
www.balticsportscience.com

Neural network based approximation of muscle  
and joint contact forces during jumping and landing 
Daniel J. Cleather1, 2

1 St Mary’s University, Waldegrave Road, Twickenham, TW1 4SX, United Kingdom

2 Institute for Globally Distributed Open Research and Education (IGDORE)

 article details 
 Article statistics: Word count: 4,503; Tables: 2; Figures: 5; References: 23
  Received: December 2019; Accepted: December 2019; Published: December 2019 
 Full-text PDF:  http://www.johpah.com
 Copyright   © Gdansk University of Physical Education and Sport, Poland 

      The Jerzy Kukuczka Academy of Physical Education in Katowice, Poland 
      Faculty of Physical Education and Sport, Charles University in Prague, the Czech Republic

 Funding:  This research received no specific grant from any funding agency in the public, commercial, or not-for-profit 
sectors.

 Conflict of interests: Author has declared that no competing interest exists.
 Corresponding author:   Dr Daniel J. Cleather; St Mary's University, Faculty of Sport, Health and Applied Science; Waldegrave Road, 

Strawberry Hill, Twickenham, TW1 4SX; e-mail: daniel.cleather@stmarys.ac.uk
 Open Access License:  This is an open access article distributed under the terms of the Creative Commons Attribution-Non-

commercial 4.0 International (http://creativecommons.org/licenses/by-nc/4.0/), which permits use, 
distribution, and reproduction in any medium, provided the original work is properly cited, the use is non-
commercial and is otherwise in compliance with the license.

Journal of Human Perfomance and Health 2019; 1 (1): f1-13
Gdansk University of Physical Education and Sport  In Gdansk
The Jerzy Kukuczka Academy of Physical Education in Katowice 
Faculty of Physical Education and Sport, Charles University in Prague

1

ORIGINAL   

doi: 10.29359/JOHPAH.1.4.06 

         abstract 
 Background:  Musculoskeletal models have been used to estimate the muscle and joint contact forces expressed during 

movement.  One limitation of this approach, however, is that such models are computationally demanding, 
which limits the possibility of using them for real-time feedback.  One solution to this problem is to train a 
neural network to approximate the performance of the model, and then to use the neural network to give 
real-time feedback.  

 Material and methods:  In this study, neural networks were trained to approximate the FreeBody musculoskeletal model for 
jumping and landing tasks.  

 Results:  The neural networks were better able to approximate jumping than landing, which was probably a result 
of the greater variability in the landing data set used in this study.  In addition, a neural network that was 
based on a reduced set of inputs was also trained to approximate the outputs of FreeBody during a landing 
task . 

 Conclusions:  These results demonstrate the feasibility of using neural networks to approximate the results of 
musculoskeletal models in order to provide real-time feedback.  In addition, these neural networks could 
be based upon a reduced set of kinematic variables taken from a 2-dimensional video record, making the 
implementation of mobile applications a possibility.

 Key words:  musculoskeletal modelling, FreeBody, machine learning, real-time feedback, biofeedback. 
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introduction 
Disorders of the musculoskeletal system encompass a diverse number of 
complaints that affect all ages.  These range from degenerative diseases like 
osteoarthritis that can severely compromise the quality of life of the elderly to 
career-threatening sports injuries experienced by elite athletes.  These extremes 
are all linked on a single mechano-biological spectrum.  A large number of 
musculoskeletal problems are thought to be influenced by the forces experienced 
by the structures of the human body and hence the stresses on these tissues.  For 
instance, the degeneration of both natural and man-made biological materials 
is thought to be dependent on the repetitive force loading they experience 
on a daily basis.  Equally, sporting injuries are likely to occur when the force 
experienced by a particular structure exceeds its failure limit.  Consequently, 
it has been of great interest to biomedical researchers to directly quantify the 
forces experienced by human tissues (including the loading of bones, ligaments 
and muscles), both to better understand musculoskeletal disorders, but also to 
improve the quality of surgical and therapeutic interventions.  

The direct measurement of internal tissue forces is an elusive technical challenge.  
Contemporary approaches to the direct measurement of internal forces tend 
to be surgically invasive, and are frequently only possible in patients receiving 
prosthetic joint replacements [1, 2].  Biomedical engineers have therefore been 
compelled to seek alternative approaches to quantify internal forces.  One such 
method is the use of musculoskeletal modelling techniques.  This technology is 
based upon using measurements of the external kinematics and kinetics during 
movement to estimate the forces of interest based upon the principles of classical 
physics and a virtual description of the musculoskeletal system.

There is a growing body of work that has sought to validate the estimates 
derived from musculoskeletal modelling approaches against more direct 
measurements [3–5].  These studies demonstrate that musculoskeletal models 
have the potential to be valuable tools that can provide clinically relevant, subject 
specific information.  However, one problem with musculoskeletal modelling is 
that it can be highly computationally intensive.  The calculation of muscle and 
joint contact forces for just one movement trial can take anything from a few 
minutes to several hours depending on the complexity of the problem and the 
computing resources available.  What this means is that real-time calculation 
of internal forces is not currently feasible using most models, restricting the 
range of clinical applications.

Neural networks can be used as powerful approximation tools somewhat akin 
to linear regression.  The principle is that a neural network can be “trained” 
based upon a given data set of input and output variables.  The trained network 
will then be able to give a prediction of the output variables based upon a new 
set of input variables.  In the present case, the input variables would be the 
experimentally measured external kinematics and kinetics of movement and 
the output variables would be the estimated internal muscle and joint contact 
forces.  The key advantage of neural networks for the study of internal forces 
is that, once the network has been trained, the computation of output variables 
can be very rapid, meaning that real-time prediction of internal forces becomes 
a possibility.

Only one previous study has sought to train a neural network in the manner 
described here.  Rane et al. [6] trained a neural network to approximate the 
performance of FreeBody [7], a publicly available musculoskeletal model of 
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the lower limb, using a set of gait data from 156 subjects.  Their work provides 
evidence that neural networks can effectively approximate the performance 
of musculoskeletal models and do so within a computational time frame that 
makes real-time prediction of internal forces possible.

One further limitation of musculoskeletal modelling approaches is that the inputs 
to the model are generally based on the collection of extensive data relating to 
the mechanics of movement.  For instance, the inputs required by the FreeBody 
musculoskeletal model are the 3 dimensional positions of 18 retro-reflective 
markers and the location, magnitude and orientation of the resultant ground 
reaction force (GRF).  Much of this detail is necessary to allow the virtual 
description of the musculoskeletal anatomy to be created.  The need for this 
detail however, means that typical data capture procedures for musculoskeletal 
models require well-equipped biomechanics facilities, and in particular, the use 
of motion capture and force plate technologies.  This equipment is expensive and 
often not very portable.  This is in turn a considerable barrier to the wider use 
of musculoskeletal models for the calculation of internal forces.  An advantage 
of neural network based approaches is that there is no necessity to create the 
virtual model – the prediction is based simply on patterns in the input data.  
This might mean that neural networks could be trained to give predictions 
of internal forces based on more readily available input data, increasing the 
potential range of applications.

The purposes of this study were therefore twofold.  Firstly, to replicate the work 
of Rane and colleagues [6] using the same model but different movements.  In 
particular, to establish the ability of a neural network to approximate FreeBody 
for jumping and landing – two activities which exhibit much greater force 
expression.  Secondly, to explore the ability of neural network based approaches 
to provide accurate descriptions of muscle and joint contact forces based upon 
data sets with a reduced number of input variables.

material and method 
experimental approach to the problem 
Mechanical data describing jumping and landing was collected using force plate 
and motion capture technologies.  A publicly available musculoskeletal model 
of the lower limb [7] was used to estimate the muscle and joint contact forces 
present during these movements.  This data was then used to train a number of 
neural networks.  The ability of the neural networks to approximate the outputs 
of the musculoskeletal model was evaluated.

subjects 
Two different data sets were used in this study.  The data used in this study has 
previously been described [8,9], and so only brief details of the data collection 
procedure are given here.  The first data set consisted of 88 vertical jumps 
performed by 21 men (body mass = 85.0 ±8.9kg, height = 1.75 ±0.09m) and 
12 women (body mass = 63.1 ±6.3kg, height = 1.67 ±0.07m).  The second data 
set comprised 165 bilateral landings performed by 23 men (body mass = 81.7 
±12.5kg, height = 1.81 ±0.06m) and 27 women (body mass = 64.7 ±8.0kg, 
height = 1.67 ±0.06m).   All subjects provided informed written consent prior 
to data collection and the study was approved by the ethics panel of St Mary’s 
University, Twickenham.
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instrumentations 
The data used here was collected during 3 different time periods at 2 different 
sites.  The time history of the position of 18 retro-reflective markers (Table 
1 and Figure 1) placed on the pelvis and right lower limb [7] was captured 
at 200Hz using motion capture technology (Vicon MX System, Vicon Motion 
Systems Ltd, Oxford, UK; jumping data at site 1: 14 camera array; landing 
data at site 1: 11 camera array; landing data at site 2: 10 camera array).  The 
GRF was collected synchronously with the kinematic data using force plate 
technology (jumping and landing at site 1: Kistler 9287BA Plate, 600 × 900 
mm, Kistler Instruments Ltd., Hampshire, UK; landing at site 2: Kistler 9286B, 
400 × 600 mm).  Force data was either collected at 1000Hz and down sampled 
to 200Hz, or for a minority of subjects, collected at 200Hz. 

Table 1.  Marker positions used for data capture arranged in order of input to the neural networks.  
Table is reproduced Cleather and Bull [7] in accordance with the terms of its Creative Commons At-
tribution Licence

Marker Location
FCC Calcaneus

FMT Tuberosity of the fifth metatarsal
FM2 Head of the second metatarsal
TF Additional marker placed on the foot
FAM Apex of the lateral malleolus
TAM Apex of the medial malleolus
C1, C2, C3 Additional markers placed on the shank 

segment
FLE Lateral femoral epicondyle
FME Medial femoral epicondyle
T1, T2, T3 Additional markers placed on the thigh segment
RASIS Right anterior superior iliac spine
LASIS Left anterior superior iliac spine
RPSIS Right posterior superior iliac spine
LPSIS Left posterior superior iliac spine

Fig. 1.   Position of the 18 retro-reflective markers (also described in Table 1).  This image is 
reproduced from Cleather and Bull [7] in accordance with the terms of its Creative Commons 
Attribution Licence
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procedure 
Subjects first performed a standardised warm up (although the warm up differed 
between the jumping and the landing trials).  For the jumping trials they then 
performed a series of maximum effort vertical jumps with their arms akimbo.  
Subjects were permitted to take as much recovery as necessary between jumps.  
For the landing trials, subjects were asked to step off a 30cm box, and to land 
bilaterally, with 60s rest taken between trials.

data analysis 
In order to generate the training and test data for this study, a publicly available 
model of the lower limb (FreeBody) was used to estimate the muscle and joint 
contact forces exhibited during jumping and landing from the motion capture and 
force plate data.  The development and testing of FreeBody has been previously 
described in great detail [5, 7, 10–17] and so only a brief sketch of the model is 
provided here.  In short, the equations of motion of a chain of 5 rigid segments 
representing the pelvis and right lower limb are posed using wrench notation.  
The equations are parameterised using the kinematic and kinetic data, a scaled 
musculoskeletal geometry taken from the cadaveric study of Klein Horsman and 
colleagues [18] and the anthropometry of de Leva [19].  The unknowns within the 
equations of motion are 193 muscle, ligament and joint contact forces.  As there 
are only 22 equations of motion this is an indeterminate problem which is then 
solved using an optimization approach.  In particular, the solution that minimises 
the sum of the maximum muscle stresses cubed and the ligament forces relative 
to their failure limit cubed is found [12, 20, 21] using the optimization toolbox of 
GNU Octave (https://www.gnu.org/software/octave/).

statistical analysis 
For this study the software package Neural Designer (version 4.2.0, Artificial 
Intelligence Techniques Ltd., Spain) was used to construct and train all neural 
networks.  The same architecture was employed for all networks in order to 
facilitate comparison of the results (although the number of inputs differed for the 
third network as described below).  In particular, the neural network comprised a 
scaling layer, 2 perceptron layers, an unscaling layer and a bounding layer (Fig. 2).  

The neurons in the first (or hidden) perceptron layer were activated based upon 
a hyperbolic tangent function whereas those in the second (output) perceptron 
layer used a linear activation function.  The loss index was calculated based upon 
the normalised squared error with the addition of a regularisation term.  The 
optimization was performed using the quasi-Newton method. 

Three neural networks were trained.  Each network was trained using the 
motion capture and force plate data as inputs and the muscle and joint contact 
forces predicted by FreeBody as the training targets.  The input variables were 
the 3 dimensional coordinates of the 18 markers in the order given in Table 1 
(54 variables), the GRF (3 variables) and the centre of pressure (2 variables).  
The outputs were 40 muscle and tendon forces, 5 joint reaction forces and the 
tibiofemoral mediolateral load share (all shown in Table 2).  The inputs and force 
predictions for each frame were taken to be separate instances that were used as 
training data.  Firstly, a neural network was trained using the vertical jump data.  
This comprised 9,999 instances taken from 64 jumps.  A second neural network 
was trained using the landing data and there were 4,397 instances taken from 
96 landings.  Finally, a third neural network was trained based upon a reduced 
number of inputs consisting of 2 dimensional kinematic data only.  This comprised 
the frontal plane coordinates for the markers of the second and fifth metatarsals, 
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the lateral and medial malleoli, the lateral and medial epicondyles, and the right 
and left anterior iliac spines (16 variables in total).  A 17th variable was added 
which simply provided the body weight of the subjects.  The training data for 
this final neural network consisted of 5,962 instances taken from 133 landings.  
The training data set for each neural network was split into training (60% of the 
instances), validation (20%) and test (20%) groups for use within Neural Designer.

Fig. 2.  Neural network architecture

After training, each of the three neural networks was then deployed as an .m file 
– these .m files are available as supplementary material to this article, and can 
be run in either MATLAB® (MathWorks®, 1 Apple Hill Drive, Natick, MA, USA) 
or GNU Octave.  The performance of each neural network was then evaluated 
using a separate test data set, whereby the approximations given by the neural 
network were compared to the predictions generated by FreeBody.  For jumping, 
the test data set consisted of 3,878 instances taken from 24 jumps, for landing 
there were 1,565 instances representing 37 landings and for the kinematic only 
landing there were 1,351 instances taken from 32 landings.  The deployed neural 
networks were “subject exposed” to the secondary test data set – that is, the 
training data set included a jump or landing trial from each of the subjects in 
the test data set [6].

Linear regression was used to compare the approximations from the neural 
network to the predictions from FreeBody.  The neural network was assumed to 
be approximating FreeBody well if the correlation coefficient and the gradient 
of the line of best fit were between 0.9 and 1.0, and if the intercept of the line of 
best fit was between 0.0 and 0.1.  Finally, the muscle and joint reaction forces for 
both the neural network approximations and the FreeBody predictions were time 
normalised and then spline interpolated in order to calculate mean composite 
curves for the entire cohort.

www. johpah.com
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results 
The outputs of the neural network for jumping were generally highly correla-
ted with the FreeBody estimates (r = 0.492 – 0.986, mean r = 0.893) and for 
11 of the 46 variables the neural network approximated FreeBody well (Table 
2).  Only 4 variables did not correlate highly, and of these, 2 were variables 
where the predicted maximum muscle forces were negligible.  In contrast, for 
landing, although there was still a generally high level of correlation betwe-
en the neural network and FreeBody (r = 0.491 – 0.929, mean r = 0.810), no 
variable was considered to be approximating FreeBody well.  For the neural 
network that was based upon landing kinematic data only, only 16 variables 
exhibited a high level of correlation (r > 0.7) between the neural network 
and FreeBody (r = 0.160 – 0.846, mean r = 0.642).  The differences between 
neural network approximations and FreeBody predictions for one of the best 
performing variables (vastus lateralis) are presented in Fig. 3.

Table 2.  Comparison of neural network approximations to FreeBody predictions of muscle and 
joint contact forces during vertical jumping and landing.  Forces are listed in the order that they are 
output from the neural network

Muscle or joint
Jumping Landing Landing (Reduced)

R m c Max r m c r m c

Adductor Brevis 0.872 0.761 0.003 0.47 0.859 0.824 0.023 0.667† 0.512 0.042

Adductor Longus 0.876 0.763 0.006 1.08 0.883 0.861 0.041 0.689† 0.524 0.076

Adductor Magnus 0.952 0.870 0.038 1.65 0.873 0.829 0.123 0.640† 0.553 0.279

Biceps Femoris Long Head 0.947 0.863 0.073 2.18 0.889 0.809 0.061 0.663† 0.463 0.187

Biceps Femoris Short Head 0.874 0.761 0.004 0.61 0.762 0.652 0.022 0.659† 0.466 0.025

Extensor Digitorum Longus 0.824 0.664 0.008 0.38  0.491† 0.474 0.043 0.365† 0.313 0.062

Extensor Hallucis Longus 0.908 0.795 0.006 0.24  0.597† 0.532 0.032 0.539† 0.354 0.041

Flexor Digitorum Longus 0.957 0.898 0.006 0.20 0.798 0.790 0.023 0.642† 0.628 0.039

Flexor Hallucis Longus  0.962* 0.950 0.034 1.51 0.792 0.799 0.130 0.767 0.572 0.167

Gastrocnemius 0.755 0.582 0.053 1.69  0.675† 0.493 0.156 0.202† 0.074 0.213

Gemellus  0.982* 0.945 0.006 0.62 0.852 0.687 0.017 0.740 0.599 0.026

Gluteus Maximus  0.969* 0.926 0.071 4.63 0.860 0.750 0.182 0.639† 0.548 0.312

Gluteus Medius  0.950* 0.930 0.036 2.09 0.838 0.728 0.204 0.604† 0.400 0.357

Gluteus Minimus 0.862 0.675 0.012 0.47 0.791 0.615 0.054 0.644† 0.399 0.076

Gracilis 0.866 0.771 0.001 0.25 0.833 0.850 0.010 0.704 0.656 0.015

Iliacus 0.882 0.743 0.005 0.60 0.849 0.750 0.060 0.715 0.499 0.074

Obturator Externus 0.848 0.667 0.026 0.59 0.868 0.807 0.061 0.619† 0.548 0.153

Obturator Internus  0.985* 0.960 0.026 2.03 0.862 0.680 0.079 0.782 0.628 0.114

Pectineus 0.881 0.766 0.002 0.26 0.861 0.811 0.014 0.686† 0.511 0.024

Peroneus Brevis 0.954 0.883 0.023 1.42 0.757 0.647 0.090 0.687† 0.569 0.109

Peroneus Longus 0.954 0.883 0.032 1.87 0.746 0.650 0.133 0.650† 0.543 0.171

Peroneus Tertius 0.934 0.833 0.005 0.24  0.522† 0.442 0.039 0.474† 0.378 0.048

Piriformis  0.986* 0.970 0.009 0.65 0.896 0.739 0.022 0.846 0.657 0.027

Plantaris  0.620† 0.328 0.000 0.02  0.638† 0.471 0.002 0.160† 0.073 0.003

Popliteus 0.857 0.610 0.007 0.25  0.626† 0.521 0.010 0.449† 0.302 0.014

Psoas Minor 0.879 0.753 0.000 0.03 0.852 0.793 0.001 0.686† 0.501 0.002

Psoas Major 0.882 0.742 0.005 0.61 0.864 0.783 0.056 0.729 0.520 0.072

Quadratis Lumborum  0.978* 0.937 0.015 1.17 0.907 0.746 0.028 0.795 0.706 0.050

Rectus Femoris 0.888 0.762 0.060 1.67 0.858 0.773 0.173 0.646† 0.466 0.370

Sartorius  0.492† 0.266 0.003 0.18 0.842 0.732 0.030 0.601† 0.514 0.059

Semimembranosus 0.942 0.835 0.034 1.36 0.882 0.821 0.047 0.589† 0.397 0.119

Semitendinosus 0.846 0.706 0.030 1.02 0.892 0.865 0.030 0.551† 0.398 0.115

Soleus 0.940 0.921 0.214 8.20 0.795 0.719 0.640 0.557† 0.451 1.490

Tensor Fascia Latae 0.736 0.511 0.013 0.44 0.858 0.758 0.033 0.702 0.474 0.060
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Table 2 – continued

Muscle or joint
Jumping Landing Landing (Reduced)

R m c Max r m c r m c

Tibialis Anterior  0.651† 0.406 0.024 1.54 0.710 0.740 0.119 0.576† 0.410 0.239

Tibialis Posterior 0.927 0.860 0.050 1.50 0.830 0.768 0.166 0.731 0.756 0.243

Vastus Intermedius  0.980* 0.952 0.021 2.52 0.929 0.837 0.076 0.841 0.787 0.120

Vastus Lateralis  0.963* 0.955 0.067 5.00 0.925 0.842 0.267 0.834 0.801 0.413

Vastus Medialis  0.983* 0.963 0.040 4.79 0.918 0.803 0.153 0.830 0.749 0.214

Patellar Tendon  0.980* 0.968 0.054 5.92 0.900 0.837 0.498 0.744 0.690 0.977

Ankle JRF 0.969 0.970 0.157 10.02 0.820 0.812 0.880 0.737 0.631 1.992

Lateral Tibiofemoral JRF 0.913 0.931 0.103 4.43 0.816 0.842 0.401 0.677† 0.735 0.929

Medial Tibiofemoral JRF 0.920 0.834 0.296 8.71 0.748 0.696 1.060 0.451† 0.383 2.120

Hip JRF 0.978 0.951 0.163 11.29 0.804 0.772 1.100 0.572† 0.441 2.554

Patellofemoral JRF  0.984* 0.984 0.073 13.59 0.922 0.842 0.636 0.815 0.790 0.942

Mediolateral Load Share 0.766 0.674 0.201 0.98 0.767 0.724 0.164 0.635† 0.555 0.239

Mean 0.893 0.797 0.046 0.810 0.733 0.178 0.642 0.520 0.347

Notes: landing (reduced) = neural network based upon 2 dimensional kinematic data only; r = correlation coefficient; m 
= gradient of line of best fit; c = intercept of line of best fit; Max = maximum value of force prediction from FreeBody; * = 
neural network approximating the FreeBody predictions well (0.9 < r < 1.0, 0.9 < m < 1.0 and 0.0 < c < 0.1); † = neural 
network approximation not highly correlated with the FreeBody predictions (r < 0.7)

Fig. 3.  Comparison of neural network approximations to FreeBody predictions of vastus lateralis 
muscle force during jumping and landing (multiple trials are shown)
Notes: landing (reduced) = neural network based upon 2 dimensional kinematic data only; r = correlation coefficient; m = 
gradient of line of best fit; c = intercept of line of best fit; NN = neural network; MM = musculoskeletal model (FreeBody)

When considered at a cohort rather than an individual level, the mean values 
for the jumping and landing neural networks showed a close agreement with 
the FreeBody predictions (Fig. 4).  In contrast, the kinematics only approxi-
mation of landing did not show the same high level of agreement, although 
there was still a reasonable degree of qualitative similarity (Fig. 5).
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Fig. 4.  Mean muscle and joint contact forces calculated during vertical jumping and landing
Notes: NN = neural network; MM = musculoskeletal model (FreeBody), BW = body weight
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Fig. 5.  Mean muscle and joint contact forces calculated during landing for the neural network based 
on the complete input set and the kinematics only input set (reduced)
Notes: NN = neural network; MM = musculoskeletal model (FreeBody), BW = body weight

discussion 
The first aim of this study was to evaluate the ability of a neural network to 
approximate the muscle and joint contact force estimates of FreeBody during 
jumping and landing.  The results of this study confirm the findings of Rane 
and colleagues in suggesting that neural networks that have been trained on 
the calculations from musculoskeletal models show a good level of agreement 
with the underlying model.

The neural network for jumping was able to better approximate FreeBody 
than the neural network for landing.  This seems likely to be due to the fact 
that there was more variability in both the inputs and outputs of the landing 
data set in comparison to the jump data.  Evidence for this can be found in 
our recent principal component analyses of larger jumping and landing data 
sets from which the data in this study was drawn.  In particular, for jumping, 
only 3 principal components were required to describe 90% of the variability 
in the 3-dimensional inter-segmental joint moments (which can be taken to be 
a proxy for the input data set) and 4 principal components to describe 90% of 
the variability in the muscle forces calculated by FreeBody  [22].  In contrast, 
for landing, 4 principal components were needed for the moments and 6 for 
the muscle forces [23].  Whether this difference in variability is a function of 
the particular populations studied, or fundamentally inherent to differences 
in the tasks themselves is unclear, although I have argued that the latter is 
more probable [23].  In any case, the relatively poorer performance for lan-
ding does not mean that neural networks show less promise for this task, but 
rather that it may be necessary to use a larger training data set when trying 
to approximate data sets (or movements) with more variability. 

The criteria used to assess the degree of fit between the two approaches in 
this study were quite stringent.  In order to be assessed as approximating the 

Journal of Human Performance and Health 2019; 1 (1): f1-13
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data well the neural network needed to be able to match the FreeBody out-
puts extremely closely for all individuals.  This can be clearly seen by compa-
ring the jumping and landing graphs in Figure 3.  Although the predictions 
for landing are close for most individuals there are some individuals where 
they differ.  This is not the case for jumping.  When the individual predictions 
are combined into cohort level data however, the performance of the two 
approaches is much closer.  For instance, in Figure 4, the third and fourth 
graphs present the cohort level data for muscles where the individual predic-
tions from the neural network were not highly correlated with the estimates 
from the musculoskeletal model (for jumping, sartorius and tibialis anterior; 
for landing, extensor digitorum longus and gastrocnemius).  This is evidence 
that the neural network is a robust approach when applied at the cohort level.

 In interpreting these results it should be noted that the approximation task 
in question was quite demanding and could be simplified by only seeking to 
approximate a subset of the output variables.  In addition, the size of the tra-
ining data set was relatively small.  For these reasons these results should be 
considered to indicate a lower bound for the performance of neural networks 
in approximating the performance of musculoskeletal models in jumping and 
landing tasks.  It seems likely that if the input data sets, network architectu-
re and output variables are optimised (and in the case of outputs reduced) to 
focus on answering a particular question, that the fidelity of the approxima-
tion will be much greater.  Similarly, the use of larger training data sets that 
are optimised for the question in hand will also likely deliver considerable 
improvements in performance.  When these results are considered in this li-
ght this study provides strong evidence that neural networks are a realistic 
and feasible approach to the real-time prediction of subject specific muscle 
and joint contact forces.

It is important to remember that the neural networks used in this study appro-
ximated the outputs of FreeBody, a musculoskeletal model.  The predictions 
given by the neural network are thus only as good as the underlying model 
itself.  The neural network could be approximating FreeBody with 100% ac-
curacy, but this would not necessarily mean that its outputs were close to the 
physiological reality.  This study does not, therefore, sound a death knell for 
research in musculoskeletal modelling, but rather the contrary.  What this work 
and the study of Rane et al. [6] suggest is a clearer potential pathway towards 
a clinically relevant, real-time tool.  That is, that musculoskeletal modelling 
technology is used to create large training data sets, and that optimised neural 
networks are then deployed to approximate the performance of these models.  
This makes the clinical use of the outputs of musculoskeletal models more 
realistic, and thus should serve as motivation for musculoskeletal modellers 
to redouble their efforts in trying to build and validate models that are able 
to provide subject specific estimates that are close to physiological reality.

The second aim of this study was to explore the ability of a neural network 
to approximate FreeBody based upon a reduced number of input variables.  
Clearly, the approximations that are based on the reduced inputs are not as 
good as those based on the full data set.  However, for some of the output 
variables the correlations for the individual level data are still high (Table 2) 
and the predictions at the cohort level are a reasonable approximation of the 
musculoskeletal model (Fig. 5).

Cleather DJ.
Neural network based approximation of muscle and joint contact forces during jumping and landing
J Human Perf Health. 2019;1(1):f1-13



Szczesna-Kaczmarek A
Blood K+ concentration balance after prolonged submaximal exercise...
Balt J Health Phys Act 2014; 1(1): 233-244

12www.balticsportscience.com

conclusions 
In reducing the variables for the input data set I was trying to imitate the 
variables that could potentially be mined from a simple, 2-dimensional, frontal 
plane, video image.  In doing so, I was attempting to test the feasibility of 
using the video record taken from one camera to generate predictions of 
muscle and joint contact forces.  Again, in performing this analysis, I chose 
the more demanding test by working with the more variable landing data 
set.  I would thus again suggest that these results are reflective of a lower 
bound for the performance on this type of task.  Similarly, when the number 
of output variables were reduced it was possible to find neural networks that 
could closely approximate the training data.  However, these solutions over-fit 
the data, and then the performance on the test data set was poorer.  However, 
this does suggest the possibility of creating neural networks with much better 
performance if a larger training data set is used.  

Given these limitations, these results demonstrate the feasibility of calculating 
muscle and joint contact forces from just one 2-dimensional video camera.  
Future research should focus on establishing the aspects of the video record 
that are most effective to use in approximating the performance of the 
underlying musculoskeletal model.  It is worth noting that input variables for 
the neural network do not need to be the same as, or even a subset of, those 
used for the musculoskeletal model.  Such work represents a viable pathway to 
the development of a mobile application that could provide real-time feedback 
during movement.
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