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ABSTRACT
The effects of an eight-week off-season strength training program 
upon lower-body strength, power, eccentric capacity, front foot con-
tact (FFC) kinetics, and ball release speed (BRS) in pace bowlers were 
investigated. Ten elite-academy pace bowlers completed the inter-
vention, and pre- and post-testing. Pre- and post-testing included: 
double (DLDL) and single leg (SLDL) drop landings; isometric mid- 
thigh pull (IMTP); countermovement jump; and pace bowling perfor-
mance (two-over bowling spell measuring BRS and FFC kinetics). 
Changes from pre- to post-testing were assessed with paired sample 
t tests (p≤ 0.01), effects sizes and statistical parametrical mapping. 
Post-testing revealed a significant decrease in peak normalised ver-
tical force during DLDL and SLDL with large effects and a significant, 
moderate effect increase in IMTP. There was no significant changes in 
BRS. Concomitantly, neither discrete scalar (p= 0.15-0.58) nor vector 
field analysis kinetics during FFC indicated significant changes. No 
significant alterations in FFC kinetics may explain the lack of improve-
ment in BRS (pre = 31.55 ± 1.44 m/s; post = 31.79 ± 1.33 m/s). This 
study indicated an eight-week strength training program can 
improve strength and eccentric capacity in pace bowlers, and these 
changes when developed in the absence of skills training neither 
improved nor decreased pace bowling performance.
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Introduction

The objective of pace bowling in cricket is to dismiss a batter for as few runs as possible. 
One strategy pace bowlers will adopt is to maximise ball release speed (BRS) so as to 
decrease the decision-making and stroke execution time of the opposing batters. To 
generate a high BRS, pace bowlers will complete the run-up before an explosive leap into 
the delivery stride. The delivery stride comprises high vertical and braking ground 
reaction forces (GRF) experienced at rear and front foot contact (FFC). This occurs 
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while the upper body undergoes rapid lateral trunk flexion and hyperextension into ball 
release (Bartlett et al., 1996; Elliott, 2000; Glazier et al., 2000; Hurrion et al., 2000; Portus 
et al., 2004). Pace bowlers will complete these specific movements during each delivery of 
training and match-play, interspersed by periods of high- and low-intensity running and 
athletic movement (i.e., jumping, diving and throwing).

Research on the relationship between BRS and GRF during FFC for pace bowlers has 
suggested that in elite and high-performance male pace bowlers, increased BRS is 
associated with higher peak vertical and braking forces (Callaghan et al., 2021; Phillips 
et al., 2010; Portus et al., 2004). However, King et al. (2016) outlined no significant 
relationship between BRS and peak GRFs but rather suggested a large braking impulse 
during FFC was the best predictor of BRS for elite male pace bowlers. Despite this 
conjecture, it would appear evident that the GRFs expressed during FFC play a pivotal 
role in BRS for pace bowlers. Therefore, pace bowlers must ensure they have the 
necessary lower-limb strength and neuromuscular control to appropriately attenuate 
and utilise the forces experienced during FFC.

Despite the recommendations within the literature about the importance of strength 
training for pace bowlers (Mukandi et al., 2014; Stronach et al., 2014), the wide use of 
strength training within professional cricket to improve performance (Weldon et al.,  
2020), and the potential link between physical capacity (strength) and expressions of 
force (GRF at FFC) (Suchomel et al., 2016), there has been limited analysis of training 
interventions in pace bowlers to improve BRS. Furthermore, the lack of research into 
strength training for pace bowlers, is in spite of strength training being shown to improve 
similar skills such as throwing (Hermassi et al., 2011), as well as links between physical 
capacities that should contribute to pace bowling performance, such as lower-limb 
unilateral strength (McCurdy et al., 2005) and neuromuscular control (Herman et al.,  
2009; Hewett et al., 1996). These key physical qualities are also expected to be necessary 
for the utilisation of GRFs during FFC to optimise BRS. Neuromuscular control refers to 
the ability to appropriately attenuate high GRFs (Herman et al., 2009; Hewett et al.,  
1996), and within this study was assessed by measures of eccentric capacity (e.g., GRF 
attenuation during drop landings). Lower-limb strength and eccentric capacity are of 
great importance to pace bowlers due to the high loads experienced during FFC that 
require rapid deceleration of the gained momentum from the run-up. However, the 
extent to which FFC GRFs can be modified via resistance training enhancing BRS has yet 
to be investigated.

Pace bowling coaching interventions have previously focussed upon changing tech-
nical factors associated with injury. Specifically, Elliott and Khangure (2002) and Ranson 
et al. (2009) could significantly reduce the amount of shoulder counter-rotation during 
the delivery stride among adolescent pace bowlers, a variable typically associated with 
lower back injuries (Elliott, 2000). However, a similar result has not been achieved when 
attempting to modify technical characteristics associated with a higher BRS, such as 
lower-limb kinematics during the delivery stride (Ranson et al., 2009). Importantly, the 
coaching interventions of the previously discussed studies (Elliott, 2000; Ranson et al.,  
2009) did not appropriately incorporate techniques that target GRF production. This is 
important because if a pace bowler does not have the necessary lower-limb strength or 
eccentric capacity to attenuate the high forces experienced during FFC, no change in 
performance would be anticipated, regardless of the coaching cues and techniques 
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adopted. Potentially, increases in lower-limb strength and eccentric capacity may be 
necessary before undertaking a coaching intervention to elicit meaningful biomechanical 
changes; however, further research is needed to assess this hypothesis.

To date, only Feros et al. (2020), Wickington and Linthorne (2017), and Petersen et al. 
(2004) have investigated the implications of strength training upon BRS among pace 
bowlers. Both Wickington and Linthorne (2017) and Petersen et al. (2004) found that 
a special resistance training programme, utilising underweight and overweight cricket 
balls, failed to significantly improve BRS in well-trained and senior club cricketers. 
Interestingly, Feros et al. (2020) reported a ‘clear moderate’ (mean difference ± 95% 
CLs; 1.2 ± 1.5 m/s) increase in peak BRS for a combined resistance training group, with 
the traditional cricket training group outlining an ‘unclear’ (mean difference ± 95% CLs; 
0.2 ± 1.3 m/s) change in BRS between pre- and post-testing. However, the use of 
a combined resistance training design of a single upper-body exercise (pull-ups), sprint 
training (resisted and free sprinting), and fast bowling training, while very practical, may 
not allow for the determination of whether strength and eccentric capacity changes can 
contribute to an increase in BRS. Therefore, this research aimed to determine the effects 
of an 8-week strength training intervention upon BRS in current and previous state 
pathway pace bowlers. The effects of strength training upon lower-limb strength and 
power, and lower-limb bilateral and unilateral eccentric capacity were also determined. It 
was hypothesised that the 8-week training intervention would increase strength, power, 
and eccentric capacity measures, leading to alterations in GRF during FFC. It was further 
hypothesised that these changes would result in an increase in BRS for pace bowlers.

Materials and methods

Participants

A convenience sample of 10 healthy male cricketers was recruited for this study 
(age = 21.2 ± 4.6 years; height = 1.85 ± 0.05 m; body mass = 83.2 ± 7.4 kg; resistance 
training age = 2.4 ± 1.7 years). The sample size was based upon previous strength training 
studies in athletic populations (Nimphius et al., 2012; Petersen et al., 2004). Importantly, 
the recruitment of specific sub-populations within cricket of an elite-academy standard 
inclusion criteria included: current or previous involvement in an Australian state cricket 
development pathway, currently playing first or second grade in an Australian state 
premier league, greater than 17 years of age, and free of any existing medical conditions 
that were contrary to participation. Four left- and six right-arm pace bowlers participated 
in the study. All participants (and guardians of participants under 18 years of age) 
received a clear explanation of the study, including the risks and benefits of participation, 
and provided written informed consent prior to participation. The research was 
approved by the institutional ethics committee (Approval 11948).

Procedures

The study examined the effects of a strength training intervention upon pace bowling 
FFC kinetics and BRS via a longitudinal analysis of high-level cricket pace bowlers. 
Participants undertook pre- and post-testing separated by an 8-week off-season training 
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intervention. Prior to the commencement of data collection, the participant’s chronolo-
gical age, resistance training age, height, and body mass were recorded. Height was 
measured barefoot using a stadiometer (Ecomed Trading, Seven Hills, Australia). Body 
mass was recorded using digital scales (Tanita Corporation, Tokyo, Japan). The physical 
capacity assessments included: double- and single-leg drop landings; countermovement 
jump (CMJ); and isometric mid-thigh pull (IMTP) and were all performed on 
a calibrated portable force plate (400 Series Performance Force Plate, Fitness 
Technology, Adelaide, Australia) measuring vertical force at 600 Hz. The pace bowling 
assessment required participants to complete a two-over bowling spell as if under match 
conditions. FFC GRFs and BRS were calculated for each delivery. A standardised warm- 
up, consisting of general and specific exercises was used for all participants. Following 
pre-testing, participants began the training intervention, which involved two 1-hour 
sessions per week, on non-consecutive days, for 8 weeks (Feros et al., 2020; McBride 
et al., 2002; Nimphius et al., 2012). Participants adhered to 100% of the sessions, and 
post-testing was conducted within a week of the participant’s final training session using 
the same procedures as pre-testing.

Drop landing
The double- and single-leg drop landings, measures of lower-limb eccentric capacity, 
were chosen to provide a quantitative measure of neuromuscular control (Decker 
et al., 2003). Improvements in double- and single-leg drop landing performance, 
shown by decreased vertical GRF, would represent an enhanced ability to appropri-
ately attenuate the high forces upon landing (Decker et al., 2003). In pace bowling, an 
enhanced ability to attenuate and utilise the high GRFs experienced at FFC is critical 
to optimising the technique and ultimately BRS (King et al., 2016; Middleton et al.,  
2016; Phillips et al., 2010; Portus et al., 2004). The double- and single-leg drop landing 
performance was assessed using established procedures (Hargrave et al., 2003; 
Sheppard et al., 2013; Tran et al., 2015). Participants were familiarised with both the 
double- and single-leg drop landing assessments by performing three or more practice 
trials of each prior to data collection. Participants performed three trials of the 
double-leg drop landing, stepping forwards from a box height of 0.5 m with hand 
on hips. Participants were instructed to land as ‘soft as possible’ on both feet (Tran 
et al., 2015).

The single-leg drop landing assessment included three trials on each of the left and 
right feet (six in total) from a box height of 0.3 m (Hargrave et al., 2003). The order 
(left or right first) was randomised for each participant. In the single-leg drop landing, 
participants were instructed to step forward off the box with their landing leg with all 
other instructions identical to the double-leg drop landing. A 1-minute rest period was 
instituted between trials for both the double- and single-leg drop landings, with 
a 3-minute rest interval between practice trials and recorded test trials, as well as 
between test conditions. Peak landing vertical force was recorded for all trials. Single- 
leg drop landing results were classified as front and back foot based upon each 
participant’s landing pattern during their pace bowling delivery stride. All measures 
were normalised to body weight (BW) and the average of three trials was used for 
analysis.
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Countermovement jump
The CMJ was used as a measure of lower-limb (system) power in the vertical plane. 
Participants were familiarised with the CMJ by performing three or more practice trials 
prior to data collection. The CMJ was performed with a carbon fibre rod (0.25 kg) held at 
the base of the neck and with procedures previously described (Secomb et al., 2015). 
Briefly, participants performed three trials with a 1-minute rest between trials. 
Participants were instructed to jump as high as possible, and no restrictions were placed 
on the countermovement range during the eccentric phase of the jump (Nimphius et al.,  
2012). Customised computer software (Ballistic Measurements System, Fitness 
Technology, Adelaide, Australia) was utilised to determine peak power normalised to 
BW. The average of the three trials was used for analysis.

Isometric mid-thigh pull
The IMTP is a reliable test of lower-limb strength and is also part of the Cricket Australia 
testing battery (Secomb et al., 2015). The procedures used to perform the IMTP have 
been previously described and was completed on the aforementioned force plate within 
a customised power rack. The customised power rack allowed the bar to be fixed for each 
participant. Participants were instructed to grip the bar in a position similar to that of 
a second pull of a power clean (Secomb et al., 2015), with an upright trunk position so 
that their shoulders were in line with the bar, in their preferred position for the pull 
(Comfort et al., 2015). Wrist straps were utilised for all participants to ensure that grip 
strength was not a limiting factor for the measurement of lower-limb strength. 
Participants were instructed to pull as hard as possible on the bar while driving their 
feet as hard as possible into the force plate (Secomb et al., 2015; Sheppard et al., 2013). 
Each participant was required to complete two trials of the IMTP, with a 2-minute rest 
between trials. A third trial was performed in the event that a difference in the vertical 
peak force between the two trials was greater than 250 N (Secomb et al., 2015). The 
average of all completed trials for each participant normalised to BW was used for 
analysis.

Pace bowling performance testing
The dimensions of the laboratory allowed each participant to use their normal full-length 
run-up and follow-through while bowling deliveries on the equivalent of a standard-sized 
cricket pitch. An in-ground three-dimensional force plate (9287CA, Kistler Group, 
Winterthur, Switzerland) sampling at 960 Hz was used to collect GRF data during the 
FFC of the delivery stride. FFC corresponded to the first instance at which the vertical 
GRF exceeded 20 N (Callaghan et al., 2019; Nedergaard et al., 2017). The flooring surface 
(Mondo S.p.A., Alba, Italy) of the laboratory and on-top of the force platform was 
consistent. All trials were filmed with a high-speed iPhone camera (Apple Inc., 
Cupertino, USA) at 240 Hz from a position perpendicular to the delivery stride to sync 
FFC on the force plate and ball release using video analysis software (Kinovea—0.8.15, 
Kinovea, France). Ball release was determined as the first visible frame where the ball had 
left the hand (Feros et al., in press; Glazier et al., 2000; Portus et al., 2000). A Stalker Pro ΙΙ 
speed radar gun (Stalker Radar, Oregon, USA) was located behind the batting stumps net 
and aimed at the ball release point to measure BRS. A two-over spell, comprising 12 
deliveries on a standard sized cricket pitch, was performed by each participant. 

SPORTS BIOMECHANICS 5



Participants were instructed to target different delivery lengths (short, 7–10 m; good, 4– 
7 m; and full, 0–4 m from the batter’s stumps) in a randomised order to replicate the 
different delivery lengths within match-play (Callaghan et al., 2020). Participants deliv-
ered each ball as if under match conditions and hence a self-selected active recovery (i.e., 
walking back to their bowling mark) was permitted between deliveries. A 4-minute rest 
period was provided between the first and second overs, as this is the approximate 
duration of an over within match-play (Portus et al., 2000). Although atypical of match- 
play, no batter was present during testing as the focus of the study was on BRS as 
a measure of performance and not accuracy or batter dismissal. All bowlers used a red 
kookaburra four-piece cricket ball (156 g) (Thompson Pty. Ltd., Australia) and wore their 
own bowling spikes during testing.

The FFC GRF data were treated with a fourth order, zero-phase, Butterworth digital 
filter with a cut-off frequency of 50 Hz was applied to the data using MATLAB R2015b 
(The MathWorks Inc., Massachusetts, USA) program (Schaefer et al., 2017). The cut-off 
frequency of 50 Hz was determined by a fast Fourier transformation. Following this, the 
discrete kinetic variables were measured from FFC to ball release, and included the 
following:

● Peak vertical—maximum force measured in the vertical direction.
● Peak braking—maximum force measured in the posterior direction.
● Vertical impulse—calculated as the area under the vertical force time curve.
● Braking impulse—calculated as the area under the braking/propulsive force time 

curve.

The force platform software (Bioware 5.3.0.7, Winterthur, Switzerland) was used for 
analysis of discrete scalar variables for each delivery bowled. All kinetic variables were 
normalised to BW. The continuous, filtered, force-time curve of the entire FFC in both 
the vertical and braking/propulsive planes was further assessed as a vector, described in 
the SPM analysis section with time-series data normalised to 100% of FFC stance phase. 
All BRS and GRF variables were pooled and analysed irrespective of delivery length as 
previous research has indicated that changes in delivery length do not significantly affect 
BRS or FFC GRF (Callaghan et al., 2019; S.J. Callaghan et al., 2020).

Training program

The off-season strength training programme required two supervised 1-hour sessions per 
week, on non-consecutive days, for 8 weeks. Due to the off-season phase of competition, 
participants were not undertaking pace bowling training during the intervention. 
Although the inclusion of a control, non-training group would have been beneficial, 
this was not feasible due to the high-level participants and specialised sub-discipline of 
cricket players (i.e., pace bowlers) recruited for this study. An 8-week training pro-
gramme has been previously shown to be a sufficient time period to induce changes in 
lower-limb strength (McBride et al., 2002; Wirth et al., 2016) and eccentric capacity 
(Hewett et al., 1996) and has also been used when attempting to increase BRS among pace 
bowlers (Feros et al., 2020). All sessions were conducted in the gym of an Australian state 
cricket organisation and supervised by a certified strength and conditioning coach.
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The programme featured exercises specifically recommended for developing upper- 
(e.g., bench press and prone row) and lower-body strength (e.g., back squat and deadlift) 
(Fisher et al., 2013; Nimphius et al., 2012), and eccentric capacity (e.g., double- and 
single-leg altitude landings and squat jumps) (Herman et al., 2009; Hewett et al., 1996; 
Joyce & Lewindon, 2014). Furthermore, all exercises were based upon previous research 
(Fisher et al., 2013; Joyce & Lewindon, 2014; McBride et al., 2002; Nimphius et al., 2012) 
and current strength and conditioning coach practices at the professional level (Weldon 
et al., 2020) (see Appendix A, which outlines the specific training programme undertaken 
by participants). The training programme was periodised by adjusting the technical 
complexity and intensity of the exercises from week-to-week (Buford et al., 2007; Haff 
& Nimphius, 2012). The weight to be lifted in each exercise for each participant was 
calculated from their estimated one-repetition maximum for the exercise as determined 
by the participant’s previous experiences, and adjusted where necessary. Participants 
were instructed to complete the concentric phase of each exercise as fast as possible for 
every repetition. Structured warm-up sets within each training session were undertaken 
by each participant following the general warm-up to reduce the risk of injury.

Statistical analyses

Descriptive statistics (mean ± standard deviation) were used to describe each variable. 
Mean difference and 95% confidence limits (CL) were also determined between pre- 
and post-test measures. Normality of data was assessed by visual analysis of the Q–Q 
plot (Callaghan et al., 2018). To assess the reliability of all discrete pre- and post-testing 
variables, intraclass correlation coefficient (ICC) and coefficient of variance (CV) were 
determined. An ICC ≥ 0.70 and a CV ≤ 10% was deemed acceptable (Callaghan et al.,  
2018). Paired samples two-tailed t tests determined significant changes between pre- 
and post-testing measures. Due to this statistical approach and to decrease the chances 
of making a Type 1 error, the criterion for significance was set at p ≤ 0.01 (Feise, 2002). 
These statistics were computed using the Statistics Package for Social Sciences Version 
23.0 (IBM, Armonk, United States of America). Due to the small sample size, Hedges’ 
g effect sizes were used for the pre- and post-testing comparisons. The effect magnitude 
was assessed on the following scale: less than 0.2 was considered a trivial effect; 0.2 to 
0.49 a small effect; 0.5 to 0.79 a medium effect; and greater than 0.8 a large effect 
(Cohen, 1992; Middleton et al., 2016). These statistics were computed within 
a customised Excel (Microsoft Corporation, Washington, United States of America) 
spreadsheet.

SPM was used to evaluate if significant changes (α = 0.05) from pre- to post-training 
occurred over any section of the GRF curve during FFC. SPM specifically reduces two 
biases that occur with the more common ‘scalar extraction’ analysis: (1) reduces the bias 
of discrete extraction (e.g., analysis of only peak values) by examining the GRF with 
respect to the time domain (the entire curve) and (2) deals with the most commonly 
overlooked bias in scalar extraction-based analysis through assessing the GRF as a vector 
instead of reduction to scalar components which fails to consider the covariance between 
components, in this research, between vertical and braking/propulsive GRF (Pataky et al.,  
2013). The SPM analysis required four steps, and these are outlined in De Ridder et al. 
(2013). Briefly, SPM uses random field theory to objectively identify field regions which 
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co-vary significantly with the experimental design (Pataky et al., 2013). A paired 
Hotelling’s T2 test was used to test if a change occurred from pre- to post-testing in the 
two-component (vertical and braking/propulsive) GRF trajectory. For simplicity, a mean 
GRF trajectory for each participant was used for analysis for each variable. This approach 
is considered the equivalent of the full model involving intra-trial variability when the 
residuals are normally distributed (Friston et al., 2011; Pataky et al., 2013). Post hoc 
analysis of the individual vector components’ trajectories was not required as the 
Hotelling’s T2 did not reach significance. All SPM analyses were implemented in 
Python 2.7 using Enthought Canopy 1.5.2 (Enthought Inc., Austin, USA), using the 
open-source package ‘rft1d’ located at https://www.spm1d.org/ (Pataky, 2016).

Results

All investigated pre- and post-testing variables were deemed to be normally distributed as 
determined by the Q–Q plot analysis. There was no significant change in body mass from 
pre- (82.7 ± 7.7 kg) to post-testing (83.2 ± 7.8 kg; p = 0.44; g = 0.06). All ICCs (0.70–0.98) 
and CVs (0.63–9.31%) for pre- and post-testing discrete measures were deemed accep-
table. Table 1 displays the BW normalised changes between pre- and post-testing for 
double- and single-leg drop landing, CMJ and IMTP. A significant 19% decrease in 
double-leg drop landing peak vertical force was demonstrated following the training 
intervention. Front-foot and back-foot single-leg drop landing peak vertical forces sig-
nificantly decreased between pre- and post-testing by 14% and 15%, respectively. IMTP 
peak force significantly increased by 9%. No significant changes in CMJ variables were 
found between pre- and post-testing.

There was no significant change (p = 0.11; g= 0.17; mean difference ± 95% 
CL = −0.87 ± 1.09 m/s) in BRS between pre- (31.55 ± 1.44 m/s) and post-testing 
(31.79 ± 1.33 m/s) measures, with only a trivial effect present. There were no significant 
differences in any of the BW normalised discrete kinetic variables measured between pre- 
and post-testing (Table 2). Figures 1 and 2 depict the effects of the training intervention 
as assessed by SPM for changes in the vector field GRF. The critical threshold of 

Table 1. The relative pre- and post-testing (mean ± standard deviation) and difference (mean 
difference ± 95% confidence limits [CL]) results for double-leg drop landing (DLDL), single-leg drop 
landing (SLDL), countermovement jump (CMJ) and isometric mid-thigh pull (IMTP), in cricket pace 
bowlers (n = 10).

Variable Pre-testing Post-testing
Difference 

(mean ± 95% CL) p g Descriptor

DLDL
PF (BW) 2.71 ± 0.36 2.20 ± 0.10 −0.51 ± 0.25 < 0.01 1.85 Large

Front foot SLDL
PF (BW) 2.03 ± 0.14 1.74 ± 0.12 −0.29 ± 0.13 <0.01 2.13 Large

Back foot SLDL
PF (BW) 2.04 ± 0.27 1.73 ± 0.12 −0.32 ± 0.19 < 0.01 1.42 Large

CMJ
PP (BW· s) 4.86 ± 0.41 5.04 ± 0.39 0.20 ± 0.46 0.20 0.43 Small

IMTP
PF (BW) 3.14 ± 0.52 3.43 ± 0.39 0.29 ± 0.20 0.01 0.60 Medium

PF = peak force; PP = peak power; BW = body weight; BW· s = body weight per second; g = Hedges’ g effect size; 
p= p value. Significance set at p ≤ 0.01.
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T2 = 40.507 with a family-wise error rate of α = 0.05 was not exceeded (p= 1.0) therefore 
no post hoc scalar field SPM was performed.

Discussion and implications

This is the first study to investigate the effects of an 8-week general strength training 
intervention, with a focus on lower-limb strength and eccentric capacity, on BRS among 
high-level cricket pace bowlers. The results reinforced that a periodised strength training 
intervention can improve measures of strength and eccentric capacity. However, this did 
not translate to significant changes in FFC GRF, which may explain the lack of 

Table 2. Relative peak vertical force, braking force and vertical and braking impulse between pre- and 
post-testing (mean ± standard deviation) and difference (mean difference ± 95% confidence limits 
[CL]) during front foot contact in cricket pace bowlers (n = 10).

Variable Pre-testing Post-testing
Difference 

(mean ± 95% CL) p g Descriptor

Peak Vertical Force 
(BW)

6.26 ± 0.94 6.45 ± 1.07 0.19 ± 0.26 0.15 0.18 Trivial
Peak Braking Force 

(BW)
−3.51 ± 0.90 −3.72 ± 0.72 −0.22 ± 0.53 0.38 0.25 Small

Vertical impulse (BW· s)
0.29 ± 0.03 0.30 ± 0.02 0.01 ± 0.02 0.32 0.38 Small

Braking impulse (BW· s)
−0.14 ± 0.03 −0.13 ± 0.02 −0.22 ± 0.06 0.58 0.38 Small

BW = body weight; BW· s = body weight per second; g = Hedges’ g effect size; p= p value; Significance set at p ≤ 0.01.

Figure 1. Displays the Hotellings T2 trajectory SPM (T2). The T2 statistic as a function of time, describing 
the strength and slope of the relationship between pre- and post-testing measures. The dotted 
horizontal line indicates the critical random field theory thresholds for significance of T2 = 40.507 with 
a family wise error rate of α = 0.05. No portion of the trajectory exceeded the threshold therefore no 
follow-up tests were performed for scalar field analysis.
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improvement in BRS. Nonetheless, increase in strength and eccentric capacity have 
previously been shown to enhance other factors important to cricket. For example, 
acceleration performance (Lockie et al., 2012; Suchomel et al., 2016), maximal velocity 
sprinting (Rumpf et al., 2015), and change of direction ability (Spiteri et al., 2013), which 
are all critical components of fielding within cricket as well as reduced injury risk 
(Suchomel et al., 2016). Consequently, any improvements in lower-body strength for 
a pace bowler, which does not negatively influence pace bowling performance or tech-
nique, could be ultimately viewed as beneficial.

The BRS reported for participants in this study were similar to those of high- 
performance state association level pace bowlers previously reported within the literature 
(Middleton et al., 2016; Phillips et al., 2010). The results indicated that there was no 
significant difference in BRS between pre- and post-testing, despite significant improve-
ments in lower-limb strength and eccentric capacity. This was counter to the study 
hypothesis; however, this finding is in accordance with previous research which inves-
tigated the implications of special resistance training interventions upon BRS among 
pace bowlers (Petersen et al., 2004; Wickington & Linthorne, 2017). Furthermore, the 
higher level of participants recruited for the current investigation may have limited the 
extent to which BRS could have been improved. Therefore, it may prove beneficial if 
future investigation looked to determine the effects of strength training upon BRS among 
amateur pace bowlers, where greater potential for improvement is present, to more 
globally determine the influence of strength training upon BRS. Nonetheless, smaller 
changes in BRS for higher level pace bowlers may prove to be more impactful to the 
applied setting. Hence, continued research in this area is warranted.

There are several reasons which may explain the lack of significant change in BRS 
following the training intervention. The transfer of training effect principle evaluates the 
time necessary or ‘lag time’ for motor learning strategies to manifest improvements in 
strength into performance (Stone et al., 2003; Suchomel et al., 2016). Morin, Capelo- 

Figure 2. (a) The braking/propulsive GRF (GRFy;) and (b) vertical GRF (GRFz) pre- and post-training 
represented as the cross-participant mean trajectory with a standard deviation cloud. The pre-training 
is depicted with a black line and dark grey cloud while post-training is depicted using a dashed grey 
line with light grey cloud.
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Ramirez et al. (In Press) investigated the adaptation window following a high-resistance 
sprint training programme upon maximal horizontal power among trained sprinters. 
The results demonstrated a highly individual response, with most participants (7/22) 
recording peak power 4 weeks following the training intervention. Consequently, the 
1-week period between the completion of the strength training intervention and post- 
testing may not have been sufficient time to actualise increases in strength into enhanced 
BRS. This possible limitation may have been compounded by the off-season phase of 
competition, as the participants were not undertaking pace bowling practice. Due to the 
complex sequencing of movements associated with pace bowling, a longer length of time 
may be required to allow athletes to learn how to utilise any enhanced capacities within 
this skilled movement. As such, pace bowling may also necessitate a combined approach 
of coaching and strength training to optimise performance. Clearly, there is a need for 
future research to assess the ability of a combined strength and movement pattern 
coaching intervention upon BRS among pace bowlers.

The results from this study also indicated no significant changes in GRF during FFC 
when assessing discrete and continuous measures. This may have contributed to the lack 
of change in BRS as previous research has established the importance of vertical and 
braking GRFs (Callaghan et al., 2021; Phillips et al., 2010; Portus et al., 2004) and braking 
impulse (King et al., 2016) to higher BRS. Perhaps, a more specific eccentric training 
modality which more closely replicates the high magnitude and rate of force developed 
experienced at FFC is required to elicit changes in a pace bowler’s FFC GRFs. 
Furthermore, recent research has also highlighted an individualised development of 
GRF during FFC for pace bowlers (Callaghan et al., 2021). The use of different movement 
strategies underpinned by the various physical strengths and weaknesses of a pace bowler 
may necessitate a more individualised training intervention to elicit alterations in FFC 
GRFs and ultimately BRS. However, additional research is needed to test these 
hypotheses.

It could be surmised that a pace bowler who possesses greater lower-limb strength 
may be better equipped to efficiently transfer the linear kinetic energy of their run-up 
into their bowling action, assuming a correct sequencing of movements (King et al., 2016; 
Mukandi et al., 2014; Stronach et al., 2014). The pre- and post-testing results demon-
strated improvements in lower-limb strength and eccentric capacity as there was 
a significant improvement in the IMTP, double- and single-leg drop landing. The 9% 
increase in BW normalised peak vertical force for the IMTP helped validate that an 
appropriately designed training programme during the cricket off-season, where an 
absence of skills specific training occur, can provide enhanced foundational physiological 
capacities prior to a training emphasis that will shift to a skills focus during the season 
(Joyce & Lewindon, 2014). Furthermore, despite the lack of significant changes in BRS 
between pre- and post-testing measures, the aforementioned physiological adaptations 
may set the foundation for changes in GRF and subsequently BRS if performed in 
conjunction with bowling specific drills or if changes in BRS are examined for a lag 
effect (delayed transfer of training). Practically, the improvements in lower-limb strength 
and eccentric capacity could also suggest that the pace bowlers may be more physically 
capable of tolerating the high loads experienced at FFC during match-play and training 
(Callaghan et al., 2020). However, this perspective was not investigated within the current 
study.
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The enhanced lower-limb eccentric capacity derived from the drop landings could 
have some impact on pace bowling biomechanics, despite no change in BRS. Improved 
drop landing performance could be indicative of an improved anticipatory pre- 
activation of lower-limb musculature, which is representative of enhanced neuromus-
cular control and may prevent joint collapse immediately after ground contact (Horita 
et al., 2002). This is particularly important to pace bowlers as not only are they required 
to efficiently absorb and utilise the high GRFs experienced at FFC but also it has 
previously been shown that a more extended front knee at FFC is associated with an 
increased BRS (Portus et al., 2004; Worthington et al., 2013). Consequently, improve-
ments in lower-limb eccentric capacity may assist pace bowlers in adopting techniques 
associated with an increased BRS. However, future research is needed to assess this 
perspective as kinematic variables were beyond the scope of the current investigation. 
Practically, the improved lower-limb eccentric capacity may also indicate that despite 
the well-established high braking and vertical GRFs at FFC (King et al., 2016; 
Middleton et al., 2016; Portus et al., 2004), and the repetitive nature of pace bowling 
during match-play and training, this is an area that can still be improved via appro-
priate conditioning. This was pertinent as these changes occurred during the off-season 
period for the bowlers in this study, which is where certain physiological characteristics 
can be targeted with specific training.

There was no significant improvement in CMJ normalised peak power. The lack 
of improvement in CMJ performance may in part be attributed to the lower-limb 
strength and eccentric capacity focus of the training intervention, and the limited 
number of specific power- and jumping-based exercises implemented within the 
programme (see Appendix A, which outlines the specific training programme 
undertaken by participants). Lockie et al. (2012) also found no significant improve-
ment in lower-limb vertical power as measured by CMJ height following a 6-week 
strength training intervention in field sport athletes. Due to the skill requirements of 
the CMJ, perhaps specific jump or plyometric training is necessary to improve CMJ 
peak power among cricket pace bowlers, although future research is needed to assess 
this perspective.

There are certain limitations for this study. No kinematic data were collected and 
therefore future research should assess whether a periodised strength training pro-
gramme can elicit changes in a pace bowler’s kinematics or more specifically the use of 
joint kinematics in conjunction with GRF to calculate joint kinetics. Additionally, the 
participant numbers utilised in this study are low; however, they are similar to previous 
strength training studies in athletic populations (Nimphius et al., 2012; Petersen et al.,  
2004). As previously mentioned, the inclusion of a control group would have been 
advantageous and allowed further insights into the effects of the training intervention. 
However, as noted, high-level athletes are required to still be undertaking some form of 
resistance training during the off-season, making a non-training control group unfea-
sible. Furthermore, previous research has also not utilised a control group when under-
taking a training intervention (Nimphius et al., 2012). Of most concern to many 
resistance training studies attempting to demonstrate the efficacy and transfer to 
a skilled performance, there may have been insufficient time to develop the necessary 
motor learning strategies to allow improvements in strength to manifest in performance 
(Stone et al., 2003; Suchomel et al., 2016). Consequently, additional research is required 
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to determine if concurrent skills training could alleviate this limitation and encourage 
greater adaptations. As this would provide the opportunity for pace bowlers to actualise 
improvements in strength and eccentric capacity into their pace bowling technique.

Conclusion

The 8-week strength training intervention led to improvements in eccentric capacity (i.e., 
drop landings) and lower-body strength (i.e., IMTP) for pace bowlers. However, this did 
not translate to an increased BRS. Importantly, increases in lower-limb strength and 
eccentric capacity would be anticipated to enhance other areas of match-play (i.e., 
sprinting and changing direction). It is also pertinent that these changes occurred during 
the off-season phase of competition, illustrating that these foundational physiological 
requirements for match-play and training resilience of pace bowlers can be targeted and 
improved with specific training.
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Appendix 
Appendix A The 8-week periodised strength training program

Meso-cycle 1 Week 1 Week 2 Week 3 Week 4

Warm-up Sets Reps Load Sets Reps Load Sets Reps Load Sets Reps Load

Foam roller
Skipping 4 min 4 min 4 min 4 min

Back squat 1 12 20 kg 1 12 20 kg 1 12 20 kg 1 12 20 kg
Deadlift 1 12 20 kg 1 12 20 kg 1 12 20 kg 1 12 20 kg
Military press 1 12 8 kg 1 12 8 kg 1 12 8 kg 1 12 8 kg

Double leg AL S1 3 3 40 cm 3 4 50 cm 4 4 60 cm 3 4 60 cm
Double leg AL S2 3 4 40 cm 4 4 50 cm 4 5 60 cm 3 4 60 cm

Session 1 Sets Reps % Sets Reps % Sets Reps % Sets Reps %
Back squat 4 8 65 4 6 75 4 6 80 3 6 75

DB lunge 3 6 65 4 6 75 5 4 80 3 4 75
Bench press 4 8 50 4 6 60 4 6 70 3 6 60
Prone row 4 8 50 4 6 60 4 6 70 3 6 60

RDL 4 8 65 4 6 75 4 6 80 3 6 75
Cable anti 

rotation + 
press

4 10 65 4 10 70 4 10 75 3 10 70

Session 2 Sets Reps % Sets Reps % Sets Reps % Sets Reps %

Trap-bar deadlift 3 8 65 4 6 75 4 6 80 3 6 75
DB step-ups 

(40 cm)
3 6 65 4 6 75 5 4 80 3 4 75

DB shoulder 
press

4 8 50 4 6 60 4 6 70 3 6 60

Chin ups (prone) 4 8 50 4 6 60 4 6 70 3 60 60
Face pull 3 8 50 3 8 50
Hamstring curl 4 8 65 4 6 75 4 6 80 3 6 75

Cable twist 4 10 65 4 10 70 4 10 75 3 10 70

Meso-cycle 2 Week 5 Week 6 Week 7 Week 8

Warm-up Sets Reps Load Sets Reps Load Sets Reps Load Sets Reps Load

Foam roller

Skipping 4 min 4 min 4 min 4 min
Back squat 1 12 20 kg 1 12 20 kg 1 12 20 kg 1 12 20 kg

Deadlift 1 12 20 kg 1 12 20 kg 1 12 20 kg 1 12 20 kg
Military press 1 12 8 kg 1 12 8 kg 1 12 8 kg 1 12 8 kg

Single leg AL 
S1

2 3 20 cm 2 4 30 cm 3 3 40 cm 2 3 40 cm

Single leg AL 
S2

2 2 20 cm 2 3 30 cm 2 4 40 cm 2 2 40 cm

Session 1 Sets Reps % Sets Reps % Sets Reps % Sets Reps %
Back squat 4 6 75 5 4 80 4 4 85 4 4 80

BB lunge 4 6 75 4 4 80 4 4 85 3 4 80
Bench press 4 6 60 4 6 65 4 8 70 3 4 65

Prone row 4 6 60 4 6 65 4 8 70 3 4 65
Nordic 

hamstring 
curl

4 6 B 4 6 BW 4 6 BW 3 6 BW

BB twist 4 8 75 4 8 75 4 6 80 3 6 75
Session 2 Sets Reps % Sets Reps % Sets Reps % Sets Reps %

Jump squats 3 4 BW 3 4 10 4 4 10 3 4 10
Front squat 4 6 75 5 4 80 4 4 85 4 4 80

(Continued)
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