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Abstract

In a clinical setting, biomarkers are typically measured and evaluated as biological indicators

of a physiological state. Population based reference ranges, known as ‘static’ or ‘normal’ ref-

erence ranges, are often used as a tool to classify a biomarker value for an individual as typi-

cal or atypical. However, these ranges may not be informative to a particular individual when

considering changes in a biomarker over time since each observation is assessed in isola-

tion and against the same reference limits. To allow early detection of unusual physiological

changes, adaptation of static reference ranges is required that incorporates within-individual

variability of biomarkers arising from longitudinal monitoring in addition to between-individ-

ual variability. To overcome this issue, methods for generating individualised reference

ranges are proposed within a Bayesian framework which adapts successively whenever a

new measurement is recorded for the individual. This new Bayesian approach also allows

the within-individual variability to differ for each individual, compared to other less flexible

approaches. However, the Bayesian approach usually comes with a high computational

cost, especially for individuals with a large number of observations, that diminishes its appli-

cability. This difficulty suggests that a computational approximation may be required. Thus,

methods for generating individualised adaptive ranges by the use of a time-efficient approxi-

mate Expectation-Maximisation (EM) algorithm will be presented which relies only on a few

sufficient statistics at the individual level.

1 Introduction

Biomarkers are valuable potential indicators of disease prognosis. They play a crucial role in

understanding the underlying pathogenesis of disease and extending knowledge of what is

considered normal, healthy physiology. Static reference intervals are usually established to
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explain the variability of biomarkers in a ‘healthy’ sample of individuals and are widely used as

a decision tool to classify individuals into normal/abnormal health status. In particular, a refer-

ence interval is estimated using a sample of data where the aim is to provide a range that will

contain a pre-specified proportion (often 95%) of the underlying distribution or population

with a certain degree of confidence [1]. These estimated reference ranges are referred to as

‘Tolerance Intervals‘. More formally, a (100�p, 100�(1 − α))% two-sided tolerance interval of

the form (L(Y), U(Y)) which covers at least a proportion of p of the population with a confi-

dence level of (1 − α) should satisfy:

PfF½UðYÞ� � F½LðYÞ� � pg ¼ 1 � a ð1Þ

where Y = (Y1, Y2, . . ., Yn) is random sample from a continuous random variable with the

cumulative distribution function F.

In practice, it is crucial to estimate reference intervals appropriately. For example, the clini-

cal and biological assessment of individuals is usually based on longitudinal monitoring of

their biomarkers. Tolerance (static) reference intervals, while very useful when there is only

one measurement available for an individual, are not reflective of a particular individual when

biomarkers are collected longitudinally (i.e. multiple measurements per individual). Therefore,

reference ranges which adapt to account for both between and within subject variabilities are

needed for effective monitoring.

For example, in longitudinal monitoring programs in elite sports it is of interest to identify

abnormal biological values in athletes’ blood biomarkers. One approach involves computing a

Z-score based on unbiased estimates of the mean and variance of the previous observations.

Letting Y1, . . ., Yn be a sample of n independent random variables with Yi� N(μi, σ2), observa-

tion yn+1 will be detected as abnormal by comparing the observed statistics |zn+1| in (2)

Znþ1 ¼
ynþ1 �

�Yn

ŝn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

nþ1

q ð2Þ

with the 1 � a

2
quantile of the standard normal distribution; where, �Yn and ŝn are the empirical

mean and variance of the previous observations. Sottas et. al. remarked that the proposed Z-

score is not suitable for small sample sizes as the distribution of the statistics in (2) is not well

approximated by a N(0, 1) [2]. However, in a recent paper published by Sauliere et. al. the

exact distribution was shown to be the Student t distribution with n − 1 degrees of freedom

under the null hypothesis H0: μ1 = μ2 = . . . = μn+1 = μ [3]. In their paper, three Z-score

approaches were introduced to detect abnormal observations in a sample of an individual’s

hematological markers. Their methods rely on the individual level observations only, indicat-

ing that some sensitivity or specificity might be lost when compared to a method that incorpo-

rates data from other individuals [2].

Sharpe et. al. proposed an alternative approach in which they include population-based

information in the calculation of the Z-score (3) which can be applied to samples of arbitrary

size [4]. In their approach, a universal within-subject variability (ŝuni), fixed for all subjects,

was estimated.

Znþ1 ¼
xnþ1 �

�Xn

ŝuni

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

nþ1

q ð3Þ

This assumption can cause a significant loss in sensitivity if a subject has a variance smaller

than ŝ2
uni [2].
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Bayesian approaches provide a useful framework to incorporate information from the gen-

eral population with the measurements for a given individual to investigate whether a new

observation can be deemed as atypical. This approach for generating reference ranges was

implemented by Sottas et. al. to detect athletes with abnormal profile for certain steroids [2].

The use of Bayesian techniques in detecting abnormal values was further studied in a wide

range of applications by Sottas et. al., Robinson et. al., Pottgiesser et. al. and Lobigs et. al. [5–

17]. In addition to these, the Parametric Empirical Bayes (PEB) approach proposed by McIn-

tosh and Urban [18] and McIntosh et. al. [19] has been applied for screening ovarian cancer as

an alternative to the single-threshold (ST) rule (or reference intervals) which counts subjects as

‘positive’ when their biomarker value exceeds a predefined threshold. They have shown that

the PEB algorithm outperforms the ST rule when high population heterogeneity exists in bio-

marker values. However, similar to the Sharpe approach, a shortcoming of all these models is

the assumption that within-subject variability is equal for all subjects.

In this article, we develop and extend the current Bayesian approaches to generate dynamic

personalised reference ranges for longitudinal monitoring of clinical biomarkers to accommo-

date differences in within-individual variability. This approach is more realistic, and will hope-

fully result in wider applicability. However, the computational burden of a fully Bayesian

approach may diminish its applicability, especially in large datasets. Therefore, a new efficient

method will also be proposed using the Expectation-Maximization (EM) algorithm which may

allow rapid construction of longitudinal reference ranges in large datasets. We compare the

benefits and drawbacks of both approaches in a comprehensive simulation study and will pro-

vide some real data applications.

The rest of the article is outlined as follows. In Section 2, dynamic reference ranges will be

discussed using a fully Bayesian approach while in Section 3 we will propose a computationally

efficient alternative using an approximate EM algorithm. In Section 4 the simulation study will

be presented to compare and evaluate the proposed methods from the contexts of accuracy

and speed. In Section 5, the proposed models are applied to biomarkers collected longitudi-

nally in a clinical setting and amongst elite athletes. In the final section, we present our conclu-

sions and suggest some extensions that could be implemented in the future.

2 Dynamic reference ranges using Bayesian approaches

Consider I independent individuals, with individual i consisting of ni independent normally

distributed measurements, yij; j = 1, . . ., ni, each with an unknown mean μi and an unknown

variance s2
i ; that is:

yijjmi; s
2
i � Nðmi; s

2
i Þ; for j ¼ 1; . . . ; ni; i ¼ 1; . . . ; I ð4Þ

where it is assumed that clinical biomarkers are either normally (or log-normally) distributed.

It is reasonable to expect that μi, which represents individual i’s mean, follows a shared distri-

bution from which they are sampled independently. Therefore, a normal distribution with

hyperparameters (μ, τ2) is plausible as a prior distribution for the parameter μi, for the conve-

nience of conjugacy as follows:

mijm; t
2 � Nðm; t2Þ for i ¼ 1; . . . ; I ð5Þ

A weakly informative hyperprior will be assigned to μ as:

mjn � Nð0; n2Þ ð6Þ

where, ν is a constant, and assumed to be relatively large to cover a wide range of possible val-

ues for μ. Vague priors (e.g. Inverse Gamma (IG)) will be assumed for both the within and
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between subject variabilities as follows:

s2
i ja1; b1 � IGða1; b1Þ; i ¼ 1; . . . ; I

t2ja2; b2 � IGða2; b2Þ
ð7Þ

where αi = βi; i = 1, 2 are set to a common low value (e.g. 0.01, 0.001). The inverse gamma dis-

tributions are conditionally conjugative, meaning that the conditional posterior distribution of

s2
i and τ2 given other parameters is also inverse gamma. The joint posterior distribution of all

parameters can then be written by combining the observed values, yij, with the prior distribu-

tion as follows:

pðμ
e
; σ
e

2; m; t2jYÞ / pðt2ÞpðmÞ
YI

i¼1

pðmijm; t
2Þpðs2

i Þ
YI

i¼1

Yni

j¼1

pðyijjmi; s
2

i Þ

/ IGðt2ja2; b2ÞNðmj0; n2Þ
YI

i¼1

Nðmijm; t
2ÞIGðs2

i ja1; b1Þ
YI

i¼1

Yni

j¼1

Nðyijjmi; s
2

i Þ

ð8Þ

where, μ
e
¼ ðm1; . . . ; mIÞ and σ

e

2 ¼ ðs2

1
; . . . ; s2

I Þ are the vectors of individual means and vari-

ances respectively, and Y refers to the observed values of yij; i = 1, . . ., I & j = 1, . . ., ni. Conse-

quently, the posterior predictive distribution of Pðyiðniþ1ÞjYÞ can be obtained as:

pðyiðniþ1ÞjYÞ ¼
Z

. . .

Z

pðyiðniþ1Þjmi; s
2

i ÞpðθjYÞdθ ð9Þ

where θ = (μ
e

, σ
e

2, μ, τ2) is a vector consisting of all parameters and hyperparameters. Future

measurement (ni + 1) from subject i, yiðniþ1Þ, will be considered atypical if it falls outside the

a

2
� 100% and 1 � a

2

� �
� 100% quantiles of Pðyiðniþ1ÞjYÞ.

The integrals in (8) and (9) needed to make inferences are not tractable analytically and

have no closed form and hence must be approximated through a numerical approach. A Gibbs

sampler was implemented, as the full conditional posterior distributions have closed forms

and can be sampled from as follows:

pðmjt2;σ
e

2; μ
e
;YÞ � N

�

PI

i¼1

mi

t2

1

n2
þ I

t2

;
1

1

n2
þ I

t2

�
ð10Þ

pðt2jm;σ
e

2;μ
e
;YÞ � IG a2 þ

I
2
; b2 þ

1

2

XI

i¼1

ðmi � mÞ
2

 !

ð11Þ

pðs2
i jm; t

2;σ
�

2

� i
;μ
e
;YÞ � IG a1 þ

ni

2
; b1 þ

1

2

Xni

j¼1

ðyij � miÞ
2

 !

ð12Þ
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pðmijt
2;σ
e

2;μ
�� i
;YÞ � N

� m

t2
þ

Pni

j¼1

yij
s2
i

1

t2
þ

ni
s2
i

;
1

1

t2
þ

ni
s2
i

� ð13Þ

The Gibbs sampler will draw samples alternately by sampling from (10)–(13) as appropri-

ate. Once the samples are drawn, the posterior predictive simulations of new data, yiðniþ1Þ, can

be obtained by sampling from (4) given the generated (θ1, . . ., θt). Finally, the reference range

will be defined as the ‘middle’ (1 − α)% quantiles of the predicted yiðniþ1Þs.
Since estimation of the within-subject variabilities required at least two measurements,

using information gleaned from the population allows the construction of reference ranges for

the first two measurements of an individual using (static) reference ranges. These ranges are

then adapted as more observations are gathered on the same subject using the Bayesian

approach. These reference ranges will be updated based on that individual’s records, and less

based on the records for other individuals in the database, as the number of biomarker values

becomes very large for the individual.

3 Dynamic reference ranges using approximate Expectation

Maximization algorithm

The Bayesian approach proposed above is computationally intensive. This is problematic for

large data streaming problems (i.e. where data are gathered continuously at a high rate) since

the model parameters need to be re-estimated using Markov chain Monte Carlo (MCMC)

whenever new data are gathered. For example, these days large amounts of data are collected

rapidly using glucose sensors to continuously monitor glucose levels in diabetic patients.

Therefore, in order to make the algorithm faster and memory efficient, the procedure of devel-

oping the proposed ranges could be based on some sufficient statistics from the previous data

points rather than relying on the entire current dataset [20]. In this regard, a random intercept

model will be defined for the biomarkers’ values as:

yij ¼ mi þ �ij; i ¼ 1; . . . ; I; j ¼ i; . . . ; ni ð14Þ

where yij represents the j’th biomarker value for subject i and is assumed to be normally dis-

tributed as yij � Nðmi; s
2
i Þ. The μis are the subject level random intercepts that are also assumed

to have a normal distribution as μi� N(μ, τ2). Finally the error terms indicated by �ij are

assumed to be independent of μi and normally distributed, i.e. �ij � Nð0; s2
i Þ. For convenience,

we also set gi ¼ ðm; t
2; s2

i Þ.

Measurement j from subject i, yij, will be considered as ‘atypical’ if it falls beyond the a

2
�

100% and 1 � a

2

� �
� 100% quantiles of the distribution of P(yij|y, γi); where y refers to the both

subject i measurements prior to time j (i.e. yi1, . . ., yij−1) and other historical information from

other individuals (i.e. yi0j; i0 6¼ i & j = 1, . . ., ni0). Due to the (assumed) independence of individ-

uals, P(yij|y, γi) can be written in the form Pðyijj�y
j� 1

i ; giÞ; where �yj� 1

i is the average value of the

biomarker measurements for subject i before time j and is assumed normally distributed as
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�yj� 1

i jmi; s
2
i � N mi;

s2
i

j� 1

� �
. Hence, the distribution of Pðyijj�y

j� 1

i ; giÞ can be found through (15) as:

yijj�y
j� 1

i ; gi � N
m

t2
þ
ðj� 1Þ�yj� 1

i
s2
i

1

t2
þ

j� 1

s2
i

;
1

1

t2
þ

j� 1

s2
i

þ s2

i

0

B
@

1

C
A ð15Þ

where:

pðmij�y
j� 1

i ; giÞ � N
m

t2
þ
ðj� 1Þ�yj� 1

i
s2
i

1

t2
þ

j� 1

s2
i

;
1

1

t2
þ

j� 1

s2
i

0

B
@

1

C
A ð16Þ

The unknown parameters of (15) and (16) (i.e. γi) cannot be estimated directly using Maxi-

mum Likelihood as the latent variables μi i� I are not observed. Therefore, the EM algorithm

[21] will be used as an alternative approach to find the maximum likelihood estimates of the

model parameters. Assuming the μis are known, the complete log-likelihood function of the

random intercept model presented in (14) can be written in the form:

lðgijy; miÞ / �
1

2

XI

i¼1

nilnðs
2

i Þ �
1

2

XI

i¼1

Xni

j¼1

ðyij � miÞ
2

s2
i

�
I
2
lnðt2Þ �

1

2

XI

i¼1

ðmi � mÞ
2

t2
ð17Þ

where n ¼
XI

i¼1

ni represent the total number of observations.

The E step of the algorithm calculates the conditional expectation of (17), given the previous

estimates of the hyperparameters ĝ iðk� 1Þ ¼ ðm̂ðk� 1Þ; t̂
2
ðk� 1Þ

; ŝ2
iðk� 1Þ
Þ where the indexing signifies

estimates after running (k − 1) cycles of the algorithm. Through this process we derive new

estimates:

m̂iðkÞ ¼ r̂ iðkÞ�yi þ ð1 � r̂iðkÞÞm̂ðk� 1Þ ð18Þ

and

n̂ iðkÞ ¼ t̂
2
ðk� 1Þ
ð1 � r̂ iðkÞÞ ð19Þ

where r̂ iðkÞ equals:

r̂iðkÞ ¼
t̂2
ðk� 1Þ

t̂2
ðk� 1Þ þ

ŝi
2
ðk� 1Þ

ni

ð20Þ

and represents the extent that the estimated individual mean, m̂ i, is moving toward the overall

mean, m̂. Finally, the new estimates of model parameters at iteration k, i.e. ĝ iðkÞ, can be obtained

as:

m̂ðkÞ ¼

XI

i¼1

m̂iðkÞ

I

ð21Þ

t̂2
ðkÞ ¼

1

I

XI

i¼1

ðn̂ iðkÞ þ m̂
2

iðkÞÞ � m̂
2

k ð22Þ
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ŝ2
iðkÞ ¼

1

ni

Xni

j¼1

ðyij � m̂iðkÞÞ
2
þ n̂ iðkÞ

h i

ð23Þ

The calculation of (21), (22) and (23) represents the M step of the algorithm. Note that the

estimation of γi in the M step can be derived from just three Complete Data Sufficient Statistics

(CDSS) that are computed in the E step using the imputed values for the latent variable and

the estimated model parameters from the previous step. These CDSSs are:

T1ðkÞ ¼
XI

i¼1

m̂ iðkÞ ð24Þ

T2ðkÞ ¼
XI

i¼1

ðn̂ iðkÞ þ m̂
2

iðkÞÞ ð25Þ

T3iðkÞ ¼
Xni

j¼1

½ðyij � m̂iðkÞÞ
2
þ n̂ iðkÞ�; i ¼ 1; . . . ; I ð26Þ

The M step can then be re-expressed as:

m̂ðkÞ ¼
T1ðkÞ

I
ð27Þ

t̂2
ðkÞ ¼

T2ðkÞ

I
� m̂2

ðkÞ
ð28Þ

ŝ2
iðkÞ ¼

T3iðkÞ

ni
; i ¼ 1; . . . ; I ð29Þ

In situations involving data streams or large datasets, the proposed EM algorithm becomes

inefficient as the computation requires not only the complete data to be available at each itera-

tion but also the entire estimation process to be repeated when a new data point is available.

Ippel et. al. proposed an approximation of the Expectation Maximization (EM) algorithm to fit

a random intercept model to large streaming datasets [22]. Unlike the EM algorithm, this new

approach, which they call SEMA (Streaming EM Approximation), only stores summary statis-

tics at the individual level rather than keeping all data in memory, and only updates the CDSS

through the contribution for the individual for whom the new observation was entered. The E

step can be approximated as below:

Ts
ðtÞ ¼ Ts

ðt� 1Þ
� Ts

itðt� 1Þ
þ Ts

itðtÞ ð30Þ

where Ts s are analogous to the CDSS described in (24), (25) and (26), except that they are now

only approximate sufficient statistics. The iteration index which was denoted before by k is

now replaced with t with it indicating the individual for whom the data were measured at time

t. Also, Ts
itðtÞ

indicates the contribution to the CDSS for individual it at time t, and similarly

Ts
itðt� 1Þ

indicates the contribution to CDSS for individual it at time t − 1.

Unlike the standard EM algorithm, the contribution of other individuals whose values were

not measured at time t remains the same as time t − 1, i.e. Ts
iðtÞ ¼ Ts

iðt� 1Þ
for i 6¼ it. To recalculate

Ts
it
, one needs only to calculate (18), (19) and (20) for subject it.
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In fact, these updates can be calculated using only �yi,
�y2
i and ni indicating that storing the

data is not required as only a few summaries are sufficient (See Ippel et. al. [22]). Once the

approximate CDSSs are updated, the M step can be implemented analogously to (27), (28) and

(29). Ippel et. al. have shown the SEMA performs almost as well as the normal EM algorithm

when the dataset is sufficiently large and suggested combining the normal EM algorithm with

SEMA in cases with small datasets [22].

Once the parameters are estimated by the SEMA procedure, the 100(1 − α)% dynamic ref-

erence ranges for subject i at time j will be generated by substituting the parameter estimates

into (15) as follows:
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ŝ2
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þ ŝ2
i

s �

ð31Þ

Note the approach considered here can be considered a variant of Empirical Bayes where

the streaming EM algorithm is used to estimate the hyperparameters of the model.

4 Simulation study

A simulation study was carried out to evaluate the performance of the proposed dynamic

methods against the usual method to generate static reference ranges. The primary aim of the

simulation study was to compare the capability of these approaches in detecting abnormal

observations in a series of biomarker values at the individual level. For this purpose, the area

under the Receiver Operating Characteristic (ROC) curve (AUC) will be measured to evaluate

the diagnostic ability of these methods. Different scenarios were considered by varying the

number of individuals in the population (I), the number of replicates per individual (ni), and

the ratios of within-subject variabilities to between-subject variability (r1 ¼
VarðWSVÞ

BSV ¼
Varðs2

i Þ

t2

and r2 ¼
EðWSVÞ
BSV ¼

Eðs2
i Þ

t2
).

4.1 Simulation procedure

Data will be simulated from a normal distribution using Yij � Nðmi; s
2
i Þ for i = 1, . . ., I and

j = 1, . . ., ni as presented in (4) and according to the scenarios considered. The static and

dynamic reference ranges will then be computed separately for each individual in a ‘leave-one-

subject-out’ manner. In particular, if the reference ranges are required for subject i, the control

cohort (i.e. the sample of healthy individuals) would contain all the j 6¼ i, j = 1, . . ., I individuals

for whom the static reference range will be developed using tolerance intervals presented

in (1).

On the other hand, to examine the performance of dynamic reference ranges and compare

them with static reference ranges in terms of detecting atypical observations, subject i will be

randomly assigned to either a control (i.e. healthy) or case (i.e. diseased) subject. In particular,

for a subject who is assigned to be a case, the last observation simulated will be altered accord-

ing to:

ytestini
¼ yini � 3si yini < mi

ytestini
¼ yini þ 3si yini � mi

(

where ytestini
¼ yini for control subjects.
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Since the estimation of model parameters, and as a result dynamic reference ranges, can be

highly affected by abnormal observations in a series of observations, the last observation for

cases is assumed to be atypical in order to ignore any bias in the estimated model parameters.

4.2 Simulation results

The results of the simulation study have shown that while all of the three models have compa-

rable specificities, which are independent of the number of replications (ni), the Bayesian

approach performed best in detecting abnormal observations with an overall AUC of 0.98

(Table 1).

The effect of r1 and r2 on the performance of the three different approaches has been dis-

played in the Fig 1 by comparing their boxplots. As shown, the overall performance of the

Bayesian approach is the best for all combinations. However, when the WSV is large relative to

the BSV (i.e., r2 is increasing), all three approaches resulted in similar performance suggesting

the normal range is almost as good as the other two approaches. This result is to be expected

since for large r2, individuals would have relatively the same behavior with a high homogeneity

between them which suggests that deriving static reference ranges would not be much affected

by a single individual in the sample. The performance of the three approaches remain relatively

the same as r1 is changing which suggest r1 does not have a meaningful effect on the overall

performance of the methods.

The distributions of AUC for the three approaches based on different combinations of the

number of individuals (I) and the number of replicates per individual, ni has been also dis-

played in the Fig 2. In general, when both I and ni increases, there is no noticeable difference

between the Bayesian approach and the approximate EM algorithm with both outperforming

the static method. Additionally, it can also be noticed from Fig 2 that the larger the number of

individuals, the better the performance of the static method. However, the performance of the

static reference ranges seems independent of ni. This might be expected as the static reference

ranges are developed from a cohort of control subjects and as a result, the reference ranges for

a specific subject is fixed and should be independent of his/her number of measurements.

In contrast, the results have shown when ni increases there is a negligible difference between

the Bayesian approach and the approximate EM algorithm. However, the approximate EM

algorithm is considerably faster to implement compared to the Bayesian approach. Table 2

summarises the average time (in minutes) taken by each approach to generate reference ranges

for each subject under different combinations of I and ni. It can be seen that there is a consid-

erable difference between the Bayesian approach and the EM algorithm in their implementa-

tion time especially when the number of replications is large. For example in a worst-case

scenario when there are 100 individuals (i.e., I = 100) for an individual with 100 measurements

(i.e., ni = 100), the Bayesian approach generates the reference ranges in about 75 minutes while

it takes less than one minute to develop the reference ranges using the approximate EM algo-

rithm. In terms of their performance, the average AUC for the Bayesian approach is 0.9960

while for the EM algorithm is 0.9702. Although there might be a small difference between the

two approaches regarding their performance, the EM algorithm compensates for this in terms

Table 1. Simulation performance. The overall performance of the three methods for detecting abnormal

observations.

Method Average AUC

Static 0.88

Bayesian 0.98

Approximate EM 0.94

https://doi.org/10.1371/journal.pone.0247338.t001
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of implementation time. This trade-off between performance and time should be considered

when implementing in practice.

5 Application

The findings from the simulation study gave an insight into the likely performance of the pro-

posed methods and the parameters affecting their performance. In the remainder of this arti-

cle, the use of dynamic reference ranges will be illustrated in clinical research and elite sport

Fig 1. Performance of the static and dynamic reference ranges according to r1 and r2. The distribution of AUC for the three approaches (Static,

Bayesian, and Approximate EM) in detection of outliers based on different combinations of r1 and r2.

https://doi.org/10.1371/journal.pone.0247338.g001
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applications using longitudinal biomarker data. Subjects involved in these two studies con-

sented to their data being used for research purposes. Ethics approval for longitudinal moni-

toring of glucose levels in diabetic patients was granted from the Galway University Hospital,

National University of Ireland, Galway. Also, ethics approval for longitudinal monitoring

of elite runners was granted from the Massachusetts General Hospital Institutional Review

Board.

Fig 2. Performance of the static and dynamic reference ranges according to I and ni. The distribution of AUC for the three approaches (Static,

Bayesian, and Approximate EM) in detection of outliers based on different combinations of I and ni.

https://doi.org/10.1371/journal.pone.0247338.g002
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5.1 Longitudinal monitoring of glucose levels in diabetic patients

Diabetes is a metabolic disease that can cause various complications and even life-threatening

consequences such as heart disease, kidney disease or stroke if not controlled appropriately

[23]. In order to minimise the risk of these complications and hence control the progressive

end-organ damage caused by diabetes, it is very important to keep blood sugar (Glucose) level

within the healthy range. Both very high blood sugar (known as hyperglycemia) and very low

blood sugar (hypoglycemia) lead to a number of symptoms. A Glucose level below 3.9 mmol/L

[24] and above 11 mmol/L [25] are often considered as diagnostic range for people with diabe-

tes. Therefore, continuous monitoring of glucose level is essential for the proper management

of diabetes [23].

The data considered here involved 18 type 1 diabetic adults where participants were fitted

with a CGMS (iPro™ Professional Continuous Glucose Monitoring, Medtronic, USA) which

captured the glucose measurements, and these were retrieved at the end of the observation

period. The CGMS collected glucose readings in mmol/L every 10 minutes for 7 days, adding

up to about 2016 glucose recordings per subject. The aim is to monitor the glucose levels of

these patients by generating individualised dynamic reference ranges and compare them with

the proposed clinical healthy range of [3.9, 11] mmol/L. Fig 3 displays dynamic reference

ranges using both the Bayesian and approximate EM approaches along with the pre-defined

clinical reference range for one such subjects.

As can be seen from Fig 3, the dynamic reference ranges are wider in general than the pre

defined clinical reference range of [3.9, 11] mmol/L. The individual in question would be classi-

fied as hypoglycemic or hyperglycemic for all values outside the clinical reference ranges, while

the dynamic reference range would classify several of these glucose values as non-hypoglycemic

or non-hyperglycemic according to their own personal glucose trajectory. It is also observed

that some glucose observations are not identified as atypical when using the (static) clinical ref-

erence range but have been identified as such when considering the dynamic reference ranges.

This information is summarised in Table 3 where the level of agreement between the clini-

cal and approximate EM reference ranges is given. As opposed to pre-defined clinical refer-

ence range which weighs all subjects in the population equally, the proposed dynamic

reference ranges are tailored to measurements observed on one subject, and as a result may

better assists physicians in monitoring and assessing meaningful patterns in a patients’ glucose

levels over time.

Table 2. Simulation times. The average time (in minutes) taken by each approach to generate reference ranges baed on different combinations of I and ni.

I Method ni:5 ni:10 ni:20 ni:50 ni:100

5 Static 0.006 0.006 0.006 0.006 0.006

5 Bayesian 0.091 0.219 0.475 1.252 2.571

5 Approximate EM 0.012 0.013 0.016 0.031 0.081

10 Static 0.006 0.006 0.006 0.006 0.006

10 Bayesian 0.169 0.420 0.921 2.438 5

10 Approximate EM 0.019 0.020 0.023 0.038 0.089

20 Static 0.007 0.007 0.007 0.007 0.007

20 Bayesian 0.346 0.878 1.945 5.150 10.560

20 Approximate EM 0.033 0.034 0.037 0.053 0.104

100 Static 0.007 0.007 0.007 0.007 0.007

100 Bayesian 2.353 6.190 13.876 36.976 75.675

100 Approximate EM 0.140 0.141 0.145 0.188 0.314

https://doi.org/10.1371/journal.pone.0247338.t002
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It is worth noting that the computational time to generate the dynamic reference ranges

was very much in favour of the approximate EM algorithm which took 1 minute as opposed to

1 hour for the full Bayesian implementation.

5.2 Longitudinal monitoring of elite runners

The measurement of haematological and biochemical variables are now widely used in elite

sport to inform athlete training regimes. Monitoring these variables has the potential to help

athletes avoid injury and illness via adjustments to diet and training load. For example, the

measurement of hydroperoxides is an indirect measure of reactive intermediary by products

Fig 3. Static and dynamic reference ranges of glucose levels for a type 1 diabetic patient. A series of 2029 longitudinal glucose levels (longdashed

line) for a type 1 diabetic patient with static reference ranges (solid lines), dynamic reference ranges using the Bayesian (dotted lines) and Approximate

EM (dashed-dotted lines) methods.

https://doi.org/10.1371/journal.pone.0247338.g003

Table 3. Level of agreement. The level of agreement between the clinical and approximate EM reference ranges in classifying a sample patient’s glucose level as normal or

abnormal.

Clinical Reference Range Total

Abnormal Normal

Approximate EM Abnormal 110 9 119

Normal 178 1732 1910

Total 288 1741 2029

https://doi.org/10.1371/journal.pone.0247338.t003
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of in-vivo lipid, protein, and nucleic acid oxidation (i.e. free radical activity) that increase with

periods of excessive physical stress. These variables have been demonstrated to be sensitive to

physiological stress, sleep loss and psychological stress in elite athletes, however individual

physiological set points must be taken into account [26]. Elevated concentrations of hydroper-

oxides are associated with an increased risk of injury [27]. The data considered here comprises

11 elite distance runners of which four are male and seven are female. The aim is to identify

meaningful changes in test results over their training period. Samples were collected in a stan-

dardised manner once per week, prior to exercise training. The approach taken is to construct

static and dynamic reference ranges for each athlete to not only compare his/her test results

with the rest of the athletes but also to see if there are any meaningful changes in his/her

hydroperoxides.

According to the Harris and Boyd suggestions on stratifying the reference interval [28],

data were split into two groups based on athletes’ gender, as the ratio of BSV within each gen-

der exceeds 1.5. Log transformations were used to satisfy the normality assumption needed.

Figs 4 and 5 show the reference ranges for two specific female and male athletes, respectively.

Fig 4 reveals that, the female athlete in question has relatively higher hydroperoxides results

compared to the rest of individuals in the sample and as a result the majority of her test results

are outside the defined static reference ranges. This is an example where dynamic methods

Fig 4. Static and dynamic reference ranges of free oxygen radical test for a female runner. A series of 18 longitudinal hydroperoxides values

(longdashed line) for a female athlete with static reference ranges (solid lines), dynamic reference ranges using the Bayesian (dotted lines) and

Approximate EM (dashed-dotted lines) methods.

https://doi.org/10.1371/journal.pone.0247338.g004
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identified most of the test results as typical for that individual except for a considerable drop

occurring at the 16th follow up, while the value was considered as the only ‘usual’ value based

on a static reference range.

On the other hand, as can be seen from Fig 5, the male athlete’s test results have relatively

larger variability compared to the female athlete which results in similar reference ranges for

all three approaches. Nevertheless, the dynamic reference ranges are still trying to adapt

whenever a new observation is collected for the individual. This is why, the 11th test result

was found atypical for the subject while the static reference range treated that as a ‘typical’

observation.

6 Discussion

The use of statistical models to analyse longitudinal data is not limited to clinical setting or

elite sports. There is an abundant research employing different algorithms for assessing serial

observations or detection of disease onset [29]. Changepoint models are one of the popular

algorithms used widely in this domain. Reference Ranges are also used in quality control, for

example, Shewhart charts are one of the major tools in statistical process control to under-

stand, monitor and control process performance. Cumulative Sum Control (CUSUM) charts

are a useful and faster method to detect a small to moderate shift, in both the mean and

Fig 5. Static and dynamic reference ranges of free oxygen radical test for a male runner. A series of 14 longitudinal hydroperoxides values

(longdashed line) for a male athlete with static reference ranges (solid lines), dynamic reference ranges using the Bayesian (dotted lines) and

Approximate EM (dashed-dotted lines) methods.

https://doi.org/10.1371/journal.pone.0247338.g005
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variance of a process [30]. Regardless of the popularity of the proposed approaches in detecting

a change point in a clinical setting or potential shifts in statistical process control, they are no

suited to identification of ‘isolated abnormal’ values [31].

In this paper, an overview of methods for developing conventional (static) reference ranges

for clinical biomarkers was presented and critiqued. The main concern in using population-

derived reference ranges in practice is that biomarkers are typically collected longitudinally for

subjects and this ‘serial’ component is often ignored. This is especially true when within-sub-

ject variability is considerably less than between-subject variability. This might cause a mean-

ingful change in biomarker values for an individual to be missed by the use of static reference

ranges. To overcome this, the use of Bayesian methods to generate dynamic reference ranges

was recommended where combining an individual’s measurement with prior information

gleaned from the population allows not only a more accurate quantification of the characteris-

tics of the individual, but also to adapt and update the reference ranges as more data are col-

lected for the individual. The advantage of Bayesian methods compare to other approaches

(e.g. Z-score 2) in generating dynamic reference ranges was studied and highlighted in Sottas

et. al. [2]. We further extended and compared the current Bayesian method by allowing differ-

ent within-individual variability for each individual. In particular, our approach is almost

identical to Sottas’ approach in the case where within subject variability is constant, and so the

comparisons in Sottas et. al [2] extend to our approach in this scenario, and is expected to have

improved performance when (as often will be the case) within subject variability varys from

individual to individual. This latter scenario was investigated in the simulations (r1 6¼ 0),

where it was shown that the fully Bayesian model and approximate EM model that accommo-

date differing within subject variability are an improvement on the standard (static) reference

range.

Furthermore, a time-efficient alternative of the Bayesian approach was added to the existing

literature using an approximate EM algorithm in which the generation of dynamic reference

ranges relies on a few sufficient statistics at the individual level that contain all the required

information from previous observations.

The findings from the simulation study presented show that the Bayesian approach was the

best method for developing reference ranges under all scenarios considered and can be used

effectively to detect abnormal measurements in longitudinal monitoring of an individual

biomarker. However, it has also been shown that the Bayesian approach can be replaced with

the static reference ranges when the WSV is considerably larger than BSV (i.e., when r2 is

increasing).

The approximate EM algorithm was found to be the most efficient approach, in terms of

computational cost, in developing reference ranges when the number of observations is large.

Despite the minor difference between the approximate EM algorithm and the Bayesian

approach in terms of performance, the former outperforms the latter in terms of processing

time.

The benefits of using dynamic approaches to create individualised reference ranges were

also highlighted by implementing the methods on real biomarker data collected longitudinally

from diabetic patients and elite athletes. An interactive web based application was also devel-

oped to generate static and dynamic reference ranges for a variety of applications. The applica-

tion is accessible at https://pci-nuig.shinyapps.io/barshinydemo/.

7 Conclusion

In this study, methods for developing personalized adaptive reference ranges for longitudinally

recorded clinical biomarkers were presented and compared with an intention to help
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researchers and physicians to make more reliable decisions in terms of what can be considered

as the normal physiology of an individual. The approaches undertaken included a fully Bayes-

ian model and an Empirical Bayesian counterpart estimated via a streaming EM algorithm. In

the former approach, the reference ranges were estimated from the posterior predictive distri-

bution while in the latter the generation of reference ranges only rely on a few summary statis-

tics that contain all the required information from previous observations. The results have

shown that the proposed adaptive methods are capable of triggering ‘alerts’ and can be used as

an early warning system that warrant further attention and review. The methods developed

will have a broader appeal as they can be applied to any domain that involves sequential moni-

toring of individuals (medical devices, disease diagnosis) or processes (e.g. quality control).

Further work will include incorporating covariates into the models as well as constructing

multivariate dynamic reference regions when more than one biomarker is of interest.
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