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Abstract  35 

The aim of this study was to investigate the motor control strategies adopted when performing 36 

two jumping tasks with different task demands when analysed at an individual and group level. 37 

Twenty-two healthy individuals performed two jumping tasks: jumping without the use of an 38 

arm swing (CMJnas) and jumping starting in a plantar flexed position with the use of an arm 39 

swing (PF). Principal component analysis (PCA) was performed using hip, knee and ankle joint 40 

moment data on individual (PCAi) and group data (PCAc). The results demonstrate a greater 41 

number of PCs are required to explain the majority of variance within the dataset in the PF 42 

condition at both an individual and group level, compared to CMJnas condition. Whilst 43 

common control strategies were observed between the two jumping conditions, differences in 44 

the organisation of the movement (PC loading coefficients) were observed. Results from the 45 

group analysis did not completely reflect the individual strategies used to perform each jumping 46 

task and highlight the value in performing individual analysis to determine emergent control 47 

strategies.  48 

Keywords: principal component analysis, vertical jumping, degrees of freedom, single-49 

subject analysis 50 
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Introduction 61 

The process through which humans explore the perceptual motor workspace, as they seek to 62 

satisfy task goals by exploring and discovering solutions under the influence of interacting 63 

constraints, has long been of interest to researchers in the fields of motor control and motor 64 

learning (cf. Chow, Davids, Button & Rein, 2008; Newell, Kugler, van Emmerik, & McDonald, 65 

1989). Much of the focus of researchers has been concerned with understanding how the many 66 

degrees of freedom available to perform actions are controlled and adapt to alterations in the 67 

constraints acting on the performer (Majed, Heugas & Siegler, 2017; Lee, Liu & Newell, 2016; 68 

Federolf, Roos & Nigg, 2013; Hong & Newell, 2006; Vaillancourt & Newell, 2002).  69 

 70 

A task constraint which has been shown to affect the control of the degrees of freedom (DOF) 71 

is the difficulty of the task, or the demand placed on the performer, with both increases and 72 

decreases in DOF observed through application of principal component analyses (PCA) 73 

(Cushion et al., 2020; Nordin & Dufek, 2016; Federolf et al., 2013). Geometrically, DOF 74 

represent the minimum number of coordinates that can be used to describe the position and 75 

orientation of a system. When applying PCA to determine coordinative structures in 76 

movement, the term functional DOF (fDOF) has come to be used (Nordin & Dufek, 2016; Li 77 

& Tang, 2007; Li, 2006). fDOF refer to the minimum number of principal components (PCs) 78 

that are required to explain a high percentage of variance within the data. Within a given 79 

movement there may be a high number of DOF, but due to coupling between DOF fewer fDOF 80 

are required to describe the coordinative structure of a specific movement (Li & Tang, 2007).  81 

The inclusion of a task constraint to maintain balance led to an increase in the fDOF required 82 

to perform a jumping task compared to two jumping tasks which did not include this task 83 

constraint (see Cushion et al., 2020). In contrast, Nordin and Dufek (2016) reported a reduction 84 

in the available fDOF when participants performed more demanding tasks by landing from 85 
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increasing heights with increasing external loads. Nordin and Dufek (2016) suggested this 86 

motor control strategy may occur due to more motor planning prior to the task and therefore a 87 

reduction in automaticity and less flexibility of movement options as shown with a reduction 88 

in fDOF. Based on the differences in findings between the two discussed studies, it is likely 89 

the specific demand of the task drives the reduction in DOF. For instance, the demand on the 90 

musculoskeletal system when landing from a height (as per the task used by Nordin & Dufek, 91 

2016) is greater than required to maintain balance (as used by Cushion et al., 2020), which may 92 

limit the ability of the system to explore movement options, a consequence which may not be 93 

optimal for safe movement execution (Nordin & Dufek, 2016). In contrast, jumping with a 94 

requirement to maintain balance could encourage movement exploration to maintain this 95 

position and this has been demonstrated in other balance movements of high complexity (e.g. 96 

one leg standing and tandem standing) (Federolf et al., 2013; Ko, Challis & Newell, 2003).  97 

 98 

The continual fluctuations in constraints operating on the performer results in adjustments to 99 

the DOF employed to control actions and explains why human movement is inherently variable 100 

both between and within individuals (Newell & Corcos, 1993; Bernstein, 1967). Despite this 101 

individual variability, the description of human movement is typically informed by group 102 

analyses. Although application of mean data from group analyses provides a description of 103 

common motor control strategies, it is limited in that it reflects the collective strategy of a group 104 

and may hide relevant individual specific motor strategies (Bartlett, Wheat & Robbins, 2007). 105 

Dufek, Bates, Stergiou and James (1995) showed this when analysing individual and group 106 

strategies when performing impact activities, including landing and running tasks. Dufek et al. 107 

(1995) demonstrated that group analyses, which presented an average across all participants, 108 

did not provide an accurate nor representative description of any individual strategies employed 109 

by participants. Therefore, appropriate consideration should be given to individual analysis to 110 
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better understand how motor control strategies are affected by the constraints that shape the 111 

perceptual motor workspace. Similarly, within-individual variability across task repetitions 112 

should be analysed to examine if individuals adopt a consistent strategy or whether this changes 113 

over time. Examining both within and between participant motor control strategies provides a 114 

more holistic and true approach to our understanding of motor behaviour, with such an 115 

approach becoming increasingly popular (e.g., DiCesare et al., 2020; Nordin, Dufek, James & 116 

Bates, 2017; Raffalt, Alkjaer & Simonsen, 2016; Komar, Seifert & Thouvarecq, 2015; Huber 117 

et al., 2013; Feldrolf et al., 2013; Scholes, McDonald & Parker, 2012; Gittoes, Irwin, 118 

Mullineaux & Kerwin, 2011; Borzelli, Cappizzo & Papa, 1999).   119 

 120 

In this study, jumping tasks were used to investigate emergent motor control strategies, that is 121 

we were interested in understanding how the system self-organised under differing movement 122 

demands. Whilst individual and group differences have been observed using vertical jumping 123 

tasks, this has largely been with the purpose of comparing different demographics such as 124 

children and adults (Raffalt et al., 2016), or to analyse a specific joint (Ryan, Harrison & Hayes, 125 

2006). We used two jumping tasks (jumping without an arm swing and jumping starting in a 126 

plantar flexed position, with the use of an arm swing) that have previously shown the highest 127 

and lowest amounts of variability in lower limb joint moment production at a group level which 128 

would indicate constraints at specific joints differentially affect the movement outcome (see 129 

Cushion, Warmenhoven, North & Cleather, 2019; Cushion et al., 2020). Whilst both jumping 130 

tasks provide different biomechanical constraints, either gaining or restricting arm motion or 131 

restricting ankle motion, it is suggested that the condition restricting ankle motion and 132 

including an arm swing would be a more demanding task. This is due to the additional 133 

requirement to balance in an unnatural position prior to the jump, and it is likely that jumping 134 

with the use of an arm swing is a more novel movement for most participants. It may also be 135 
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the case that some participants may be more or less affected by constraints at each joint and 136 

thus this may be reflected in the results. This study extends the work by Cushion et al. (2020) 137 

and Cushion et al. (2019) and we had several objectives which we assessed using a principal 138 

component analysis, which enables the analysis and decomposition of spatiotemporal data 139 

(Daffertshofer, Lamoth, Meijer & Beck, 2004). Our first objective was to compare the 140 

organisation of the fDOF in two jumping tasks with differing movement demands and 141 

determine how the demand of the task influences the number of fDOF. This was explored at 142 

both an individual and group level. It was hypothesised that the task with the higher movement 143 

demand, due to the requirement to maintain balance and coordinate both upper and lower limbs 144 

(plantar flexed and arm swing condition), would require a greater number of fDOF to describe 145 

the variance in the dataset (see Cushion et al., 2020; Ko et al., 2017; Lee et al., 2016; Federolf 146 

et al., 2013). Our second objective was to determine if similar strategies were used across both 147 

tasks by the same individuals or whether this changed as a function of the change in task 148 

constraint. In line with this, we also explored whether distinct coordination strategies observed 149 

at a group level reflected individual movement strategies, as has been explored with other 150 

movement tasks (Scholes et al., 2012; Gittoes et al., 2011). Based on previous literature 151 

(Cushion et al., 2019; Scholes et al., 2012; Gittoes et al., 2011) it was hypothesised a similar 152 

general pattern of coordination would be observed between the two tasks, but it was expected 153 

that results from group analyses would not fully reflect the individual strategies used to carry 154 

out the movement tasks.  155 

 156 

Methods 157 

Participants 158 
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A total of twenty-two healthy individuals (males = 13, females = 9) volunteered to take part in 159 

this study (mean ± SD; age = 26.5 ± 4.7 years, height = 171.3 ± 8.7 cm, body mass 74.1 ± 12.5 160 

kg). Participants were free from musculoskeletal injuries at the time of testing. Details of the 161 

study were provided before written informed consent was obtained. The experimental 162 

procedure was approved by the ethics sub-committee at the institution where the research took 163 

place.  164 

 165 

Protocol 166 

Prior to testing, participants’ anthropometric measures (height and weight) were collected and 167 

each participant was issued with a standardised shoe in their shoe size. Participants completed 168 

a standardised warm up (bodyweight squats, lunges, inchworms, hip rotations and vertical 169 

jumps) followed by the attachment of reflective markers. Eighteen reflective markers were 170 

placed on the pelvis and on the right lower limb (Cleather, Goodwin & Bull, 2013). Markers 171 

were placed on the right and left anterior superior iliac spine and posterior superior iliac spine, 172 

lateral and medial femoral epicondyle, apex of lateral and medial malleolus, posterior aspect 173 

of calcaneus, tuberosity of fifth metatarsal and head of second metatarsal. Three additional 174 

markers placed on rigid plates were attached to the mid-thigh and anterior tibial shaft, with an 175 

additional marker attached to the top of the foot (Cleather & Bull, 2015).  176 

 177 

In a randomised order, participants completed five maximal effort countermovement jumps for 178 

each jump condition. All five trials were used for further statistical analysis to increase the 179 

statistical power of the PCA (see James & Bates, 1997), but which ensured a fatigue effect did 180 

not impact the results of the analysis. Specifically, participants were asked to complete 181 

maximal effort countermovement jumps (i) with no arm swing (nas) (CMJnas), and (ii) starting 182 
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in a plantar flexed position and with the use of an arm swing (PF), with these particular jumping 183 

tasks having been previously employed to investigate motor control strategies by Cushion et 184 

al. (2019) and are presented in Figure 1. Prior to completing any jumps, participants were 185 

provided with instructions for the specific condition they were about to complete. Performing 186 

a jump without the use of an arm swing required participants to jump with hands in contact 187 

with the hips throughout the whole movement. An instruction to jump maximally was also 188 

provided prior to all jumping trials. When completing the plantar flexed condition, participants 189 

were asked to start the jump in a maximal plantar flexed position, but which allowed them to 190 

maintain balance. An instruction to not touch the floor with their heels throughout the jump 191 

was also given. Participants were again also instructed to perform all jumps maximally. 192 

***Figure 1 here*** 193 

Kinematic data were collected using a Vicon motion capture system (Vicon MX System, Nexus 194 

2.2 software, Vicon Motion Systems Ltd, Oxford, UK) with fourteen LED cameras tracking 195 

the reflective markers at a sampling frequency of 200Hz. Kinetic data were collected via two 196 

force plates positioned flush to the laboratory floor (Kistler Type 9287BA, Bioware 3.24 197 

software, Kistler Instruments Ltd, Hampshire, UK), at a rate of 1000Hz and synchronised with 198 

the Vicon system.  199 

 200 

Data analysis  201 

The unweighting, braking and propulsive phases of the countermovement jump (McMahon, 202 

Suchomel, Lake & Comfort, 2018), that is from the moment the participant began moving 203 

downwards at the start of the jump until the point at which they left the ground, were used for 204 

analysis and were defined as being from the point where the right anterior superior iliac spine 205 

marker moved below stationary height until take-off (which was defined as the point where the 206 
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ground reaction force fell to zero). Kinematic and kinetic data was filtered using a 5th order 207 

Woltring filter with a cut off frequency of 10Hz. Hip, knee and ankle net joint moments (NJM) 208 

in the sagittal plane were calculated using a standard inverse dynamics calculation (Winter, 209 

2005) within the FreeBody software (Cleather & Bull, 2015). To standardise trial length 210 

between individuals, data was spline interpolated and time normalised from 0 to 101 data 211 

points. This data was then used within a PCA.  212 

 213 

Statistical Analysis  214 

PCA was used within this study as it has the advantage of retaining the spatiotemporal pattern 215 

in the time series data whilst detecting coordination patterns between each jump condition and 216 

between individuals. PCA produces principal components (PC) which describe a certain 217 

percentage of the total variance within the dataset. The first PC accounts for the most amount 218 

of variability, with subsequent PCs describing a lesser amount of variability within the data. 219 

The PCs represent transformed data into new uncorrelated variables. Only those PCs that 220 

cumulatively explained over 90% of the variance in the data set were retained and used in 221 

further analysis (Jolliffe, 2002). The output of each PCA produces a coefficients matrix where 222 

each column gives the coefficient loadings (loadings) of a PC. The loadings represent how 223 

much each variable contributes to the production of a particular PC. In the context of motor 224 

control strategies, loadings can provide an indication of how each variable features within a 225 

PC. For example, a high loading value would indicate that variable contributes a greater 226 

weighting to the reconstruction of a particular PC, whereas a low loading value would indicate 227 

the opposite. This can be compared at both a group and individual level. PC scores are also 228 

examined within the current study and these are obtained from the multiplication of the raw 229 

data matrix and coefficients matrix. The PC scores represents the time series of the values for 230 



10 
 

each PC and thus show how the new variable in the new coordinate space evolves over time. 231 

Put another way, the PC scores are the linear combination of the variables weighted by the 232 

loading coefficients. The PC scores can be used to compare strategies between jumping 233 

conditions, where similarities in waveforms would indicate similar strategies are being used to 234 

perform the tasks (Thomas, Corcos & Hasan, 2005; Santello, Flanders & Soechting, 2002). 235 

Using PC scores and loading coefficients the original variables can be reconstructed and thus 236 

these outputs can show how each of the raw variables can be constructed from a smaller subset 237 

of PCs. Within the current study we also present the sum of the PC scores weighted by the 238 

averaged loading coefficients and show the variation of the PC scores about the mean by 239 

presenting the standard deviation.  240 

 241 

PCA within the current study was applied similarly to the methods proposed by Borzelli, 242 

Cappizzon and Papa (1999). All trials from each jump condition were used within PCA. To 243 

assess suitability of data for PCA Kaiser-Meyer-Olkin and Bartlett tests are sometimes used. 244 

However, these tests were not meaningful for this dataset as it was not full rank. The dataset 245 

consists of a large number of time series where a very large proportion of the variance can be 246 

expressed with a small number of PCs.  Prior to running the PCA, all NJM data were 247 

normalised to the peak hip joint moment, by dividing all values of the time series by the 248 

maximum hip joint moment of each trial to avoid the impact of some variables having greater 249 

amplitude than others, which is equivalent to performing PCA on a correlation matrix (Joliffe 250 

& Cadima, 2016; Abdi & Williams, 2010; Thomas, Corcos & Hasan, 2005). PCA were 251 

performed to analyse differences within and between individuals and conditions. Before PCA 252 

was performed, matrices of data were constructed. Within the current study, columns of the 253 

matrix represent NJM time series and rows represent the time normalised intervals. Therefore, 254 

for an individual case a matrix containing 101 rows and 15 columns (5 x hip NJM, 5 x knee 255 
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NJM, 5 x ankle NJM) was constructed (101 x 15). Matrix set ups for each PCA performed are 256 

illustrated in Table 1. PCA were performed in Matlab (The MathWorks, Inc., M A, version 257 

2017a) using the pca function, which also centres the data prior to analyses.  258 

 259 

***Table 1 here*** 260 

 261 

Data obtained from PCAi was not normally distributed, as determined visually from stem and 262 

leaf and Q-Q plots, therefore a Wilcoxon signed rank test was run to compare the number of 263 

PCs and the explained variance attributed to each PC between the two jump conditions. To 264 

compare loading coefficients between jump conditions, from PCAi, a 2 x 3 ANOVA was 265 

performed. Data was normally distributed as determined visually from stem and leaf and Q-Q 266 

plots. Data is presented as means ± SD. Statistical analysis was conducted in SPSS (IBM SPSS 267 

Statistics 24). The alpha level was set at p < 0.05. 268 

 269 

Results  270 

A large percentage of the dataset could be described by only a few PCs for each condition when 271 

all the joint moments were included in the same PCA (within participants analysis: PCAi and 272 

between participant analysis: PCAc). For the within-participant analysis (PCAi), a maximum 273 

of three PCs was required to meet the 90% criteria (average of first three PCs: 96.4 ± 1.9%) for 274 

the CMJnas condition, whereas a maximum of four PCs was required during the PF condition 275 

(average of the first four PCs: 95.5 ± 2.5%). A statistically significant difference was observed 276 

between the number of retained PCs between the two jumping conditions for PCAi (Z = -3.477, 277 

p = .001). At the between-participant level (PCAc), the first four PCs described 92.3% of the 278 

variance for CMJnas, and the first five PCs described 90.5% of the variance for PF condition. 279 
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The within-participant variability increased with an increase in task demand, based on the 280 

number of PCs retained to explain over 90% of the dataset and variance explained within each 281 

PC (Figure 2 and Table 2). 282 

 283 

***Figure 2 here*** 284 

  285 

Significant differences between the explained variance attributed to each PC between the two 286 

jump conditions were observed across PC3 to PC5 for PCAi (Table 2).  287 

 288 

***Table 2 here*** 289 

 290 

Average PC score waveforms from PCAi for PC1, PC2 and PC3 between jumping conditions 291 

(CMJnas and PF) are presented alongside averaged loading coefficients for PC1-PC4, 292 

representing the maximum amount of PCs required by any individual to explain over 90% of 293 

the variance within the dataset (Figure 3). A statistically significant difference between the 294 

loading coefficients of the two jumping conditions was observed for PC1, F (1,126) = 7.170, p 295 

= .008; PC2, F (1,126) = 9.125, p = .003 and PC3, F (1,126) = 16.030, p = .000. No further 296 

statistically significant main effects or interactions were observed.  297 

 298 

***Figure 3 here*** 299 

 300 

PC score waveforms and loading coefficients are presented for two representative individuals 301 

performing CMJnas and PF jumping conditions (Figure 4). Participant A represents an 302 

individual with low explained variance for PC1 (58%) between both jump conditions, whereas 303 
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participant B represents an individual with high explained variance for PC1 (92%) between 304 

both jump conditions.  305 

 306 

***Figure 4 here *** 307 

 308 

The upper and lower boundaries of the variation in the sum of PC scores are presented in 309 

Figures 5, 6 and 7 for hip, knee and ankle joint moments. A greater amount of variation is 310 

observed within the knee and ankle compared to the hip. This variation was similar between 311 

the two jump conditions for the knee and ankle, however there was differences in variation 312 

between the two jump conditions at the hip. Specifically, more variation was observed in 313 

CMJnas compared to PF condition within PC1 and PC2, however greater variation was 314 

observed in PC3 – PC6 within the PF condition.  315 

 316 

***Figure 5 here*** 317 

***Figure 6 here*** 318 

***Figure 7 here*** 319 

 320 

Discussion 321 

The current study investigated motor control strategies, at both an individual and group level, 322 

between two jumping tasks with different task constraints. Specifically, we analysed the lower 323 

limb joint moments between a vertical jump with no arm swing and a vertical jump starting in 324 

a plantar flexed position with the use of an arm swing, which constrain motion at the lower 325 
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limb joints. Our two primary objectives were to explore the organisation of the fDOF between 326 

the two jumping tasks and determine if motor control strategies differed between the two tasks 327 

when analysing data at both a group and participant specific level. The results show that the 328 

restriction of motion at specific lower limb joints influences the number of fDOF. These 329 

constraints also impacted the demand of the task with a greater balance and coordination 330 

requirement for the PF condition. The PF condition showed the greater number of fDOF 331 

compared to the CMJnas condition, which was observed for both individual and group analysis. 332 

However, group level analysis was not entirely comparable to individual data. The global motor 333 

pattern between the two jumping conditions was very similar when compared at a group level 334 

(through comparisons of PC waveforms and loading coefficients), although at an individual 335 

level, whilst similarities in the PC score waveforms were observed there were some differences 336 

in the structure of the loading coefficients when observing representative individual data. This 337 

would suggest a global pattern of joint moment production is exhibited within jumping tasks, 338 

but individuals self-organise such that the strategies used to perform the jumps are not 339 

completely the same for each individual. These subtle differences may prove valuable in 340 

understanding how factors such as skill level affect production and control of movement. It is 341 

probable that the global pattern is driven from anatomical constraints which shape the 342 

emergence of movement patterns, rather than a pattern that is learnt, as has previously been 343 

suggested (see Cushion et al., 2019).    344 

  345 

The application of PCA allows for an evaluation of how kinetic variables are weighted within 346 

each PC, which provides an indication of the strategies used to perform movement tasks 347 

(Daffertshofer & Lamoth, 2004; Hong & Newell, 2006). PC score waveforms reveal 348 

characteristic patterns within each movement task and the loading of a variable describes the 349 

degree to which those variables contribute to the production of each PC. Qualitatively it can be 350 
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seen that the waveforms for PC1 are very similar between both jumping conditions, when 351 

observed at a group level. This indicates the repeatability of this pattern from PC1 in both 352 

conditions. The loading coefficients for the hip on PC1 in both jumping conditions are high, 353 

compared to the knee and ankle, suggesting for both conditions the hip joint moment waveform 354 

contribute most to the explained variance within this PC. That is, to reconstruct the hip moment 355 

waveform for both conditions a higher contribution from PC1 would be required. It is therefore 356 

likely this represents a common control strategy, as assessed at a group level, and has been 357 

observed in other jumping tasks (Cushion et al., 2019; Cushion et al., 2020). In contrast, the 358 

patterns observed for PC2 and PC3 score waveforms are not so well defined between the two 359 

jump conditions. In general, the loading coefficients of the knee was higher for PC2 for both 360 

conditions. It is notable that the standard deviation is higher from PC2-PC4 suggesting that 361 

these PCs contain greater between participant variation. The ankle loading coefficients were 362 

higher for PC3 for the CMJnas, but this was not the case for the ankle for the PF condition until 363 

PC4. In comparing the within participant variation for each joint (Figures 5-7), greater variation 364 

in PF condition can be observed on PC1 at the ankle, compared to the knee and hip, suggesting 365 

greater variability at this joint compared to CMJnas condition. This is likely driven by the fact 366 

that there was an increase in the requirement to maintain balance during the PF jump compared 367 

to the CMJnas condition. At an individual level there was a greater number of PCs required to 368 

capture the characteristics of the data in the PF condition compared to the CMJnas condition. 369 

This was also observed at the group level. Given the variability at the individual level, the 370 

increased PCs at a group level could reflect the aggregation of variability between individuals 371 

or reflect between participant variability. As differences in PC score waveforms and the loading 372 

of each joint are observed between individuals it is likely that between participant variability 373 

is captured within the increased number of PCs. The addition of PCs required may reflect the 374 

‘recruitment’ of additional DOF to aid in the emergence of new coordination patterns specific 375 
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for the constraints of the task (Majed et al., 2017; Fink, Kelso, Jirsa & DeGuzman, 2000; 376 

Zanone & Kelso, 1997). Observations of longer-term practice of this task may provide further 377 

insight of the organisation in movement as participants become more familiar with the 378 

constraint. 379 

 380 

Redundancy within the motor system allows for a range of options to organise multi-joint 381 

movements, which may be beneficial to effectively solve and determine the most optimal 382 

movement solutions (Yang & Scholz, 2005). Using PCA to study movement has the advantage 383 

that high dimensional data is reduced to fewer components describing a high percentage of 384 

variance within the whole data set. The results from the PCA in the current study demonstrated 385 

that the task requirement impacts the organisation of the fDOF. The PF condition, which 386 

restricted the motion at the ankle and allowed for the use of an arm swing required a greater 387 

number of PCs to capture a high percentage of variance within the dataset, at both an individual 388 

and group level. This jumping condition is likely to prove more difficult to the participants as 389 

it required the challenge of balancing as well as coordinating lower and upper limbs, compared 390 

to just a restriction of the arm swing in the CMJnas condition. This finding of an increase in 391 

the requirement of fDOF in more demanding tasks is consistent with previous literature 392 

(Cushion et al., 2020; Federolf et al., 2013; Lee et al., 2016). Lee et al. (2016) showed at the 393 

initiation of learning to ride a unicycle as many as nine PCs were required to explain 90% of 394 

the variance within the dataset, with a range between four and nine PCs based on participant 395 

specific data. Similarly, when performing three standing tasks of different levels of difficulty 396 

(bipedal, tandem and one leg stances) a greater number of PCs were required to explain 90% 397 

of the variance in the more difficult stances (tandem and one leg) (Federolf et al., 2013). 398 

Collectively, these results suggest greater exploration and utilisation of the DOF is required 399 

within more complex tasks to establish coordination modes. However, this was not true for all 400 
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observations. During landing tasks with increasing mechanical demands (increased load and 401 

drop height), the utilisation of the available DOF decreased, as quantified by reduced PCs with 402 

increasing task demand (see also Nordin & Dufek, 2016). It is possible that the system allows 403 

exploration of movement solutions within tasks which are more skill based, rather than tasks 404 

which challenge the strength of the musculoskeletal system (as would jumping off a box with 405 

added load) (Yeow, Lee & Goh, 2009).  406 

 407 

Another explanation for the differences in the number of retained PCs in complex tasks, could 408 

be related to if it is the demand or the constraint of the task which affects the organisation of 409 

the movement the most. For example, the constraint imposed on the participants in the PF 410 

condition is such that there is a restriction in the range of motion at the ankle and an increase 411 

in range of motion of the arms (compared to CMJnas condition), whereas the demand of the 412 

task is such that there is an increase in the balance requirement and a challenge to coordinate 413 

both the lower and upper limbs. In the task used by Nordin and Dufek (2016), the task 414 

constraint does not change greatly between conditions, but the demand of the task increases as 415 

the height and added load increases, creating a greater demand on the organisation of the system 416 

upon landing. The demand for the task in Nordin & Dufek’s (2016) study may be such that it 417 

did not allow much movement exploration.  For the data presented in this study, it is not known 418 

at this point if it is the demand (balance) or the constraint of the task (restriction or increase of 419 

joint motion) that affects the requirement of fDOF within the task to a greater extent. 420 

Disentangling the influence of task constraint and task demand on fDOF is an interesting 421 

avenue for future research to consider. 422 

 423 
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One of the study objectives was to compare group and single participant analysis. Whilst there 424 

are some similarities in the findings, the group analysis alone masks the individual strategies 425 

observed when completing the two jumping tasks. In accordance with the group analysis, for 426 

both representative individuals, the pattern of PC1 is similar between jump conditions and the 427 

hip joint moment contributes most highly to the explained variance. It is therefore likely that 428 

this represents an invariant coordination pattern important to produce jumping movements. As 429 

with the group analysis there were less easily observable trends for PC2 and PC3 and the 430 

loading of each joint was not consistent across individuals, demonstrating differences in the 431 

organisation of the movements. In addition, neither participant employed the same motor 432 

strategies to carry out the two tasks, which would suggest they had to alter motor control 433 

strategies to successfully complete the two tasks (DiCesare et al., 2019). It is interesting to note 434 

when observing the PC waveforms for both jumping conditions, they are similar for participant 435 

B who showed the highest explained variance on PC1, but qualitatively different for participant 436 

A who showed the lowest explained variance on PC1. It could be that participant A required 437 

greater exploration of movement when carrying out the tasks compared to participant B, which 438 

has been reflective of differences in skill level (Ko, Han & Newell, 2017; Verrel, Pologe, 439 

Manselle, Lindenberger & Woollacott, 2013). The characteristics within the data could be 440 

described by only one PC for participant B for both conditions, which would suggest a strong 441 

coupling between joints. It has previously been suggested that the proximal to distal production 442 

of sagittal plane lower limb joint moments can be captured by two fDOF (Cushion et al., 2019). 443 

Therefore, the requirement of only one PC for participant B would suggest a more synchronous 444 

production of lower limb joint moments. Participant A on the other hand required between four 445 

(CMJnas) or five (PF) PCs to capture the majority of variance. This would suggest this 446 

individual required a greater amount of fDOF in order to coordinate and control the DOF of 447 

these two tasks, which has been illustrated in individuals less skilled to a task (Ko et al., 2017; 448 
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Winges & Furuya, 2015). Collectively these observations demonstrate that individual strategies 449 

do not completely coincide with group strategies, an observation also made by others (Scholes 450 

et al., 2012; Gittoes et al., 2011). This provides support for single participant analysis and the 451 

utilisation of PCA within this study has allowed for greater insight into the sources of 452 

movement variability as well as the motor control strategies adopted to accommodate the 453 

demands of the tasks between individuals.  454 

 455 

This study has demonstrated that despite the different constraints on each jumping condition, 456 

the system reorganised in such a way that similar coordination patterns emerged under both 457 

conditions. This lends support for the notion that this represents a common control strategy 458 

under the current constraints. The individual differences in the coefficient loadings on each PC 459 

suggest that whilst there is a global coordination strategy, individual adaptations occur to 460 

perform the task based on participant specific as well as task constraints. This research furthers 461 

our understanding of how the CNS controls the coordination of the system and demonstrates 462 

single subject analysis is important alongside group analysis to gain a more complete 463 

understanding of motor control strategies and may uncover differences in skill levels between 464 

individuals. The findings also further demonstrate the utility of PCA in exploring motor control 465 

strategies and the organisation of the fDOF. 466 

 467 

 468 

 469 

 470 
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Table 1. Description of data used within each PCA.  610 

PCA 

Descriptor 

Time Series Data Used (NJMs) Number of 

separate analyses 

Input Matrices (rows 

= time points x 

columns = NJMs) 

PCAc Data from all joint moments at 

the hip, knee and ankle for all 

participants and trials combined 

in one matrix. PCA run 

separately for CMJnas and PF 

conditions. 

2 CMJnas: 101 x 309 

PF: 101 x 333 

PCAi PCA run separately for each 

individual’s data. Data included 

all joint moments from hip, knee 

and ankle and all trials 

combined in one matrix. Each 

jump condition run separately 

for each individual.  

44 101 x 15 

PCAch Data from all hip joint moments 

of all participants and trials 

combined in one matrix. PCA 

then run separately for CMJnas 

and PF conditions.  

2 CMJnas: 101 x 103 

PF: 101 x 100 

PCAck Data from all knee joint 

moments of all participants and 

trials combined in one matrix. 

2 CMJnas: 101 x 103 

PF: 101 x 100 
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PCA then run separately for 

CMJnas and PF conditions.  

PCAca Data from all ankle joint 

moments of all participants and 

trials combined in one matrix. 

PCA then run separately for 

CMJnas and PF conditions.  

2 CMJnas: 101 x 103 

PF: 101 x 100 

 611 

 612 

 613 

 614 

 615 

 616 

 617 

 618 

 619 

 620 

 621 
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 623 

 624 
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Table 2. Within-participant variability only (PCAi) and between participant variability 625 

(PCAc) as indicated by the variability explained by the first five PCs for CMJnas and PF. 626 
Mean ± SD of the individual analyses is presented for PCAi. *Indicates significant 627 
differences from CMJnas.  628 

   PC1 PC2 PC3 PC4 PC5 

PCAi      

 CMJnas 
80.92 ± 

10.44 

11.97 ± 

8.97 

3.51 ± 

2.09 

1.60 ± 

0.80 

0.86 ± 

0.57 

 PF 
77.57 ± 

11.14 

10.57 ± 

6.74  

4.54 ± 

2.34* 

2.85 ± 

1.49* 

1.73 ± 

1.01* 

PCAc      

 CMJnas 62.94 20.36 5.36 3.68 1.86 

  PF 62.92 13.82 6.21 4.43 3.16 
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 654 

 655 

 656 

 657 

 658 

 659 

 660 



29 
 

Figure Legends  661 

 662 

Figure 1. Illustration of jumping conditions A = CMJnas and B = PF. 663 

 664 

Figure 2. Individual (PCAi) and group (PCAc) analysis showing number of PCs required to 665 

explain over 90% of the variance for CMJnas and PF. Mean ± SD of the individual analyses is 666 

presented for PCAi. *Indicates significant difference between conditions.  667 

 668 

Figure 3. Average PC score waveforms from PCAi for PC1, PC2 and PC3 between CMJnas 669 

and PF condition (Left panel). Average individual loading coefficients for hip (top), knee 670 

(middle) and ankle (bottom) between CMJnas (black bars) and PF (grey bars) (right panel). 671 

Results from PCAi. Data presented as means + SD.  672 

Figure 4. Individual loading coefficients for hip, knee and ankle across PC1-3 for CMJnas 673 

and PF condition (bar chart) and PC score waveforms for CMJnas and PF, from two 674 

representative participants. Participant A presented with low explained variance on PC1 for 675 

CMJnas (59%) and PF (58%) and participant B presented with high explained variance on 676 

PC1 for CMJnas (92%) and PF (92%). Comparisons are made between CMJnas (dark grey 677 

bar) and PF (light grey bar). Data analysed from PCAi.  678 

Figure 5. Data presented shows upper and lower boundaries of the sum of PC scores 679 

weighted by average loading coefficient with ± 1SD for CMJnas (dark grey) and PF (light 680 

grey) for the hip. A) PC1, B) PC1-PC2, C) PC1-PC3, D) PC1-PC4, E) PC1-PC5 and F) PC1-681 

PC6. Data from PCAch.  682 

Figure 6. Data presented shows upper and lower boundaries of the sum of PC scores 683 

weighted by average loading coefficient with ± 1SD for CMJnas (dark grey) and PF (light 684 

grey) for the knee. A) PC1, B) PC1-PC2, C) PC1-PC3, D) PC1-PC4, E) PC1-PC5 and F) 685 

PC1-PC6. Data from PCAck.  686 

Figure 7. Data presented shows upper and lower boundaries of the sum of PC scores 687 

weighted by average loading coefficient with ± 1SD for CMJnas (dark grey) and PF (light 688 

grey) for the ankle. A) PC1, B) PC1-PC2, C) PC1-PC3, D) PC1-PC4, E) PC1-PC5 and F) 689 

PC1-PC6. Data from PCAca.  690 
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