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Abstract
Purpose This study investigated the effects of a 10-day heat acclimation (HA) programme on the time course of changes in 
thermoneutral maximal oxygen uptake ( V̇O2max) during and up to 10 days post-HA.
Methods Twenty-two male cyclists were assigned to a HA or control (Con) training group following baseline ramp tests of 
thermoneutral V̇O2max. Ten days of fixed-intensity (50% baseline V̇O2max) indoor cycling was performed in either ~ 38.0 °C 
(HA) or ~ 20 °C (Con). V̇O2max was re-tested on HA days 5, 10 and post-HA days 1, 2, 3, 4, 5 and 10.
Results V̇O2max initially declined across time in both groups during training (P < 0.05), before increasing in the post-HA 
period in both groups (P < 0.05). However, V̇O2max was higher than control by post-HA day 4 in the HA group (P = 0.046).
Conclusions The non-linear time course of V̇O2max adaptation suggests that post-testing should be performed 96-h post-
training to identify the maximal change for most individuals. In preparation for training or testing, athletes can augment 
their aerobic power in thermoneutral environments by performing 10 days HA, but the full effects will manifest at varying 
stages of the post-HA period.
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Abbreviations
CO2  Carbon dioxide
Con  Control
Tc  Core body temperature
HA  Heat acclimation
HR  Heart rate
Hct  Hematocrit
Hb  Haemoglobin
V̇O2max  Maximal oxygen uptake
PV  Plasma volume

RH  Relative humidity
RPE  Rating of perceived exertion
Ts  Thermal sensation

Introduction

Heat acclimation (HA) describes a systematic process, 
whereby serial exposures to artificially heated environments, 
often in combination with exercise, can lead to rapid adapta-
tions that enhance the capacity to thermoregulate in the heat 
(Gibson et al. 2015; Taylor and Cotter 2006). These adapta-
tions improve heat tolerance (Sawka et al. 2011), charac-
terised by increased sudomotor function (Fox et al. 1963), 
reduced heart rate (HR) (Senay et al. 1976), hypervolemia 
(Nielsen et al. 1993), increased cardiac output (Lorenzo 
et al. 2010) and a reduced core body temperature (Tc) for 
a given heat exposure or exercise intensity (Nielsen et al. 
1993). This combination of physiological adaptations can 
enhance endurance performance in hot (Racinais et al. 2015) 
and thermoneutral environments (Lorenzo et al. 2010).

The maximal rate of oxygen uptake ( V̇O2max) is an 
important determinant of endurance performance, explain-
ing ~ 20–60% of the variation in performances of different 
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mode and distance (Coyle et al. 1988; Schabort et al. 2000; 
Jacobs et al. 2011). V̇O2max is chiefly limited by central 
cardiovascular factors, such as  O2 transport (Bassett and 
Howley 2000). Heat acclimation can improve V̇O2max, and 
is thought to occur owing to heat-induced cardiovascular 
changes (Périard et al. 2016). Indeed, there have been histor-
ical observations of a relationship between V̇O2max and heat 
tolerance (Shvartz et al. 1978; Pandolf 1979; Havenith and 
van Middendorp 1990). However, evidence of the efficacy of 
HA on V̇O2max is equivocal, with a number of studies dem-
onstrating 4–13% changes (Nadel et al. 1974; Shvartz et al. 
1977; Sawka et al. 1985; Pivarnik et al. 1987; Lorenzo et al. 
2010; James et al. 2017) and others reporting no change or 
a reduction following a range of HA protocols (Houmard 
et al. 1990; Gore et al. 1997; Chen et al. 2013; Karlsen et al. 
2015; Keiser et al. 2015; Neal et al. 2016a, b; Rendell et al. 
2017; Sotiridis et al. 2018).

There are various explanations for discrepancies in the 
aforementioned findings. First, not all studies have evaluated 
adaptations in V̇O2max in thermoneutral conditions, thus lim-
iting the understanding of a transfer between heat-induced 
adaptation and aerobic capacity in temperate environments, 
which is a topic of ongoing debate (Nybo and Lundby 
2016). This could be related to limited V̇O2max trainability 
(Bouchard et al. 2011) or inter-individual and inter-system 
differences in adaptation reported after 11 days of isothermal 
acclimation (Corbett et al. 2018). It is therefore possible that 
V̇O2max increases more substantially among HA-responsive 
individuals compared to their less responsive counterparts 
(Minson and Cotter 2016). Daanen et al. (2011) also demon-
strated that the acute stress imposed by HA acted, initially, 
to suppress the adaptation in Tc, before adaptation beyond 
baseline in the days following acclimation. Thus, a period 
of recovery (from heat, exercise or both) might be neces-
sary to fully realise adaptation in multi-system physiological 
measurements, such as V̇O2max. This reasoning is consistent 
with the tenets of general adaptation syndrome (Selye 1950), 
which has been incorporated into exercise training guide-
lines (ACSM 2009). However, there has been no study to 
evaluate the detailed time course of change in thermoneutral 
V̇O2max after HA. Therefore, it is possible that previous stud-
ies have not: (1) monitored the inter-individual time course 
of responses of V̇O2max to HA across successive days and 
(2) provided adequate time for adaptation to the combined 
thermal and exercise training stimuli.

Based on this reasoning, we investigated the effects of 
a 10-day HA programme on the time course of changes 
in thermoneutral V̇O2max, during and up to 10 days post-
HA against a control training group. We hypothesised that 
increases in V̇O2max would occur in the HA group in the days 
following the intervention but presumed variability between 
individuals in the time course of this response in the post-
HA 10-day period.

Methods

Participants

Twenty-two healthy, trained amateur male cyclists provided 
written informed consent to take part in this study. Twelve of 
the participants (age 23 ± 3 years, stature 1.77 ± 0.61 m, body 
mass 73.7 ± 4.8 kg, V̇O2max 60.8 ± 6.1 ml kg−1 min−1) were 
randomly allocated to a HA group, while ten were allocated 
to a control group (age 25 ± 3 years, stature 1.78 ± 0.46 m, 
body mass 74.1 ± 5.6 kg, V̇O2max 59.8 ± 6.7 ml  kg−1  min−1). 
All of the participants were habitually training on a weekly 
basis (13.8 ± 3.3 h·week−1) and competing in various ama-
teur cycling events. All of the participants had taken part 
in outdoor hot weather training in the previous 12 months, 
while 16 had previously taken part in heat acclimation 
interventions for varying periods of time over the previous 
3 years. However, all participants were deemed to be unac-
climatised to heat stress within this study’s HA protocol and 
they were habitually exposed to only the local environmen-
tal conditions or were at least 3 months without exposure. 
All participants completed a food diary for 2 days prior to 
each test, which was replicated with similar content and vol-
ume for the remainder of the study. The daily average high 
and low temperatures for the 6 weeks before and during all 
tests were 12.5 and 3.0 °C, respectively (accuweather.com). 
The participants were instructed not to use saunas or take 
hot baths during the study period. Participants were asked 
to refrain from alcohol and any supplementation during 
the study period and arrive at the laboratory having eaten 
a standardised meal and consumed 500 ml of fluid in the 
previous 2 h. The hydration and pre-meal were chosen by 
the participants, which we ensured were consistent between 
visits. Euhydration was verified via urine analysis using an 
osmometer (< 600 mOsmol  kg−1  H2O, Osmocheck, Vitech 
Scientific Ltd, UK). Ethical approval was provided by the 
institutional ethics committee, which was conducted in 
accordance with the 1964 Helsinki Declaration.

Design

This study followed an independent groups design (HA vs. 
Con). After baseline tests of thermoneutral V̇O2max, the par-
ticipants were randomly allocated to their groups using a 
Microsoft Excel random number generator. The HA group 
visited the laboratory for baseline measurements of V̇O2max 
and completed 10 days of 60-min fixed-intensity (50% V̇
O2max) HA at (38.0 ± 2.4 °C, 30 ± 13% RH) in the following 
10-day period. The control group visited the laboratory on 
the same number of occasions but completed their exercise 
at the same intensity in controlled conditions (20.0 ± 1.1 °C, 
30 ± 4% RH). On days 5, 10 and post-days 1, 2, 3, 4, 5 and 
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10, thermoneutral (~ 20 °C) V̇O2max tests (incremental ramp) 
were performed to assess the time course of changes during 
and after HA. Cycling training was continued by all of the 
participants during the study period, with the volume (mean 
of 60 min·day−1) subtracted from their normal regime. The 
participants’ training during the study ranged across 3–4 
separate sessions, comprising 2–3 long, lower-intensity rides 
(> 4 h) and 1 higher-intensity interval session. None of the 
participants cross-trained, with all sessions performed in- or 
outdoors on a bicycle. In the post-HA period, no training 
was performed.

Incremental ramp tests for V̇O2max

Participants were familiarised with the cycle ergometer 
(Monark Exercise AB, Ergomedic 874E, Varberg, Swe-
den) and saddle and handlebar position were recorded and 
repeated for all subsequent visits. Participants then com-
pleted a 5-min self-selected warm-up prior to complet-
ing an incremental ramp test. The test was conducted at 
self-selected cadences (range 70–95 rev  min−1), starting 
at ~ 120 W and increasing by 28–30 W  min−1 until volitional 
exhaustion. The same increments were used across all trials, 
with a mean time to exhaustion of 8.5 ± 1.8 min. Pulmonary 
gas was measured continuously using a breath-by-breath gas 
analyser (Jaegar, Oxycon Pro, Viasys Healthcare, Hoech-
berg, Germany). The gas analyser and flow turbine were cali-
brated before each test using a known gas mixture (15%  O2 
and 5%  CO2) and a 3-l syringe, respectively (Hans Rudolph, 
Kansas City, KS). V̇O2max was determined as the mean value 
recorded over the final 30 s of the test. Criteria for achiev-
ing V̇O2max was: (1) reaching volitional exhaustion, (2) res-
piratory exchange ratio > 1.15, (3) final HR within 10 beats 
 min−1 of age-predicted maximum and (4) RPE > 19. All 
criteria were met during the study. The same gas analyser 
was used throughout the study and calibrated identically. HR 
was recorded throughout the tests (Polar FT1, Polar Electro 
Oy, Kempele, Finland). End-power output was measured as 
the highest external power output reached during the final 
1 min of the test. All tests were performed in the morning, 
prior to HA or thermoneutral training session (Con). In our 
laboratory, incremental tests of V̇O2max have a CV% of 3.0%. 
The first three V̇O2max tests were performed prior to the HA 
session for that day, in a thermoneutral environment, at the 
same time of day.

Heat acclimation protocol

The power output corresponding to 50% of the participants’ 
baseline V̇O2max was set as the external work intensity for 
the intervention and was monitored using power output on 

the cycle ergometer. Cadence was self-selected and adjusted 
if necessary by the investigators using weights to maintain 
the target intensity. This intensity was maintained for all 
subsequent trials but was reduced by 10% if it could not be 
sustained by the participant. Participants cycled for 60 min 
per session. This type of HA protocol was selected based on 
previous studies (Houmard et al. 1990; Senay et al. 1976; 
Lorenzo et al. 2010; Pandolf et al. 1977). The participants’ 
nude body mass was recorded pre- and post-session on days 
1, 5 and 10 of the HA programme to estimate WBSR by 
subtracting post-exercise body mass from pre-exercise val-
ues (MPMS-230, Marsden Weighing Group, Oxfordshire, 
UK). A rectal thermometer (Edale Instruments Ltd, Cam-
bridge, UK) was self-inserted 10 cm past the anal sphincter, 
as an indication of Tc, and recorded every 2 min via a scan-
ning thermometer once inside the heat-controlled chamber 
(Edale Instruments Ltd, Cambridge, UK). The mean Tc 
recorded was used for statistical analysis. The participants 
then entered the heat chamber wearing cycling shorts, socks 
and training shoes, where they sat upright on the same cycle 
ergometer used during the ramp test. HR was also recorded, 
alongside thermal sensation (Ts) at 5-min intervals through-
out the exercising protocol. Ts was recorded on an ASHRAE 
7-point analogue scale, where − 3 = “very cold”, 0 = “neu-
tral”, and 3 = “very hot” (Zhang et al. 2004). In the control 
condition, the heat chamber was controlled at 20.0 ± 1.1 °C, 
30 ± 4% RH. No fans were used during the exercise trials and 
no fluid intake was permitted until after the session when 
post-measures were taken.

Plasma volume

On arrival at the laboratory in the morning of HA day 1, HA 
day 5 and HA day 10 and post-HA day 10, the participants 
from both the HA and control groups rested in an upright 
seated position in an air-conditioned room (20 °C and 50% 
relative humidity) for 15 min. Changes in the concentration 
of haematocrit (Hct) and haemoglobin (Hb) were subse-
quently recorded to determine the relative change in plasma 
volume (Dill and Costill 1974). Capillary blood was drawn 
from the index finger into two 75 mm hematocrit capillary 
tubes for duplicate measurements. The whole blood was cen-
trifuged (Hawksley Haematospin 1400 Centrifuge, Hawks-
ley and Sons Ltd., Sussex, UK) for 5 min at 13,000g. Post-
centrifugation, capillary tubes were analysed for[Hct using 
a micro-capillary reader (Hawksley and Sons Ltd., Sussex, 
UK), with the mean of the two measurements reported. All 
measurements agreed by less than 2%. Capillary blood was 
taken from the same site for measurement of Hb using a 
Hemocue Hb 201 + (Hemocue Ltd, Viking Court, Derby-
shire, UK). Plasma volume changes (∆%PV) were reported 
between HA days 1 and 5, HA days 5 and 10 and HA day 10 
and post-HA day 10.
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Statistical analysis

Changes in V̇O2max, end power (2 × 9[time]), ∆%body mass 
and ∆%PV (2 × 3[time]), Tc, end HR and Ts recorded during 
the HA programme (2 × 10[time]) were analysed using two-
way (group × time) within- and between-analyses of vari-
ance. All of the participant characteristics were compared 
using independent t tests, to check for baseline differences. 
Where relevant, assumptions of sphericity were assessed 
using Mauchly’s test, with any violations adjusted using the 
Greenhouse–Geisser correction. When significant F values 
were observed, post hoc tests were used to determine dif-
ferences. Statistical significance was accepted at P < 0.05 
for all tests and all analyses were performed on IBM SPSS 
Statistics (Version 21, IBM Corp., Armonk, NY, USA).

Results

Participant characteristics

There were no differences (P > 0.05) in the characteristics 
of the HA and control groups (Table 1). Both groups of 
participants possessed high V̇O2max values relative to their 
age (Rapp et al. 2018), and followed cycling-specific pro-
grammes both habitually (~ 13 to 14 h week−1) and during 
the study (~ 10 to 11 h).

V̇O2max and end‑power output

Changes in V̇O2max across the HA or control programmes 
are presented in Fig. 1. There was an effect of time on V̇
O2max [F(8,160) = 11.49, P < 0.001], and group × time interac-
tions [F(8,160) = 5.20, P < 0.001], with post hoc tests revealing 
reductions in V̇O2max between baseline and HA days 5 and 
10 for the HA group (P < 0.001 and P = 0.003, respectively) 
and control (P = 0.029 and P = 0.032, respectively). How-
ever, only the HA group demonstrated reduction in V̇O2max 

compared to baseline on post-HA day 1 (P = 0.004), post-HA 
day 2 (P = 0.008), with subsequent increase post-HA day 4 
relative to baseline (P = 0.038). Across the post-HA period, 
there were no changes (P > 0.05) in V̇O2max relative to base-
line for the control group. Furthermore, post hoc tests identi-
fied differences in V̇O2max between the HA group and control 
group only at post-HA day 4 (P = 0.046). As presented in 
Fig. 2, end-power output followed a similar pattern to V̇O2max 
measurements, with time effects [F(8,160) = 13.24, P < 0.001], 
characterised by reductions from BL on HA days 5, 10 and 
post-HA days 1 (P < 0.05). End-power output increased from 
HA day 10 to post-HA days 3 (P = 0.004) and 4 (P = 0.004), 
with no further changes. There were interactions between 

Table 1  Participant characteristics for the heat acclimation (HA; 
n = 12) and control groups (n = 10)

a In the previous 3 years

HA (mean ± SD) Control (mean ± SD)

Age (years) 23 ± 3 25 ± 2
Nude body mass (kg) 73.7 ± 4.8 74.1 ± 5.6
V̇O2max (ml  kg−1  min−1) 60.8 ± 6.1 59.8 ± 6.7
Annual weekly training (h) 14.0 ± 2.8 13.6 ± 4.1
Previous acclimation 

(days)a
9.7 ± 9.1 4.8 ± 2.7

Training during study (h) 11.3 ± 3.3 10.3 ± 2.7
Training age (years) 4.1 ± 1.8 4.0 ± 1.6

Fig. 1  a Individual maximal oxygen consumption ( V̇O2max) 
responses in the HA group (grey) and control (black). b Changes in 
V̇O2max across the heat acclimation (HA, n = 12) and control (Con, 
n = 10) interventions. *Difference (P < 0.05) between groups at 
that stage; †Sig. different (P < 0.05) to baseline (BL) for HA group; 
#sig. different (P < 0.05) to BL for Con group. Time = P < 0.001; 
group × time = P < 0.001
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time and group [F(8,160) = 2.33, P = 0.024], but no pairwise 
effects were identified (P > 0.05).

Core temperature, heart rate and thermal sensation

There were time effects for mean Tc [F(9,180) = 26.93, 
P < 0.001], with step-wise reductions from day 1 across the 
three subsequent HA days (P < 0.05). The main contribu-
tions to the time effects were from the HA group, demon-
strated via interactions [F(9,180) = 11.71, P < 0.001] and pair-
wise differences across all days (P < 0.05) (Fig. 3). Mean 
heart rate [F(9,180) = 38.90, P < 0.001] and thermal sensation 
[F(9,180) = 5.56, P < 0.001] followed a similar pattern across 
time. Time and group interacted [F(9,180) = 17.07, P < 0.001] 
for heart rate responses, with pairwise differences across 
all HA days (Fig. 4). Similarly, group × time interactions 
[F(9,180) = 2.69, P = 0.045] were found for Ts and pairwise 
differences across all HA days (P < 0.05) (Fig. 5).

Plasma volume and body mass changes

The ∆%PV between HA days 1 and 5 was larger 
(P < 0.001) in the HA group compared to control 
(8.8 ± 5.0% vs. 0.7 ± 0.8%, respectively). There were no 
further between-group differences (P > 0.05) in ∆%PV, 
with the HA group maintaining their initial PV expan-
sion between HA days 5 and 10 (HA 1.1 ± 2.6% vs. Con 
− 1.2 ± 1.3%) and HA day 10 and post-HA day 10 (HA 
0.6 ± 2.1% vs. Con − 1.11 ± 1.5%). There was an effect 
of group for ∆%body mass changes [F(1,20) = 30.05, 

P < 0.001], denoting greater WBSR in the HA group, but 
no interactions with time [F(2,40) = 0.25, P = 0.068].

Discussion

We are the first to evaluate the time course of changes in 
thermoneutral V̇O2max adaptation during and after a HA pro-
gramme. Changes in V̇O2max were elicited in a non-linear 
manner during the 20-day (combined HA and post-HA) 

Fig. 2  Changes in end-power output across the heat acclimation (HA, 
n = 12) and control (Con, n = 10) interventions. $Main effect of time 
(P < 0.05). Time = P < 0.001; group × time = P = 0.024. ƚPairwise time 
effect from baseline (P < 0.05)

Fig. 3  Changes in core temperature across the heat acclima-
tion (HA, n = 12) and control (Con, n = 10) days. $ = main effect 
of time (P < 0.05). Differences (P < 0.05) were found between 
groups at each stage but not noted for clarity. Time = P < 0.001; 
group × time = P < 0.001. ƚPairwise time effect from baseline 
(P < 0.05)

Fig. 4  Changes in mean heart rate responses across the heat accli-
mation (HA, n = 12) and control (Con, n = 10) days. $ = main effect 
of time (P < 0.05). Differences (P < 0.05) were found between 
groups at each stage but not noted for clarity. Time = P < 0.001; 
group × time = P < 0.001. ƚPairwise time effect from baseline 
(P < 0.05)
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period, with acute reductions apparent at HA days 5 and 
10 among both groups. Delayed increase in thermoneutral 
V̇O2max occurred in the post-HA (recovery) period. Specifi-
cally, by post-HA day 4, there were pairwise differences 
between the HA and control groups, where mean changes 
in V̇O2max peaked (4.9% increase from baseline) for the HA 
group. The control group’s V̇O2max fluctuated between − 4.5 
and 0.3% approximating the 3.0% error of the test. There 
were notable inter-individual differences in the time course 
of adaptation among the HA group, yet only 1 of the 12 
participants did not respond to the HA programme, dem-
onstrating their highest value prior to the post-HA period. 
These adaptations were supported by larger plasma volume 
expansion in the HA group, which was maintained across 
the study period.

There are a number of studies demonstrating HA-
induced increase in thermoneutral V̇O2max, ranging 
between 4 and 13% (Nadel et  al. 1974; Shvartz et  al. 
1977; Sawka et al. 1985; Pivarnik et al. 1987; Lorenzo 
et al. 2010; James et al. 2017). Similarly, we report a 4.9% 
increase on post-HA day 4 compared to baseline, which is 
substantial, given the limited potential for adaptation in V̇
O2max (Bouchard et al. 2011) and the trained status of the 
participants. Furthermore, this value was increased to a 
mean of 7.1% if the largest individual changes in V̇O2max 
observed across the study are accounted for. These data 
suggest that the changes reported previously are likely to 
have underestimated the full adaptation potential, owing 
to inter-individual variability in this measure. Our find-
ings highlight that the timing of the post-acclimation test-
ing is crucial to the outcome, despite most studies not 

precisely reporting this. Based on the current data, we 
recommend that post-acclimation V̇O2max testing is not 
performed within the post-HA 48 h and that a 96-h post-
test is likely to produce the highest value for most indi-
viduals. Of note, the one participant’s V̇O2max that did not 
peak in the post-HA period was highest at baseline and 
remained lower for the entire 20-day period. This denotes 
an important individual feature of training adaptations and 
questions rigid training models. As reported elsewhere, it 
is also possible that some individuals experience a delayed 
response (absence of decay) to heat acclimation (Daanen 
et al. 2011) of up to 26 days (Weller et al. 2007), which 
would not have been captured in our 10-day post-HA win-
dow and is one explanation for the participant’s response 
in the current study. This descriptive analysis provides 
insight into the dynamics of heat-induced adaptation in 
V̇O2max between individuals and could lead to imprecise 
reporting in studies of this type, depending on the selected 
post-testing period.

As noted previously (Armstrong and Maresh 1991; 
Nielsen et al. 1993), there were some characteristic signs 
of early adaptation demonstrated across the sub-maximal 
HA sessions, with Tc, HR and Ts declining across the first 
3 days in the HA group. These changes indicate an improved 
tolerance to the exercise and thermal stimuli. However, the 
time course of V̇O2max adaptation to HA was not as immedi-
ate and, therefore, did not coincide with early adaptations 
in Tc, HR and Ts. This is important to recognise because 
HA-induced changes in V̇O2max are typically ascribed to 
central cardiovascular adaptations that are responsible for 
 O2 transport. For example, V̇O2max is chiefly determined 
by the delivery of oxygenated blood to the working mus-
culature and relies on factors, such as stroke volume and 
muscle capillarisation, to support this (Bassett and How-
ley 2000). The lower HR responses to the HA programme 
reported here and elsewhere (Nielsen et al. 1993; Lorenzo 
et al. 2010), and increased plasma volume, are consistent 
with an improved cardiac efficiency, which is commonly 
observed following HA (Périard et al. 2016). These changes 
also infer an increase in stroke volume and cardiac output 
(Senay et al. 1976; Nielsen et al. 1997). Thus, the tempo-
ral differences in V̇O2max adaptation, highlighted by acute 
decline in V̇O2max, must be attributed to other factors in the 
 O2 transport pathway, perhaps indicating an acute impair-
ment and perfusion capacity of muscle microvasculature 
function during the HA programme. There have been 
reports of increased vascular conductance after 10–14 days 
of HA in the peripheral cutaneous microvasculature (Lor-
enzo and Minson 2010) and others have reported changes 
in  O2 pulse at high exercise intensities, which were ascribed 
to increase in arterial–venous  O2 differences (Chen et al. 
2013). Together, these findings indicate that HA induces an 
increase in peripheral blood flow that could lead to enhanced 

Fig. 5  Changes in thermal sensation responses across the heat accli-
mation (HA, n = 12) and control (Con, n = 10) days. $Main effect 
of time (P < 0.05). Differences (P < 0.05) were found between 
groups at each stage but not noted for clarity. Time = P < 0.001; 
group × time = P = 0.045. ƚPairwise time effect from baseline 
(P < 0.05)
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perfusion of blood in the working muscles. However, there 
has been no study of the time course of this adaptation to 
monitor early-phase changes in the microvasculature of the 
skeletal muscle. Further work is required to elucidate this.

V̇O2max relies on multiple physiological factors; therefore, 
a less predictable time course of adaptation might have been 
anticipated. General adaptation syndrome describes a pro-
cess of systematic overload to impose controlled ‘stress’, 
leading to changes in that system, such that subsequent 
exposures to the same stress are more tolerable (Selye 1950). 
Indeed, the discordant temporal adaptations between dif-
ferent physiological processes observed here are supported 
by Selye’s (1938) concept of ‘adaptation energy’, whereby 
simultaneous adaptations to given stimuli are constrained by 
finite energy resources, which was originally demonstrated 
by exposing rats to cold temperatures and exercise. Similar 
adaptation kinetics have been demonstrated in the exercise 
training literature, where 1–3 weeks of overreaching in 
cyclists acutely reduced V̇O2max prior to rebound improve-
ments in the recovery period (Jeukendrup et al. 1992; Aubry 
et al. 2014). These changes have not been fully explained 
but attributed to a general training fatigue or psychologi-
cal factors that ensue during heavy training periods. This 
theory has also been previously applied to the process of 
HA, where Daanen et al. (2011) reported lower resting and 
exercising Tc—a principal feature of adaptation to heat 
exposure—to manifest most prominently during the post-
HA period. This had been reported in other investigations 
(Pandolf et al. 1977) and was explained by the severity of 
the imposed thermal stimulus. It is plausible that the same 
reasoning applies to the current data, since the participants 
trained for the duration of the study, in addition to the ther-
mal load and serial V̇O2max testing. However, the absence of 
significant V̇O2max changes over time in the control group or 
differences in training characteristics compared to the HA 
group suggests that the thermal stimulus was the responsible 
factor. Alternatively, it is possible that kinetics of V̇O2max 
adaptation are different to other measures but has not yet 
been considered with the necessary scrutiny.

The suggestion that V̇O2max adaptation occurs in the 
post-HA period is at odds with the characteristic rapid 
decay reported in other physiological measures, such as 
Tc and HR (Garrett et al. 2009, 2011; Daanen et al. 2018). 
Indeed, it is the concern over rapid post-HA decay that 
has most likely prompted testing in the following 72-h 
period (i.e., Sotiridis et al. 2018). Of note, some stud-
ies have reported descriptive increase in V̇O2max of up to 
3.5% and significant increase in end test power of 8.5% 
(Sotiridis et al. 2018), yet re-tested across 3 consecutive 
days, immediately following HA. Based on the current 
data, V̇O2max does not appear to enter a period of sustained 
‘decay’ for the first 4 days, and perhaps up to 10 days, 
after HA. Future studies should focus on manipulating the 

intensity of the stimulus and extend the period of post-HA 
monitoring to establish the full time course of decay in V̇
O2max. In this regard, the chosen HA protocol followed a 
so-called ‘fixed-intensity’ model, which is not thought to 
provide an optimal stimulus for adaptation to the heat, as 
Tc is uncontrolled by the investigator (Daanen et al. 2018). 
Indeed, others have suggested that acclimation > 38.5 °C 
Tc is necessary for adaptation (Fox et al. 1963). How-
ever, recent studies have questioned this recommenda-
tion, reporting no relationship between thermal load (time 
spent > 38.5 °C) and changes in Tc or HR (Corbett et al. 
2018). Others have used fixed-intensity HA programmes to 
induce changes in V̇O2max (Lorenzo et al. 2010) and more 
recent studies have demonstrated similar heat adaptations 
between isothermal or fixed-intensity approaches (Gibson 
et al. 2015). There are some potential advantages to adopt-
ing a fixed-intensity protocol. For example, the absolute 
power output and relative intensity sustained in a fixed-
intensity protocol is higher than reported in isothermal 
models (Gibson et al. 2015), which might be of greater 
importance when a gross outcome ( V̇O2max) is targeted, 
requiring a mixture of thermal and exercise stimuli. The 
Tc and HR responses were also significantly higher than 
the control group across all sessions, with mean Tc values 
beginning at a mean of 39 °C and finishing marginally 
above 38.2 °C on day 10. Furthermore, this model can be 
practically simpler to run with groups of athletes, which 
is often necessary for applied practitioners. Therefore, the 
approach we have adopted appears to have provided suf-
ficient stimulus for adaptation in V̇O2max and the delayed 
increase could, theoretically, suit the needs of individuals 
who cannot acclimate for the entire pre-competition train-
ing camp, owing to travel arrangements or the details of 
their pre-event taper.

There are some limitations to the current study, such as 
the types of athletes used, who were all cyclists and well 
trained. While we do not anticipate that delayed V̇O2max 
adaptation will be specific to the mode of exercise, it is pos-
sible that less trained participants would demonstrate a dif-
ferent time course of adaptation to training stimuli and that 
the lower aerobic capacity might prevent them from fully 
engaging in the intensive acclimation process. Furthermore, 
all of the cyclists underwent an acclimation intervention, 
rather than acclimatisation, where there is typically less 
control over the ambient conditions (i.e., heat, humidity 
and wind speed). Thus, we cannot be certain that the same 
effects would be observed in a natural environment.
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Conclusion

The time course of V̇O2max adaptation is non-uniform, mim-
icking a typical supercompensation response. These findings 
have implications for researchers and athletes wishing to 
evaluate adaptations in V̇O2max after performing HA pro-
grammes. We advise that post-testing is not performed in 
the following 48 h and that 96 h provides the peak adapta-
tion for most individuals. Whilst the current findings are of 
fundamental scientific interest, there are also many practical 
advantages of using heat acclimation to enhance thermon-
eutral aerobic capacity. This includes the ability to induce 
a variety of physiological adaptations (reduced Tc and HR, 
increased sweat response), alongside changes in V̇O2max, in 
response to a training programme.
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