of bubbled trials from the temporal (A), spatial (B) and spatiotemporal (C) 772 

experiments. Frame rates have been slowed to 1/4th actual presentation rate for clarity.  773 
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