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Abstract 

The incorporation of neural-based technologies into psychiatry offers novel means to use 

neural data in patient assessment and clinical diagnosis. However, an over-optimistic 

technologisation of neuroscientifically-informed psychiatry risks the conflation of 

technological and psychological norms. Neurotechnologies promise fast, efficient, broad 

psychiatric insights not readily available through conventional observation of patients. 

Recording and processing brain signals provides information from ‘beneath the skull’ that 

can be interpreted as an account of neural processing and that can provide a basis to evaluate 

general behaviour and functioning. But it ought not to be forgotten that the use of such 

technologies is part of a human practice of neuroscience informed psychiatry. This paper 

notes some challenges in the integration of neural technologies into psychiatry and suggests 

vigilance particularly in respect to normative challenges. In this way, psychiatry can avoid a 

drift toward reductive technological approaches, while nonetheless benefitting from 

promising advances in neuroscience and technology. 
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Introduction 

Neurosciences and psychiatry overlap when the identification of anomalous neural activity is 

mapped to behavioural or cognitive phenomena in the context of assessment or diagnosis of 

patients. This means in practice that technologies developed for recording neural activity can 

come to play a role in psychiatry. Given this, there is a clear need to examine not only the 

relationship between neuroscience and psychiatry, but also the use of neurotechnology in 

psychiatry. The specifics of how such technologies operate become particularly salient when 
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they are placed in the context of a practice aimed at evaluating human behaviour, such as 

psychiatry. 

 In some cases, neurotechnology can rely on artificial intelligence (AI), especially in 

the prediction, or analysis of neural recording data (Glaser et al. 2017; Kellmeyer 2018). This 

represents a significant element worth its own investigation, again because it is deployed in a 

context of evaluating human behaviour. How AI develops and is used in this kind of context 

is in need of analysis. In this paper the analysis will involve identification of key normative 

differences between brain-based intelligence and artificial intelligence. To do this we point to 

some general complexities of human intelligence (HI), especially as based in complex, 

reasoned activity. 

 As a means of blending technological advances with human understanding, we 

recommend discussion that draws upon a variety of discussants and sources of information. 

This fits with more familiar psychiatric methods involving doctor/patient encounters, which 

are typically framed as a type of discussion. Even with a power or authority imbalance 

between psychiatrist and patient, the conversational form of interaction forms the basis on 

which patients reveal their felt experience for expert appraisal by the psychiatrist. The 

interpolation of technological norms into these otherwise interpersonal spaces may serve to 

undermine that space. Technology appears to offer objective answers to problems and so can 

seem to overshadow the subtleties of more discursive approaches to human problems. 

Particular care ought to be taken in developing neuropsychiatric accounts of human cognition 

and behaviour where diagnosis of psychiatric disorder is at stake. This and related issues are 

central in this paper. 
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Neuroscience and Neurotechnology 

Neuroscience, in general, promises a growing understanding of how the brain works. As 

every conscious state is understood as being instantiated by some neural activity, greater 

understanding of conscious states ought to arise from greater understanding of the brain. 

Some influential voices have already described psychiatry itself, for instance, as ‘clinically 

applied neuroscience’ (Insel and Quirion 2005). With accelerating progress in the detection, 

recording, identification, and decoding of brain signals, technologies play a crucial role in 

making the brain legible to researchers (Farahany 2018; Haselager and Mecacci 2018; Rose 

2016). Nevertheless, how this understanding is applied is significant. 

 Neural activity is highly organised, and the brain is richly structured with tremendous 

complexity (Churchland 1989). Given this complexity, it might be easy to conflate a problem 

manifested in a conscious state – a psychiatric disorder for example – as a result of misfiring 

neurons, damaged circuits, or poorly connected regions. Nikolas Rose and Joelle Abi-Rached 

have referred to this kind of scenario as a ‘screen and intervene’ paradigm (Rose and Abi-

Rached 2014). In such a state of affairs, the use of technology in detecting neural activity is 

taken as sufficient for identifying anomalous activity upon which interventions are thereby 

justified. These might be pharmacological, neurotechnological, or even consist in corrective 

writing to brains (Roelfsema, Denys, and Klink 2018). ‘Writing to brains’, for instance, 

allows for the modification of neural activity through the creation of electromagnetic fields. 

These fields are intended to excite, or inhibit neural activity in ways aimed at promoting 

cognitive and behavioural effects. 

 In developing a science of the brain, there is a risk of generalising about detectable 

neural activity from which may emerge hastily constructed accounts of behavioural or 

cognitive phenomena in terms of this activity. This is connected with the question of how to 

avoid reducing accounts of human cognition to neuroscientific norms, while at the same time 
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acknowledging the powerful role of neuroscience in addressing human psychiatric disorders. 

Such reduction could blur the boundaries between organic and functional disorders, hitherto 

essential to discourse on mental illness, for instance. This blurring also affects the boundary 

between psychological traits (personality) and psychiatric states (illness). The potential for 

this reduction of human beings to ‘neurochemical selves,’ rather than persons, ought to be 

carefully scrutinised (Rose 2003).  

 The above noted issues are pertinent in evidence-gathering as part of psychiatric 

assessment or diagnosis. Privileging causal explanations of action, or neurobiologically 

reductive bases for action and behaviour, may well lead to a sort of reason-curtailment 

wherein the scope of reasons available to account for action and behaviour is reduced. This 

could result in a too reductive account of complex human behaviour both in terms of 

rationality, and action, especially as it relates to the perceptions both of patients and of 

practitioners. Where behaviours appear to be explained by some causal story supported by 

data, discursive accounts of those same behaviours may become less influential. This may 

sound somewhat abstract, but with reference to neurotechnologies, we can offer a useful 

example of this reductive potential. 

 

Neurotechnologies, AI and Modifying Neural Activity 

Neurotechnologies typically record and decode brain signals for a variety of purposes. These 

include controlling software and hardware, and providing information for neural monitoring, 

as in neurofeedback devices (Sitaram et al. 2017). These last-mentioned devices sometimes 

raise claims to neural or human enhancement. These are ‘open loop’ systems in that they 

detect, record, and process neural signals happening already, in their own right. The open 

loop neurotechnological device is akin to a spectator, its outputs simply repeating what is 

happening under the skull, instrumentalised somehow. In such instances, AI may be a part of 
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the system overall, especially used in the prediction, visualisation, or analysis of neural 

recording data.  

 Other instances of neurotechnology include neural stimulation as part of their 

function. For instance, deep brain stimulation (DBS) stimulates neural regions and in doing 

so modifies neural activity. Typically, this is done in order to diminish deleterious symptoms 

of diseases like the shaking seen in Parkinson’s disease (Fang and Tolleson 2017). The 

strength and the duration of these kinds of DBS interventions can be monitored and altered 

by the user, and the devices can also be turned on and off. In terms of AI, this specific 

Parkinson’s application of stimulation technology appears not to be highly problematic. This 

application is often user-controlled. But especially in applications that are not approved 

treatments, as DBS is for Parkinson’s, the convergence of AI and neural stimulation can raise 

other issues. 

 A closed-loop neurotechnological device is capable of detecting, and modifying 

neural activity. This would allow for detailed creation of a desired neural state, and its 

maintenance via stimulation. Given the complexity of this task, software control systems 

would be required to operate the maintenance function. The creation and maintenance of a 

given neural state would require close attention to the state of the neural region to be 

monitored, as well as real-time intervention to keep it on track with the desired state (Xu et 

al. 2014). Unlike systems such as DBS, this kind of control would be too fine-grained for a 

person to manage. For these reasons, AI enhanced technology may be deployed to a greater 

extent than simply the recording or analysis of neural data. AI technologies with software-

controlled closed-loop neurotechnology raise questions concerning free will, agency, 

responsibility, and perception. For instance, it is not clear what control a patient might have 

over the technology, or what impact might be felt if the technology fails. At the very least, 
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and most pertinently here, we know that physical intervention in the brain’s chemical and 

electrical activity has effects on mental states. 

 The instrumental potential of neural states also underwrites pharmacological 

intervention in cognitive and mental states, as well as treatments such as DBS. This is the 

rationale for using DBS in cases of obsessive compulsive disorder, persistent depression, or 

anorexia nervosa for instance (Klein et al. 2016; Maslen, Pugh, and Savulescu 2015; Widge 

and Sahay 2016). It is also key in the development of neurotechnologies, such as 

neuroprosthetics for speech, which might be seen as likely successors to a 

neuropharmacological-psychiatric industry (Parastarfeizabadi and Kouzani 2017). At any 

rate, these instrumentalisations are embedded within a recognisably discursive practise. 

Psychiatric assessments, despite or because of power imbalances between practitioner and 

patient, allow for a therapeutic identification of problems wherein psychological traits shade 

into indicators of disease, as with brain lesions. The regime here is one of observation and 

discussion, then to report, intervene and treat. The process can be repeated until a satisfactory 

outcome arises. In the case of a closed-loop neurotechnology controlled by software, this 

regime is altered. 

 All functions of observation, intervention, and treatment may be given over to a 

closed loop neurotechnology system, especially the algorithms governing its ‘good’ 

functioning (Widge and Sahay 2016). In one sense, the automaticity of the system assumes a 

1:1 relation between neural processes and desired mental state, itself the basis for a desirable 

behavioural outcome. Put another way, the closed-loop neurotechnology setup is predicated 

on the idea that the creation and maintenance of a given neural state will promote or 

determine a macro-scale behavioural effect. This may be via mediating that state, or through 

inhibiting a non-desirable state. What is key here is the power given to the algorithms that 

assess and modify neural activity, mental states, and thereby perception and action. 
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 Returning to the idea that neural states are closely related to mental states, we can see 

that closed-loop neurotechnologies present an unusual inversion of familiar empirical 

‘experience.’ Conscious states are characterisable in terms of neural signals typical of those 

states; verbal thinking, problem solving, and emotion, among other activities. While neural 

states correlate with mental, cognitive, and behavioural states, we do not simply undergo 

them. Neural activity responds to conscious activity as well as producing it. We use our 

brains in a manner not easily describable in mechanistic terms (Kirmayer and Gold 2011). 

This points to issues in determinism that are beyond the scope of this paper, but for now it 

need only be observed that there is at least some sense in which neural states can be made 

through conscious activity, as much as they are passively undergone. Moreover, all such 

mental states and neural processes take place within a rich cultural, social, and embodied 

identity, which codify a set of experiences that an AI-enabled neurotechnology may struggle 

to encode.  

 Closed-loop neurotechnology inverts the order as experienced by the user and instead 

prioritises a top-down account of brain-consciousness-activity to create a mental state via 

neurointervention. Unlike DBS treatment for Parkinson’s, there is no ‘human in the loop’ on 

this neurotechnology model. This means that AI-enabled software manages neural state 

monitoring as well as maintenance. By hypothesis, this limits the scope for the closed-loop 

neurotechnology user to change her mind, for instance (Glannon 2016). Where a user cannot 

easily intervene to modify or switch off a system, this appears to offer a direct challenge to 

will and agency (Goering et al. 2017), as well as broader conceptual problems for the 

conflation of technological and psychological norms. 

For instance, if we go for a drive in a car, we can always turn back if we decide that 

the initial decision was a bad one, or if conditions change and make the drive undesirable. 

Can we say the same for the closed loop neurotechnology user concerning their own mental 
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states? The initial decision to use the system, the initial ‘pro-neurotechnology’ stance, may be 

seen as triggering a chain of events sealed off from revision in the light of changed minds or 

negative externalities. The nature of the closed loop neurotechnology may exacerbate this 

‘sealing off’ owing to its creation and maintenance of neural states designed to promote or 

preclude given mental states. These states, more to the point, are decided upon prior to the 

present, in the initial calibration of the neurotechnology system. The conditions hit upon at 

that point in time are then reinforced algorithmically at every point along the line. The user’s 

present neural states are thus closely predicated on decisions made prior to the present in an 

intentional, yet rather artificial and unfamiliar way. 

 As long as a present neural state, predicated on a past state, is created and maintained 

by algorithm-controlled electrical intervention, the mental states promoted or inhibited by 

that neural state will presumably curtail full user control of the present state (Tamburrini 

2009). This serves to illustrate an issue in responsibility, as the neurotechnology user may 

determine for themselves a condition that foreshortens their responsiveness to reasons. In 

curtailing this dimension of themselves, their basis for action appears to be somewhat 

diminished. This could even amount to a kind of personality change (Gilbert et al. 2017; 

Klaming and Haselager 2013; Pugh et al. 2018; Temel et al. 2006). Because a neural state is 

being created and maintained, certain neural signal profiles will be promoted and others 

diminished. Any mental states associated with, or precluded by, those signal profiles will thus 

be promoted or diminished. This seems to challenge how we might think conventionally of 

‘agency,’ as a kind of hybrid control at play. 

 Closed-loop neurotechnologies provoke a rational-responsibility problem. In other 

words, we face a situation whereby the rationale for an action, including as a grounding for 

responsibility, may be assigned to either an AI-enabled neurotechnology, or to the human 

actor (see also Rainey 2018). Whereas ‘action’ is typically connected to reasoning, which 
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includes a full gamut of reasons, with neurotechnology we are left with the possibility that 

reasons may not be available, transparent, or even coherent. In addition, we know that 

different neural states can underwrite different kinds of perceptual judgements, as seen in 

transcranial magnetic stimulation (TMS) experiments (Silvanto et al. 2008). So, reasoning is 

not the only factor likely to be affected by closed-loop neurotechnology; perception is also at 

stake. In a scenario where action – as the outcome of reasoning – may be curtailed, and basic 

behavioural discrimination among stimuli is affected, we suggest that great care is taken in 

the use of these technologies, particularly as pertains to their use in psychiatry. 

Data, Black Boxes, and Reasoning: Making Sense of Brains and Minds 

A central part of what is at issue here is the role of AI as decision-maker in the examples 

above. A kind of hybridised control appears in these cases, the agent herself having more or 

less limited control. Where the control in question concerns neural states, and thereby mental 

states, this is all the more acute. AI-powered methods can provide effective predictions about 

brain activity quickly, and unexpectedly, from huge amounts of data (Bzdok and Meyer-

Lindenberg 2018). These methods are often very complex and opaque, and consequently are 

often not understood well. This is especially the case where there is some ambition to expand 

the use of machine learning and related systems in psychiatry (Dwyer, Falkai, and 

Koutsouleris 2018). While our focus here are the systems used, we are also signalling that the 

field into which such systems will appear may require further analysis. This includes 

methodological ramifications which might be very wide-ranging indeed (Kitchin 2014). 

 Machine learning techniques designed to generalise from complex and varied data in order to 

predict particular cases tend to rely upon statistical methods. These may be of various types, 

but a common feature is that they are often deployed effectively as a black box (Samek et al. 

2017). This, in general, can be seen as a problem with machine learning approaches. Despite 

their often impressive successes, these machine learning applications remain inexplicable in 
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some important respects, owing to their mathematical complexity and opaque processing 

methods. This inexplicability may even be prevalent among those involved with developing 

the applications (Hart and Wyatt 1990). 

 In psychiatric contexts, or health more widely perhaps, this black box problem cannot 

be overlooked. With a typical clinical encounter being akin to a discussion of some kind 

(power imbalances notwithstanding) a black box technology in that encounter raises ethical 

as well as conceptual issues. This is all the more pressing, perhaps, if that black box is given 

some authority in providing evidence in assessing or diagnosing a disorder. This might be 

said to occur given the role of neural imaging in diagnosis, for instance. In using technologies 

to identify neurotypical states, and thereby indicating neurodivergence, there is a risk of 

‘technological paternalism’ (Hofmann 2003), or untenable faith in the objectivity of a 

device’s outputs. This would be an unwarranted reduction of self-reported experience to 

objectively observable neural activity. Similarly problematic is an attempt to go from a neural 

account of experience to a phenomenological one (Gallagher 2005). 

 Even with efforts to restructure the patient-clinician relation, the complexity of shared 

decision-making practices and the possibility for dialogue is not easy to resolve (Thompson 

2007). Paternalism in general is less and less popular in modern medical models of patient 

engagement, as it does not sufficiently prioritise patient autonomy. Yet if this paternalism is 

displaced into a machine, one that cannot be understood by the patient (and perhaps not even 

the physician, at least in terms of its processing), additional issues arise. Even if a diagnosis 

were to be correct, it would have limited legitimacy. This is because a diagnosis may falter 

when the strategy relies somehow on a process with at least one inexplicable element. 

 Machine learning approaches might fare better if disease did not include fuzzy 

concepts, and was not classified in terms of symptoms or descriptions of function (Dwyer, 

Falkai, and Koutsouleris 2018). Such factors are interpretable and so prompt variety rather 
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than specificity. Biomarkers, objective criteria, would likely provide a better basis for 

machine learning based psychiatry. It ought to open the difficult question: is the technology 

‘operating better’ equivalent to psychiatry operating better? 

 One issue turns on how diagnosis works in psychiatry, where psychological traits may 

be scrutinised as psychiatric disorders. The construction of an ideal type of brain function, 

say, as derived from a mass of tokens examined in research, is instructive for various research 

aims. But this ought not to serve as a telos, or an end toward which any deviation ought to be 

steered. The ‘datafied brain’ is not the proper brain by dint of being based in many instances, 

and individual deviations from neurotypical models ought not to be thought of as deviant 

brains per se. This is especially important where neuroscience would hope to inform 

psychiatry, and where abnormal neural data may be taken to evidence psychiatric 

disturbance.  

 In terms of data diversity there is a serious underrepresentation of any but those of 

Western European origin, signalling the curated nature of data sets (Chiao and Cheon 2016; 

Gitelman 2013; Henrich et al. 2010). Yet technologies, such as those processing data curated 

from sub-sets of large groups, appear in some sense to present neurotypical states as 

objectively proper neural states. As various discussions have served to illustrate, imaging in 

particular can be problematic in encouraging faulty reasoning (Logothetis et al. 2001; 

Poldrack 2006). As Joseph Dumit notes, brain scans of patients diagnosed with schizophrenia 

are referred to by researchers as ‘schizophrenia,’ whereas others are labelled ‘normal 

controls.’ This reveals a way in which researchers can come to see positive scans as showing 

‘schizophrenia itself’ somehow, rather than indicating symptoms. In this example, “…the 

symptom has been collapsed into the referent” (Dumit 2016, p. 222). 
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 Just as we do not need to pit conventional human intelligence (HI) and AI in 

opposition, we also do not need to set neuroscience and psychiatry in opposition. As Simon 

Cohn writes of psychiatry, 

“The issue is not that neuroscience does not, or should not, play a significant role in 

psychiatry, but that at present at least its commitment to a simple reductionist 

paradigm is also affording the researchers a degree of naivety and lack of social 

awareness that is of concern. The effect is that, unlike traditional psychiatric 

encounters which, despite issues of power and inequality, are nevertheless inherently 

social interactions, the emerging role of neuroscience in psychiatry suggests the role 

of individual experts and doctors might be deferred by the apparently objective, and 

self-determining technology.” (Cohn 2016, 180) 

The mind is an ‘open system’ not well accounted for by wholesale reduction (S. Rose 2016, 

63), even though the physical basis for many of its operations can be well understood through 

neuroscientific research. This reductionism is similarly unsuccessful when narrow AI 

accounts of reason-led action are presented as somehow indicative of an idealised HI. 

Diagnosing problems of the mind in terms of neurophysical anomaly omits key details about 

what mindedness consists in. In relying too much on black box technologies in the processes 

of assessment and diagnosis, it is important not to miss this point. For these reasons, the place 

of AI in these processes requires some further scrutiny. 

 

Action, Reason, and Norms: Comparing HI and AI 

For our purposes here, we propose that AI can include anything that seeks to reproduce or 

simulate methods of decision-making, and reasoning, by technological means. By HI, we 

point very broadly to the human ability to reason, such that a basis for distinguishing 

between causal or caused activity and intentional action can be established. On this account, 
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action can be interpreted as being done for reasons, whereas caused activity occurs owing to 

physical laws. 

 AI offers powerful and useful tools for neuropsychiatry. AI can be deployed in 

various contexts, especially in areas of neuroscience where it can outperform human beings 

in key tasks. Some think that it will have a revolutionary effect across this variety of contexts 

(Grace et al. 2017), especially for pattern-recognition. It is also thought that AI will have an 

important role in future clinical research and medical imaging, for instance (Ramesh et al. 

2004). AI systems can be used to predict events, especially given the scope for analysing 

datasets much larger than would be feasible for any given human. Alongside these successes 

are more common feats including beating humans in games, and sometimes with impressive 

displays of original moves (Silver et al. 2016). As noted above, AI offers scope for 

neurotechnologies in the diagnosis and specification of treatments of brain and psychiatric 

disorders. This next section explores what might be the conceptual limitations of these 

technologies, and what might be the likelihood that such limitations can be overcome.  

 Especially in terms of psychiatry, in human reasoning there is a vested interest in 

examining beliefs, weighing desires, and fitting them with various intentions. From these 

sorts of activities, HI looks for good reasons for thinking or behaving in different ways. Our 

starting point here is that AI does not ‘look for reasons,’ let alone look for good ones. While 

AI may have the appearance of ‘looking for reasons’, in fact it operates according to 

statistical methods. Unlike human reasoning, beliefs are not examined, desires are not 

weighed, and intentions are absent. Yet AI has no interests beyond the completion of these 

actions, and so nothing in this process can be said to be better for the AI itself than anything 

else from an imagined AI point of view. We pass over the question of whether AI could 

exhibit something like irrationality or mental illness, though perhaps reflection on this idea 
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could aid in understanding HI and the potential disorders of humans in general (Ashrafian 

2017).  

 Understanding HI reason-selection is complex and includes trying to understand the 

actions of another even when they exhibit odd behaviours. One example is of apparent 

delusion, and the efforts exerted to engage with such action as meaningful, despite possible 

delusion. In such circumstances we can and do ask for (and typically expect to receive) some 

account of why one course of action was chosen over another. For AI, this process is not so 

simple, despite ongoing work to try to re-create the kinds of justificatory argumentation 

ubiquitous in HI (Bench-Capon and Dunne 2007). HI and behaviour is rich in reason-giving 

and in reason-expecting, all of which is essential to our form of life (Wittgenstein 2009), to 

our mental states, as well as to our ethical and legal systems and structures.  

 We could envisage in principle an AI in the sense of a highly complex simulation of 

decision-making, modelled on patterns from past cases. But this cannot replicate the 

complexity of human norms as they appear standardly in much reasoning. AI and machine 

learning approaches typically rely on statistical analysis of patterns of reasoning. Even when 

made more complex by fusing different modelling techniques and seeking meta-models by 

technical means (Dwyer et al. 2018), the norms upon which prediction will proceed are 

descriptive. They are not acted upon so as to ground ‘good reasons,’ but are simply attractors 

in a possibility space. 

 Put simply, when it comes to reasoning in general, the norms we are interested in are 

those of HI. In specific cases, we can deploy AI to get tasks done efficiently. But in any case 

where an AI could be deployed to get some task done efficiently, even if that AI really would 

get the job done, we have the HI-type question of whether that deployment would be a good 

idea. The answer to that question would draw upon a potentially wide set of evaluable 

reasons, linked to practical conceptions of oneself and the world at large. In other words, 
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there is typically more at stake in the diagnosis of a disorder than just the correct 

identification of a disorder. The need to take into account a complex set of cultural and 

conceptual norms (within which any diagnosis is meaningful) requires highly sophisticated 

judgements, including that of the patient, of the psychiatrist, and of assorted other actors in 

the relevant medical and social structures. This includes taking into account whether a 

diagnosis is useful, for instance. 

 An essential contrast between AI and HI in these examples is the role of norms. AI 

systems often run on the basis of descriptive norms, norms derived from statistical analysis of 

many cases. AI learning that is essentially statistical is thereby essentially inductive. HI can 

‘run’ on a variety of norms, including but not limited to the descriptive. Our suggestion is 

that an AI-based analysis of mental states will not be able to recover non-descriptive norms, 

and therefore will not be able to recover the whole variety of reasons for action that HI might 

be using. AI-driven analysis of data relating to humans is necessarily highly focussed, task-

driven, and exclusionary. This means that it may not capture the same kind of normative 

complexity available to human reasoning and judgement. Decontextualised data cannot 

provide the same content and contexts of the humans that such data are taken to represent. 

 HI is constrained by ‘rational norms’ which can be grounded in a variety of ways 

including semantics, politics, and socio-cultural conditions. Such variables are not arbitrary, 

but they are contingent. They are on the one hand expected and predictable, while also being 

flexible and surprising. This variety of norms provides a structure for behaviour, and for 

coordinating behaviour among groups, but it is not a singularly logical structure. While 

logical structures ground basic sets of norms for both AI and HI, in the case of HI, logical 

consistency and the validity of arguments isn’t always central to either intelligence or to 

behaviour, and to assume it will be is to miss a great deal about human rationality. Our 
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reasoning is impacted by the content of our experiences (arguably more than by structure) 

and our expectations are guided accordingly.  

 Human beings, as rational beings, are not just bound to look for reasons to act, where 

any reason will do; we also look for specific, compelling, convincing reasons. In other words, 

good reasons. Because human beings can typically reflect upon varieties of reasons to act in 

one way or another, or to refrain to act at all, there are evaluative conditions upon reasoning. 

It is not simply the case that by perceiving a reason to do x as a reason to do x we are 

rationally bound to do x. Rather, when a reason to do x presents itself, it is as if this reason 

enters a ‘gap’ between the reason seen as a reason, and the eventual acting upon that reason. 

This evaluative gap is where HI assesses reasons as good or not, appropriate or not, worthy or 

not, and so on. 

 Good reasons are tied to a practical, contextualised, idea of oneself. If such a context 

were not important, we would just act on whatever reasons came to mind by virtue of their 

being identifiable as reasons. For example, to say of an unidentified mechanism (with 

uncertain consequences) that a lever ‘has a handle that fits my hand comfortably, therefore I 

will pull the handle,’ offers a rather weak and unlikely indicator for either decision-making or 

action. A less surprising and more relatable type of reasoning here might be, ‘I don’t know 

what the handle does, so no matter how comfortable it appears, I won’t pull it until I know 

more.’ If I thought of myself as a discrete series of properties, rather than as a unified whole, 

and of the world as only a set of circumstances here and now, I might decide to pull the 

handle. Without a practical conception of myself related to a wider external reality, as 

Christine Korsgaard puts it, I would lose any sense of having reasons for doing one thing 

rather than another (Korsgaard 2012).  

 This is what is meant by 'looking for good reasons.' The self, on this account is 

contingent on my being a reasoning, reason-seeking, reason-bounded creature. This contrasts 
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with cases of AI learning from statistical analysis of data from past examples. An AI that 

learns by statistical analysis can derive only descriptive reasons to act, based in past cases. 

These are not necessarily good reasons. Indeed, their status as ‘reasons’ is only available to 

the interpreter of the data, not the AI itself. The AI is as likely to pull the handle as not.  

 Our argument here involves the claim that to reduce human reasons to simple gap-

filling causes of behaviour is to miss details informed by a rich phenomenological experience 

of rationality and behaviour. On the one hand, neuroscience has a transformative role in 

understanding the brain, and a great deal to say in coming to understand mental processes. On 

the other, this role ought not to be one of determining norms for the mental as derived from 

the neural. Norms for mental activity, as well as for reasoning and rationality are 

heterogeneous and heterodox: discussion of them ought to be just as heterogeneous and 

heterodox. This is particularly important where AI is employed to supplement human 

reasoning, especially in technologized practices of psychiatry. At the very least, AI may be 

present in the construction of evidence for neurotypical brains, or desirable neural states, as 

they relate to ordered and disordered cognition or behaviour. These kinds of evidence may 

supplement psychiatrists’ reasoning by providing clinical decision support. Strange 

behaviour, coupled with neurodivergence, may be seen as a strong basis for a specific kind of 

diagnosis, for example. 

 The normative point is that the neurotypical, in this example, is not constructed by AI 

techniques as an ideal, but is simply as the outcome of a complex but algorithmic procedure. 

Its use in diagnosis as an ideal, divergence from which is indicative of problems, is too blunt 

a tool. In a highly discursive psychiatric practice, explanations are forthcoming for behaviour 

from a variety of sources, not limited to comparisons with neurotypical exemplar states. The 

point here is to warn against a drift toward relying too much on the apparent objective 



 
 

 20 

normativity of evidence gained from sources like AI-derived neurotypical brains. This brings 

us back to reasons. 

 

Interpreting Strange Reasons 

The general expectation is that human beings act on reasons, and that when they do not 

obviously, clearly, or consistently act on reasons, then a reason may still be offered for such 

divergence. This is the case when, for instance, a person can be said to have temporarily ‘lost 

their mind,’ behaved otherwise than might be expected, or when a person is described as 

being victim to their impulses, moods, or to some other emotion or impairment. It is also at 

least part of what may be meant when we talk of someone having a mental health issue. 

 The expectations displayed in this terminology, and indeed the expectations of 

doctors and associated experts and carers, are that there is a person who is or has the potential 

to be rational. From this first, basic expectation of a person as capable of reason, we might 

then be led to question their particular capacities in particular contexts or at particular times. 

For instance, where we think it is, was, or could be impaired. It may be obvious to a carer or 

a family member that the person they know with Alzheimer's disease is quite lucid most 

mornings, and they might know this from many months or even years of experience. Perhaps 

the person’s capacity to understand or communicate deteriorates as the day goes on. In this 

case the carer or family member could quite reasonably claim that the person with 

Alzheimer's is very capable of reasons-based behaviour at some times of the day, yet may 

struggle at other times. This sense of capacity to act, in contrast with instances of inability to 

perform acts, can be seen as central in diagnostic and conceptual criteria for rationality 

(Johnston and Liddle 2007; Korsgaard 2012).  

 The person who apparently acts irrationally, or without apparent reason can still offer 

reasons for their behaviour. In lieu of their explanations, or if explanations cannot be offered 
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(or matched with the ensuing behaviour), reasons can still be found or at least presented and 

examined. For instance, the person who suffers from a delusion of persecution may act as 

though they are being persecuted. We might want to say that such behaviour is unreasonable 

in terms of the reality as we see it, including a reality as verified by other details, facts, 

experience, and expertise, i.e. where we can establish with some confidence that there is no 

evidence of persecution. This is not, however to say that no reasoning can be attributed to the 

person who behaves or acts as though they face persecution. In fact, by entering 

imaginatively into the experiences of the person who suffers the delusion, we can sometimes 

quite successfully predict their behaviour. While this may not always be the case, and not all 

such behaviour is so clearly guided by apparent and predictable reasons, there are often 

enough reasons to make the gaps between reason and action manageable and even 

meaningful, especially for those who seek to communicate with, support and care for those 

who are suffering from or with delusion. 

 In a highly technologised psychiatric approach, however, strange reasoning might be 

correlated with brain pathology with reference to a neurotypical brain derived from masses of 

data, by AI means. This might set in motion a more linear diagnostic pathway than one of 

finding meaning. Rather than reconstructing strange reasoning, and interpreting strange 

reasons from a point of view, the very presence of strangeness coupled with anomalous 

neural activity could be taken as explanation enough. The strangeness might simply be seen 

as the obvious symptomatic effect of a core pathology constituted by aberrant neural activity. 

This is not how psychiatry works now, but in the convergence of machine learning, AI, 

neuroscience, and psychiatry this reductionism is clearly possible (Bzdok and Meyer-

Lindenberg 2018; N. A. Farahany 2011; Insel and Quirion 2005). The question becomes 

whether self-reports of an apparent victim of a persecution delusion might be given as much 

weight when neural data contradict or challenge those reports. Confidence in data processing, 
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computer modelling, and neural recordings might tempt more reductivist psychiatrists to 

think of the interpersonal encounter as peripheral to an objective neural story. This might 

constitute an instance of the symptom collapsing into the referent. 

 The possibility that evidence might be evaluated differently at different times may be 

exacerbated by trust in the apparent objectivity of neural based technologies. In one case, a 

patient might be seen as exhibiting symptoms of mood disorder. In another, the patient may 

be judged to have a neural abnormality that leads to their reporting disordered mood. This 

would be a significant difference, rooted in the degree to which a reductionist paradigm in 

diagnosis came naturally or not, was accepted or not, by a practitioner. Both interpersonal 

and neural-based evaluative frameworks have something to contribute to a diagnostic 

situation, but the practical problem of integration remains. Recalling Simon Cohn (2016) 

from above, the issue is not to simply acquiesce in the seeming objectivity of the technical 

system. 

 The account we offer here suggests that not only are there varieties of reasons for 

doing or not doing x, but also that there can be varieties of evaluations that might lead two 

individuals to come to different conclusions about both the reasoning and the actions that 

follow. We can also see that a person’s reasoning may challenge or defy the reasoning of 

others, but that understanding about unusual reasons may yet be found. Even when in my 

evaluation I find a reason to act, and you find one to refrain, there is yet scope for 

understanding and for shared purpose. It is a possibility that there are as many evaluative 

frameworks as there are individuals evaluating. This suggests that when we try to understand 

one another, we are as much looking at the reasoning of the other as we are at their 

conclusions. Even when such reasoning appears to defy reality, meanings can be found. It 

remains unclear whether an AI can be developed to undertake this multifaceted appraisal of 

reasons and reasoning. 
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 Conclusion 

In the interpretation of reasons, we deal with people’s practical conceptions of themselves, 

alongside evaluation of behaviour. Psychiatry can be informed by technology so as to provide 

insights otherwise hard to gain, which can aid in clinical decision support, evidence gathering 

through data analysis, and broadly in processes of assessing patients (Iniesta et al. 2016). But 

the technology ought not, without detailed interpretive discussion and questioning, be thought 

of as providing proof somehow of disorder (Maddox, Rumsfeld, Payne 2019). This is 

unlikely to be the intent of many psychiatric practitioners, but in a context of highly 

technologized psychiatry, and a growing drive toward neurotechnology, the context may 

promote drift. 

Technological solutions to human problems are best when they are reversible and 

based on careful consideration. Careful consideration allows decision-making to be 

constrained by practical conceptions of oneself, and so be grounded in good evaluations of 

reasons. This includes recognition of human complexity, whether in reasoning, or in the rich 

phenomenological experiences we have of these reasons. Where reasoning itself appears to 

be in doubt, psychiatry can offer analysis of disorders or recommend treatments when 

necessary, but the aim should always be to include the agent, and to presume agency.  
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