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SUMMARY 

 

Exercise-induced hypoalgesia is characterised by a reduction in pain sensitivity following exercise. 

Recently, low intensity exercise performed with blood flow restriction has been shown to induce 

hypoalgesia. The purpose of this manuscript is to discuss the mechanisms of exercise-induced hypoalgesia 

and provide rationale as to why low intensity exercise performed with blood flow restriction may induce 

hypoalgesia. Research into exercise-induced hypoalgesia has identified several potential mechanisms, 

including opioid and endocannabinoid-mediated pain inhibition, condition pain modulation, recruitment of 

high threshold motor units, exercise-induced metabolite production and an interaction between 

cardiovascular and pain regulatory systems. We hypothesise that several mechanisms consistent with 

prolonged high intensity exercise may drive the hypoalgesia effect observed with blood flow restriction 

exercise. These are likely triggered by the high level of intramuscular stress in the exercising muscle 

generated by blood flow restriction including hypoxia, accumulation of metabolites, accelerated fatigue 

onset and ischemic pain. Therefore, blood flow restriction exercise may induce hypoalgesia through similar 

mechanisms to prolonged higher intensity exercise, but at lower intensities, by changing local tissue 

physiology, highlighting the importance of the blood flow restriction stimulus. The potential to use blood 

flow restriction exercise as a pain modulation tool has important implications following acute injury and 

surgery, and for several load compromised populations with chronic pain. 
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INTRODUCTION 

 

Exercise is known to decrease sensitivity to pain, an endogenous form of pain modulation termed ‘exercise-

induced hypoalgesia’ (EIH) [1]. In the exercising muscle, EIH is reported following acute bouts of resistance 

[2], aerobic [3] and isometric exercise [4,5], with several review articles summarising this research [1,6–9]. 

Pain desensitisation following exercise is not limited to the exercising limb, and is observed in non-

exercising muscles in remote areas of the body [10–14] to a smaller extent than the exercising muscle 

[10,15,16]. This suggests that both local manifestations and spinal/supraspinal nociceptive pathways drive a 

multisegmental pain inhibitory effect with exercise. 

 

EIH is commonly examined by measuring either pain threshold (i.e. when a noxious stimulus is first 

perceived as painful) or pain tolerance (i.e. suprathreshold pain intensity ratings) [8]. A number of different 

noxious stimuli are used to induce pain, including temperature, electrical, ischemic and mechanical pressure 

stimulation [8]. For resistance, aerobic and isometric exercise the existing literature suggests there is a 

moderate to large effect for EIH in healthy and chronic pain populations (d=0.41-1.02) [8]. Similar to other 

exercise-induced adaptations such as increased muscle strength, the magnitude of EIH appears to be 

augmented with higher intensity exercise [10,17–19]. For resistance exercise, a large effect (d=0.6-1.1) of 

EIH is observed with high intensity exercise using an external load of 75% of one repetition maximum 

(1RM) [2,19]. Aerobic exercise performed at a higher intensity (i.e. >75% of maximal oxygen uptake) and 

for longer duration (>10 minutes) appears to elicit greater EIH [8,18]. 

 

Though aerobic and resistance exercise typically lead to hypoalgesia in pain-free adults, hyperalgesia may 

be observed in certain individuals with chronic pain [20]. Nevertheless, the palliative effect of exercise is 

useful in pain management programmes, particularly due to its accessibility and cost-effectiveness. Current 

evidence demonstrates the effectiveness of both resistance and aerobic exercise for relieving pain in people 

with fibromyalgia [21], osteoarthritis [22] and chronic neck and back pain [23]. High intensity exercise that 

can stimulate muscle, bone and cardiovascular adaptations [24–26] while also reducing pain therefore has a 

dual effect for populations with chronic pain. However, load compromised populations such as older adults 

or those undergoing rehabilitation following injury often cannot withstand the stress of high intensity 
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exercise. In addition, high intensity exercise may cause more pain in individuals with chronic pain [20]. In 

these situations, alternative options using low intensity exercise have been explored. One such alternative is 

blood flow restriction (BFR) exercise which involves partial and full restriction of arterial and venous blood 

flow, respectively, in the exercising limb during low intensity exercise [27]. BFR is achieved using a 

pneumatic tourniquet cuff placed proximally on the limb, which when inflated compresses the underlying 

vasculature resulting in venous blood pooling and an ischemic and hypoxic environment in the tissues below 

and distal to the cuff [28]. BFR during low intensity (20-30% 1RM) resistance training stimulates greater 

muscle hypertrophy and strength adaptations compared to matched workload exercise without BFR [29], 

and these adaptations are comparable to high intensity (>70% 1RM) resistance training [30–33]. Aerobic 

exercise (i.e. walking and cycling) of low intensity (i.e. <40% of maximal oxygen uptake) with BFR has 

been shown to increase muscle hypertrophy and strength [34,35], which does not normally occur in response 

to low intensity aerobic training [35,36]. Though low intensity resistance exercise to concentric failure may 

stimulate muscle hypertrophy adaptations similar to high intensity resistance training [37], this does not 

appear to be the case for muscle strength or aerobic exercise [38,39]. Moreover, performing low-intensity 

exercise to concentric failure likely involves prolonged durations that may not be feasible for individuals 

recovering from injury, whereas BFR accelerates the development of muscle fatigue during low intensity 

exercise [40]. BFR exercise is therefore widely regarded as a beneficial rehabilitation tool for load 

compromised and rehabilitating populations [41]. 

 

BFR exercise has been shown to reduce pain across a training programme in a range of clinical conditions 

[30,31,42]. Recent evidence shows EIH occurs when low intensity exercise (e.g. ≤30% 1RM) is performed 

with BFR [43,44]. A single bout of low intensity knee extension exercise with BFR was found to reduce 

anterior knee pain immediately post-exercise. This moderate to large effect was sustained for a minimum of 

45 minutes [43,44]. For load compromised and rehabilitating populations with chronic pain that cannot 

withstand high intensity exercise or low intensity exercise to failure, BFR exercise would therefore have a 

dual effect for pain and other adaptations. For example, BFR exercise has recently been shown to improve 

pain reduction and physical function to a greater extent than heavy load resistance training in individuals 

with rheumatoid arthritis [45] and following surgery for ligament repair [46].  
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As EIH is associated with prolonged high intensity exercise, the mechanisms driving EIH with low intensity 

BFR exercise may be different or triggered in a different manner. Therefore, exploration of the potential 

mechanisms and efficacy of BFR exercise with respect to EIH is warranted prior to future research. The 

purpose of this manuscript is to discuss the mechanisms behind EIH and provide a rationale as to how BFR 

during low intensity exercise may trigger EIH. 

 

MECHANISMS OF EXERCISE-INDUCED HYPOALGESIA 

 

Though chronic exercise may reduce pain through changes in cognitive appraisal of a noxious stimulus [47], 

a reduction in pain following acute exercise suggests that changes must occur within the peripheral and/or 

central nociceptive pathways. Whether these changes are predominately peripheral, central or both is not 

fully understood [48], and both human and animal research indicates there are several analgesia mechanisms 

that contribute to EIH. This includes: opioid and non-opioid driven pain-inhibition [6,7,49–52]; interaction 

of the cardiovascular and pain regulatory systems [8,53–57]; conditioned pain modulation [4,10,58,59]; 

metabolite-induced pain [60] and recruitment of high threshold motor units [11]. The following sections 

provide an overview of the mechanisms contributing to hypoalgesia with exercise. 

 

Activation of the endogenous opioid system 

 

Exercise-induced stimulation of endogenous opioid production is the most commonly proposed mechanism 

of pain desensitisation following exercise [6,50]. EIH is thought to be driven in part by beta-endorphin, an 

endogenous opioid neuropeptide that is one of the most prominent in the opioid peptide family. Beta-

endorphin is produced in peripheral neurons and in the pituitary gland within the CNS in response to 

physiological stressors such as pain and exercise. It serves as an agonist for opioid receptors throughout the 

CNS and PNS, particularly of the mu subtype. These receptors are found in abundance within the central 

terminals of primary afferent neurons and peripheral sensory nerve fibres within the PNS [61] and 

descending pain control circuits in the CNS [62]. Beta-endorphin binds to opioid receptors at pre- and post-

synaptic terminals [63] to cause a profound inhibition of noxious-evoked activity peripherally, spinally and 

supraspinally. Elevations in peripheral blood beta-endorphin concentrations have been reported in humans 
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following exercise [7,64], which is thought to be caused by stimulation of group III and IV primary afferents 

in the contracting muscle. This is turn activates the opioid system [7] and modulates pain via spinal and/or 

supraspinal inhibitory mechanisms [46], which may drive pain desensitisation in non-exercising and remote 

muscles [10]. Several studies reporting attenuation of EIH following administration of an opioid antagonist 

such as naloxone or naltrexone in humans [65,66] and animals [67] support the role of the opioid system in 

EIH [1]. 

 

Endocannabinoid-mediated mechanisms 

 

Evidence of hypoalgesia that is insensitive to opioid antagonists suggests that EIH must be mediated in part 

by non-opioid mechanisms [6]. One such mechanism may involve the endocannabinoid system [68]. This 

system consists of the endogenous ligand agonists N-arachidonylethanolamide (AEA) and 2-

arachidonoylglycerol (2-AG), G-protein-coupled cannabinoid (CB) receptors CB1 and CB2 (type 1 and 2, 

respectively) and metabolising enzymes. Endocannabinoids have been shown to have antinociceptive effects 

in models of acute pain in animals and humans [69,70] by binding to CB1 and CB2 receptors found in the 

PNS and at spinal and supraspinal pain processing sites [68,69]. Endocannabinoids are synthesised from 

arachidonic acid and can be released from cells immediately after their synthesis [71] in response to stress 

of a physical nature [49]. Several studies have observed systemic elevations in circulating concentrations of 

AEA following exercise [52,71–73], suggesting endocannabinoids play a role in EIH. This would be 

supported by the dense expression of CB receptors on A-delta and C-delta primary afferents [74] which are 

activated during muscle contractions to produce alterations in circulating concentrations of 

endocannabinoids [6]. Similarly to opioid-mediated mechanisms, the mechanisms of analgesia driven by 

endocannabinoids likely include inhibition of presynaptic neurotransmitter and neuropeptide release and 

activation of the descending pain inhibitory pathway [68]. 

 

Interaction of cardiovascular and pain regulatory systems 

 

Several lines of evidence suggest that a link and interaction between the cardiovascular and pain modulatory 

systems acts as a mechanism of EIH [8,53–57], in particular the control of blood pressure. Brain regions 
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underlying control of the cardiovascular system through aspects such as baroreceptors overlap substantially 

with the regions contributing to antinociception [54,75]. This includes the same brain stem nuclei [54,76], 

neurotransmitters and opioid neuropeptides [75,77]. In the absence of exercise, hypoalgesia is associated 

with chronically elevated blood pressure in hypertensive individuals [54,78] which may be partly mediated 

in the CNS by elevated central descending pain inhibitory activity [79]. Moreover, in healthy normotensive 

individuals higher resting blood pressure is associated with decreased sensitivity to noxious stimuli [80,81]. 

Though less research has examined the interaction of blood pressure, hypoalgesia and exercise, it 

demonstrates that decreased sensitivity to noxious stimuli is observed in conjunction with exercise-induced 

increases in heart rate and blood pressure [77,82,83]. 

 

Currently the mechanisms are not fully understood, however it is suggested that baroreceptors and 

endogenous opioids may be involved in this interaction between exercise, blood pressure and pain perception 

[53]. Regarding baroreceptors, a functional model of this relationship suggests that increased blood pressure 

during exercise through sympathetic arousal leads to increased baroreceptor stimulation. This is turn triggers 

descending inhibitory activity in an effort to restore homeostasis [54,77,84]. A number of studies have 

demonstrated an exercise-induced increase in blood pressure concurrent with a decrease in pain perception 

[53,55,56] that is consistent with an arterial baroreceptor inhibition mechanism for EIH [10,54]. Moreover, 

the association between elevated resting blood pressure and reduced sensitivity to noxious stimuli [54,78,80] 

may reflect inhibitory baroreceptor effects on the CNS [10,85,86]. Regarding endogenous opioids, several 

animal studies have demonstrated that an opioid blockade reverses the decreased pain sensitivity observed 

with hypertension [54], however findings from human research are equivocal [53]. 

 

Conditioned pain modulation 

 

It is proposed that diffuse noxious inhibitory controls [13] may contribute to EIH [58]. This endogenous 

supraspinal pain inhibitory mechanism is more commonly referred to as ‘conditioned pain modulation’ 

(CPM), which describes a phenomenon where pain inhibits pain [58,87]. This mechanism is activated when 

two noxious stimuli are applied to two different areas of the body [58]. The initial noxious stimulus, known 

as the conditioning stimulus, triggers inhibition of extra-segmental spinal and trigeminal wide dynamic range 
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neurons to reduce the perception of the second noxious stimulus [10,58,59,88]. Similarly to EIH, reduced 

pain sensitivity following CPM has been shown to extend beyond the initial noxious stimulus [1,89]. 

Systemic hypoalgesia is observed with both CPM and EIH [10,59], and similarly to the characteristics of 

EIH the stronger the initial noxious stimulus with CPM the greater the reduction in pain sensitivity to the 

test stimulus [89,90]. Research suggests CPM and EIH may use similar mechanisms. In individuals with 

osteoarthritis, Fingleton et al. [91] demonstrated that abnormal CPM, which reflects central hypersensitivity 

with osteoarthritis, resulted in dysfunctional EIH following aerobic and isometric exercise. However, normal 

EIH functioning was observed in individuals with an efficient CPM response [91].  

 

CPM itself may be a mechanism of EIH with exercise acting as a noxious conditioning stimulus to activate 

descending inhibitory pathways [13,14]. CPM has been shown to predict EIH in both young and older pain-

free adults [59], and research demonstrates that EIH is greater following painful isometric and aerobic 

exercise compared to non-painful exercise in pain-free individuals [11,58]. More recently, Ellingson et al. 

[58] found that pain sensitivity to a noxious heat stimulus decreased to a greater magnitude following painful 

exercise compared to non-painful exercise, with no change in a resting condition. As EIH was still observed 

with non-painful exercise, this suggests that CPM may not be the primary mechanism driving EIH but likely 

contributes to the overall hypoalgesia effect. 

 

Exercise-induced metabolites 

 

Research has demonstrated the importance of exercise-induced metabolites in pain perception, including 

adenosine triphosphate (ATP), lactate and protons [60]. These metabolites are known to stimulate a subset 

of dorsal root ganglion group III and IV nociceptive afferent neurons in skeletal muscle [92–94]. This is 

demonstrated by activation of these neurons with intramuscular infusion of supraphysiological 

concentrations of such metabolites [95]. As outlined by Pollak et al. [60] one subset of these neurons 

responds to the level of metabolites produced during non-painful exercise and potentially contributes to the 

exercise pressor reflex [96]. The other subset responds to the level of metabolites that only occur during 

high-intensity muscle contractions and ischemia, and thus may contribute to acute muscle pain during 

exercise. It is thought that group III and IV muscle afferents signal metabolite production in skeletal muscle 
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using a complex of acid sensing ion current (ASIC), purinergic detecting (P2X) and transient receptor 

potential channel (TRP) receptors [60], whose endogenous muscle agonists are combinations of ATP, lactate 

and protons. Pollak et al. [60] infused physiological concentrations of these agonists to muscle interstitium, 

including combinations found in resting muscles and during both moderate and vigorous exercise. The 

authors reported that metabolite combinations found in resting muscle evoked no sensation of pain. They 

also found that intramuscular infusion of a combination of these agonists increased pain sensation in a dose-

dependent manner, likely through activation of ASIC, P2X and TRP receptors. Metabolite production and 

subsequent activation of group III and IV nociceptive afferent neurons to create acute muscle pain during 

exercise may therefore act as a noxious conditioning stimulus and induce EIH in a CPM manner. 

 

High threshold motor unit recruitment 

 

More pronounced EIH with prolonged higher intensity exercise [17–19] may be due in part to the recruitment 

of high threshold motor units. During prolonged high intensity exercise the majority of force output is 

provided by high threshold motor units, leading to suggestions that recruitment of this fibre type is a 

mechanism for EIH [11]. Support for this hypothesis arises from research examining EIH with isometric 

exercise [11,13,97,98]. Interestingly, perception of pain to a noxious thermal stimulus has been found to be 

unchanged after both low and high intensity isometric contractions of a short duration (<2-3 

minutes)[99,100]. In contrast, a decrease in pain sensitivity has been observed following low intensity 

isometric contractions of lower and upper limb muscles performed for longer duration (>3 minutes) or to 

volitional failure [4,5,10,13,97,101]. This suggests that EIH may be dependent on both the intensity and 

duration of exercise [8]. Most recently this was demonstrated by Hoeger-Bement et al. [11] who examined 

the dose response of isometric exercise of varying intensity and duration on pain perception to mechanically 

induced pain in the elbow flexor muscles. In a crossover design, participants performed: 1) Three maximal 

voluntary contractions (MVC) for a short duration; 2) 25% MVC until volitional failure; 3) 25% MVC for 

short duration (<2 minutes); and 4) 80% MVC until volitional failure. Though hypoalgesia is not typically 

induced by low intensity muscle contractions, the authors observed hypoalgesia with both high and low 

intensity contractions performed until volitional failure. During isometric contractions of a longer duration 

(i.e. >3 minutes or to failure) active motor units become fatigued and high threshold motor units are recruited 
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to maintain force output [102], which may explain the greater hypoalgesia effect. This would be supported 

by other studies demonstrating hypoalgesia when low-intensity isometric contractions were performed for 

>3 minutes or to volitional failure [13,16,97,98]. Together, this body of work suggests that activation of 

high-threshold motor units is involved in EIH. 

 

BFR EXERCISE AND HYPOALGESIA 

 

Low intensity exercise performed with BFR has recently been shown to trigger hypoalgesia. In patients with 

anterior knee pain, Korakakis et al. [43,44] investigated the effect of four sets of low intensity open kinetic 

chain knee extension exercise with BFR on knee pain prior to a physiotherapy session. Knee pain was 

measured during several exercises using a numerical pain rating scale. An immediate and clinically 

significant reduction in knee pain was observed following BFR exercise, which was sustained after a 45-

minute physiotherapy session. Chronic reductions in knee pain over the course of a resistance training 

programme have been observed with low intensity BFR exercise [30,31], which may be driven by less pain 

during BFR exercise [33,103] and repeated exposure to the acute hypoalgesia effect [43,44] as seen in non-

injured populations [47]. Given that hypoalgesia appears to be augmented by higher intensity (and longer 

duration) exercise and is not typically observed with low intensity exercise, it is important to explore the 

potential mechanisms driving hypoalgesia with low intensity BFR exercise. An overview of the potential 

mechanisms is provided in Figure 1. 

 

One potential mechanism by which low intensity BFR exercise may trigger hypoalgesia is activation of the 

opioid and endocannabinoid systems. During BFR exercise the inflated cuff partially restricts arterial blood 

flow to the limb, causing an ischemic and hypoxic state in tissues below and distal to the cuff [28]. As veins 

require less external pressure to fully occlude, there is complete restriction of venous outflow from the 

muscle. It has been shown that addition of BFR during low intensity (20% 1RM) exercise significantly 

increases metabolic stress compared to matched exercise without BFR, indicated by intramuscular 

accumulation of exercise-induced metabolites and a reduction in pH [104]. Elevated concentrations of 

metabolites and the associated acidification stimulates muscle chemoreceptors [105] which may activate 

group III and IV afferent fibres [106], altering afferent feedback to the CNS. Furthermore, there is an acute 
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increase in muscle pain/discomfort with BFR exercise [107,108] which may be caused by metabolite-

induced stimulation of group III and IV afferent fibres and increased sympathetic nervous activity [109], 

resulting in an increased perception of pain/discomfort. This may activate both the opioid and 

endocannabinoid systems to trigger hypoalgesia. For example, beta-endorphin is produced in the PNS and 

CNS in response to both pain and exercise. This is believed to be caused by stimulation of group III and IV 

primary afferents in the contracting muscle, which then activates the opioid system [7] and modulates pain 

via spinal and/or supraspinal inhibitory mechanisms [46]. Similarly, endocannabinoids are released from 

their synthesising cells in response to physical stress [49]. Therefore, increasing the level of metabolic stress 

in the muscle by using BFR during low intensity exercise may trigger both opioid and endocannabinoid-

mediated mechanisms of hypoalgesia. 

 

A second potential mechanism by which BFR exercise may elicit hypoalgesia is through CPM. Though low 

intensity exercise (not to failure) is not typically described as painful, it is well documented that the 

perception of pain and discomfort is augmented during BFR exercise [110] to a similar extent as high 

intensity exercise [111,112]. Painful exercise may act as a noxious conditioning stimulus to activate 

descending inhibitory pathways [13,14], and the level of hypoalgesia appears to be greater following painful 

exercise compared to non-painful exercise [11,58]. With BFR exercise, it is thought that stimulation of group 

III and IV afferent fibres increases sympathetic nervous activity to increase perception of pain/discomfort 

[109]. Given the considerable level of muscle pain that is characteristic of BFR exercise, the exercise itself 

may act a noxious conditioning stimulus to activate descending inhibitory pathways [43,44]. Related to this, 

the importance of exercise-induced metabolites in pain perception through activation of group III and IV 

nociceptive afferent neurons has been described [92–94]. As highlighted by Pollack et al. [60], one subset 

of group III and IV nociceptive afferent neurons in skeletal muscle responds to the level of metabolites that 

only occur during high intensity muscle contractions and ischemia. Though BFR exercise is performed at a 

low intensity, the tissues of the involved limb are ischemic due to the reduction in arterial blood flow to the 

limb. Therefore, the level of metabolic stress generated during low intensity BFR exercise and subsequent 

activation of group III and IV nociceptive neurons to create a high level of pain may act as a noxious 

conditioning stimulus to elicit hypoalgesia in a CPM manner. Application of a tourniquet alone in cyclic 

fashion may also induce hypoalgesia. Cyclic restriction of limb blood flow has been shown to reduce pain 
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following surgery, when applied both post-operatively [113] and perioperatively [114]. Moreover, cyclic 

application of BFR following an acute bout of muscle damage inducing exercise has been shown to reduce 

muscle soreness [115]. CPM driven pain reduction may be related to hypoxia or inflammation per se, and 

possibly achievable with BFR in the absence of exercise. 

 

A third potential mechanism by which BFR exercise may trigger hypoalgesia is the early preferential 

recruitment of high threshold motor units. Recruitment of high threshold motor units is hypothesised to be 

an important mechanism of EIH [11], and may explain why a greater hypoalgesia effect is observed with 

prolonged high intensity exercise [17–19]. High threshold motor units are typically only recruited at high 

intensities of work, with low threshold motor units providing force output during low intensity exercise 

[116]. With BFR exercise this principle appears to be reversed and high threshold motor units are 

preferentially recruited early during exercise [117,118]. This is likely due to the hypoxic muscular 

environment generated during BFR and accelerated onset of fatigue [117]. Several studies have shown 

greater internal muscle activation with BFR exercise [119,120] relative to external load [121,122], which is 

greater than matched workload exercise without BFR [123,124]. Considering the importance of high 

threshold motor unit recruitment to the magnitude of EIH, early preferential recruitment of these motor units 

during low intensity BFR exercise may contribute to a hypoalgesia effect. 

 

The link between the cardiovascular and pain modulatory systems may provide another mechanism by which 

BFR exercise elicits hypoalgesia. Higher blood pressure and heart rate during both rest and exercise is 

associated with decreased sensitivity to noxious stimuli [54,77,78,82,83]. This may be due to the overlap in 

the areas of the brain controlling baroreceptors and nociception [54,75]. During exercise, increased blood 

pressure leads to increased baroreceptor stimulation which then triggers descending inhibitory activity in an 

effort to restore homeostasis [54,77,84]. Exercise-induced increases in heart rate and blood pressure are 

amplified with BFR exercise compared to matched workloads without BFR [125–127] when exercise is not 

performed until volitional failure. These changes may be similar or greater than those observed during high 

intensity exercise [111,128,129]. It has been proposed that mechanical compression of the vasculature during 

BFR exercise may augment the exercise-induced pressor response [130], leading to an increase in heart rate 

and blood pressure. If a link between blood pressure, baroreceptors and pain modulation does exist, it is 
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conceivable that an augmented increase in heart rate and blood pressure during BFR exercise may trigger 

hypoalgesia through greater baroreceptor stimulation and subsequent activation of descending inhibitory 

pathways. Currently, this potential mechanism is not fully understood and further research to examine this 

is warranted. 
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PERSPECTIVES & RESEARCH RECOMMENDATIONS 

 

Studies published thus far support the hypothesis that low intensity BFR exercise may trigger significant 

hypoalgesia. The limited number of studies available and lack of understanding of the mechanisms provide 

rationale for future research. Ultimately, an important goal would be to develop BFR exercise as a pain 

management tool for populations with chronic pain. However, prior to this a number of areas must be 

investigated. Acute training studies are needed to compare the magnitude of hypoalgesia with BFR exercise 

to equivalent forms of exercise at both low and high intensities. Moreover, investigation of the mechanisms 

underpinning hypoalgesia with BFR exercise is required to develop our understanding of EIH. For example, 

a study could be conducted to investigate the effects of BFR exercise on hypoalgesia compared to equivalent 

forms of exercise at both low and high intensities while measuring concentrations of circulating blood opioid 

and endocannabinoid markers, muscle pain, blood pressure, muscle activation and metabolite production. 

Measuring the degree of each of these variables would test the hypothesis that hypoxia, metabolite 

accumulation and early onset of fatigue trigger hypoalgesia with BFR exercise via similar mechanisms to 

prolonged high intensity exercise. This may also allow for optimisation of any effect in the future. 

Importantly, existing research has not examined if BFR exercise also causes systemic hypoalgesia or if the 

effect is limited to the exercising muscles. Long term training studies are needed to determine whether acute 

decreases in pain sensitivity translate into chronic reductions in pain with BFR exercise. 

 

It is also of importance to note that the studies completed thus far have used numerical pain rating scales to 

measure pain [43,44]. More objective measures are needed for future research, for example by measuring 

pain thresholds and tolerance using pressure, thermal and electrical stimuli [8]. Prescription and selection of 

BFR pressure has been shown to influence several aspects related to BFR exercise including training 

adaptations [131] and the acute physiological responses [132]. It is important that prescription of BFR 

pressure is personalised to each individual as a percentage of limb occlusion pressure [133]. For example, 

though the impact of different cuff sizes and pressures on the EIH response is unknown, existing literature 

shows that higher cuff pressures induce greater pain during BFR exercise. If CPM is a mechanism by which 

BFR exercise triggers hypoalgesia, then the pressure applied would likely be an important variable to 

consider with respect to EIH. 
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sIn conclusion, we hypothesise that several mechanisms consistent with prolonged high intensity exercise 

may drive the hypoalgesia response observed with low intensity BFR exercise. These are likely triggered by 

the level of stress in the exercising muscle generated by BFR including hypoxia, metabolite accumulation. 

early onset of fatigue and ischemic pain.
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Figure 1. Overview of the possible mechanisms driving exercise-induced hypoalgesia with low intensity 

blood flow restriction exercise 


