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Abstract 1 

 2 

Purpose: to examine the reliability of load-velocity profiles (LVPs) and validity of 1-3 

repetition maximum (1-RM) prediction methods in the back-squat using the novel Vitruve 4 

linear position transducer (LPT). Methods: twenty-five men completed a back-squat 1-RM 5 

assessment followed by 2 LVP trials using 5 incremental loads (20%-40%-60%-80%-90% 1-6 

RM). Mean propulsive velocity (MPV), mean velocity (MV), and peak velocity (PV) were 7 

measured via a (LPT). Linear and polynomial regression models were applied to the data. 8 

The reliability and validity criteria were defined a-priori as intraclass correlation coefficient 9 

(ICC) or Pearson correlation coefficient (r) > 0.70, coefficient of variation (CV) ≤ 10%, and 10 

effect size (ES) < 0.60. Bland-Altman analysis and heteroscedasticity of errors (r2) were also 11 

assessed. Results: the main findings indicated MPV, MV and PV were reliable across 20-12 

90% 1-RM (CV < 8.8%). The secondary findings inferred all prediction models had 13 

acceptable reliability (CV < 8.0%). While the MPV linear and MV linear models 14 

demonstrated the best estimation of 1-RM (CV < 5.9%), all prediction models displayed 15 

unacceptable validity and a tendency to overestimate or underestimate 1-RM. Mean 16 

systematic bias (-7.29 to 2.83 kg) was detected for all prediction models, along with little to 17 

no heteroscedasticity of errors for linear (r2 < 0.04) and polynomial models (r2 < 0.08). 18 

Furthermore, all 1-RM estimations were significantly different from each other (p < 0.03). 19 

Conclusions: MPV, MV, and PV can provide reliable LVPs and repeatable 1-RM 20 

predictions. However, prediction methods may not be sensitive enough to replace direct 21 

assessment of 1-RM. Polynomial regression is not suitable for 1-RM prediction.  22 

 23 

Key words: Velocity-Based Training, Load-Velocity Relationship, Relative Load, 24 

Regression, Linear Position Transducer 25 
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1.0 Introduction 26 

The ongoing collaboration between coaches, engineers and scientists has brought about 27 

a multitude of technology which helps athletes to train and prepare for the demands of 28 

competition.1 The ability to objectively quantify, monitor, and analyse resistance training 29 

variables are an essential component for practitioners aiming to maximise adaptations.2 One 30 

of the most important variables for program design is training volume as it influences neural 31 

and morphological adaptations.3,4 Velocity-based training (VBT) uses velocity to inform or 32 

enhance training practice,5 and has received considerable interest in recent years for the 33 

regulation of training volume.6,7 VBT utilises the well-established inverse linear relationship 34 

between relative load and movement velocity to produce a load-velocity profile (LVP) which 35 

provides insights into an individual’s current physiological status.8-10 Applications of VBT 36 

include the provision of feedback during resistance training,11-14 autoregulatory prescriptive 37 

methods,15,16 fatigue monitoring,17 and prediction of 1-repetition maximum (1-RM) from 38 

submaximal loads.18,19 The successful implementation of VBT relies on instruments which 39 

are reliable and valid.20 While it is widely accepted that linear position transducers (LPTs) 40 

outperform other technologies including accelerometers and optic laser devices,21-29 the price 41 

of an LPT presents a barrier of entry for practitioners.30  42 

Cost concerns may be alleviated by the Vitruve (previously Speed4Lifts) which is the 43 

cheapest commercially available LPT. Real-time feedback is provided via a digital display on 44 

the device and a smartphone application, the latter of which also generates a wider range of 45 

features including load summary reports. When compared to 6 other devices, the Vitruve 46 

displayed the highest validity (r2 = 0.95-0.96) and the lowest levels of variability (coefficient 47 

of variation [CV] = 2.61%) during Smith machine bench press exercise.31 Very high intra-48 

device reliability for the Vitruve has also been found during Smith machine back-squat 49 

exercise.32 However, previous studies reliance on un-trained participants and Smith machine 50 
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modalities limits the transferability of findings to strength-trained populations.31,32 This is 51 

because stronger participants exhibit different LVPs due to an increased capacity to 52 

overcome the sticking region associated with heavy loads at a lower concentric velocity.33  53 

The Vitruve can also be distinguished from other LPTs for its ability to calculate all 3 54 

commonly used variables: mean propulsive velocity (MPV), mean velocity (MV), and peak 55 

velocity (PV). MPV is the average velocity from the start of the concentric phase until 56 

acceleration is less than gravity (−9.81 m·s-2).10,34 Whereas MV is the average velocity 57 

across the entire concentric phase.35 PV is the highest recorded velocity attained from the 58 

concentric phase.36 MPV accounts for the breaking phase of the movement, whereas MV 59 

does not. Historically, MV has been the most commonly reported variable on a number of 60 

devices,5 and has featured in considerably more research as a result.37 Nonetheless, while 61 

both MPV and MV have been used to generate LVPs of nonaerial movements, inconsistent 62 

findings have made it unclear which measure is best for training prescription.38,39 This may 63 

be associated with variations in research methodologies in relation to sample size and 64 

strength ability, exercise type, and statistical approaches. Hence, a comprehensive 65 

comparison of these velocity measures would help coaches to understand and monitor the 66 

performance potential of their athletes. 67 

No research has examined the test-retest reliability of velocity measures from the 68 

Vitruve during free-weight exercise. The back-squat is a closed kinetic chain exercise often 69 

used by practitioners to enable the transfer of strength adaptations into athletic performance.40 70 

Unlike Smith machine modalities, the back-squat can involve greater horizontal movement of 71 

the barbell which is known to affect velocity measures calculated by LPTs.41 Therefore, the 72 

findings from Smith machine investigations of the Vitruve should not be used to infer the 73 

LPTs reliability during free-weight exercise. While a plethora of studies have investigated the 74 

reliability of LPTs during lower body free-weight exercises,42-44 the reliability of the Vitruve 75 
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during back-squat exercise is not known. Given the Vitruve’s substantially lower retail value, 76 

this is worthy of further investigation. 77 

Movement velocity has received increasing attention as an alternative approach for 78 

assessing an individual’s 1-RM strength ability.10 This is because 1-RM assessment presents 79 

numerous challenges. Primarily, maximal strength is known to change within short time 80 

frames,45 but frequent testing can take valuable time away from training and induce unwanted 81 

fatigue which heightens the risk of injury. The explanatory mechanisms of injury stem from a 82 

breakdown of technique at the sticking point of the movement.46 Considering that 83 

biomechanical principles, injury mechanisms and human tolerance are central to the design of 84 

sports technology,47 any potential improvements to the precision of 1-RM predictions should 85 

be of material importance to engineers.  86 

To date, lower body Smith machine protocols have generated accurate predictions of 1-87 

RM (R2 = 0.94-0.96) using submaximal loads during full-depth squat exercise.8,48 However, 88 

Banyard et al38 found back-squat 1-RM predictions were not only different to measured 1-89 

RM (effect size [ES] = 0.71-1.04), but all 1-RM prediction equations were different from 90 

each other. This result was attributed to high between-session variability of the velocity used 91 

to predict 1-RM. Subsequently, the authors suggested the validity of back-squat 1-RM 92 

predictions could be improved using MPV or second order polynomial regression. 93 

Interestingly, recent research reported no differences between back-squat LVPs derived from 94 

linear or nonlinear regression using MPV, MV, and PV.49,50 Furthermore, Thompson et al50 95 

found individualised back-squat LVPs for MV (r = 0.98-0.99) and PV (r = 0.98-0.99) were 96 

stable and displayed improved goodness of fit when using nonlinear regression. However, 97 

neither Banyard et al49 nor Thompson et al50 published any data relating to 1-RM prediction. 98 

This may be attributed to the added complexity of applying nonlinear regression fits outside 99 

of dedicated software platforms.49 Collectively, while the usefulness of different regression 100 
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models and velocity measures have previously been examined, their precision in estimating 101 

back-squat 1-RM has not been compared within the same study. Further examination would 102 

also be useful for engineers. For instance, in the event polynomial models are shown to be 103 

more accurate than their linear counterparts, this could guide future innovations to software 104 

development which may enhance the efficiency of training programs.  105 

The primary objective of this study was to investigate the reliability of MPV, MV, and 106 

PV to develop LVPs using the Vitruve LPT during back-squat exercise. The secondary aim 107 

of this study was to determine the reliability and validity of 1-RM back-squat predictions 108 

derived from MPV, MV, and PV using linear and polynomial regression. It was hypothesised 109 

that (1) all velocity measures would display acceptable reliability, (2) all estimations of 1-RM 110 

would be reliable, and (3) all estimations of 1-RM would be different to 1-RM.  111 

 112 

2.0 Materials and methods 113 

2.1 Subjects 114 

Twenty-five strength-trained males (mean ± SD; age = 25.2 ± 2.8 y; body mass = 91.2 115 

± 14.0 kg; stature = 180.0 ± 9.7 cm; back-squat = 1-RM 178.0 ± 28.0 kg; relative 1-RM = 2.0 116 

± 0.4 x/body mass) were recruited for this study. All subjects had at least 4 years’ experience 117 

of resistance training and trained approximately 8.6 ± 2.5 hours per week. A-priori sample 118 

size estimation was calculated using G*Power software (Version 3.1.9.3).51 Twenty-four 119 

subjects were needed to identify differences between 2 dependant means using a Cohen dz of 120 

0.59,38,49 a 2-sided α level of 0.05, and 1− of 0.80. Informed consent was provided prior to 121 

data collection with ethical approval granted by the St Mary’s University, Twickenham’s 122 

ethics committee in accordance with the seventh revision of the Declaration of Helsinki 123 

(2013). All sessions were performed at a similar time of day (± 1 h) and were separated by 124 
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48-72 h. Subjects were instructed to refrain from strenuous exercise, and to avoid alcohol and 125 

caffeine consumption within 24 h and 12 h of testing respectively. 126 

 127 

2.2 Design  128 

A repeated-measures within-subject design was used. Each participant’s back-squat 1-129 

RM was assessed, followed by 2 LVP trials utilizing incremental loads. The 1-RM 130 

assessment provided accurate relative loads in the subsequent sessions. 131 

 132 

2.3 Maximum strength assessment 133 

All sessions were initiated with a standardised warm-up protocol. The warm-up 134 

consisted of 5 minutes cycling at 60 RPM and 60 W using an air-braked cycle ergometer 135 

(Wattbike Pro, Wattbike Ltd, Nottingham, UK) followed by 5 mobility exercises and 10 136 

repetitions with an unloaded barbell. All repetitions were performed using a squat stand, 137 

calibrated 20 kg barbell, and bumper plates (Eleiko®, Halmstad, Sweden). Back-squat 1-RM 138 

was assessed via an established protocol, as used previously.42,43 Participants completed 5 139 

repetitions at 50% 1-RM, 3 repetitions at 70% and 80% 1-RM, and 1 repetition at 90% 1-RM. 140 

A maximum of 5 1-RM attempts were allowed, with loads increasing by 1-10 kg between 141 

attempts. Rest periods were 3 minutes between warm-up sets and up to 5 minutes between 1-142 

RM attempts. Adequate squat depth was confirmed by video capture and a strength and 143 

conditioning coach with more than 5 years’ experience. Participants were also familiarised 144 

with the performance of light loads with maximal intent.50 145 

 146 

2.4 Load-velocity profile assessment 147 

Sessions 2 and 3 assessed each participant’s individual LVP. Participants performed 3 148 

repetitions at 20%, 40%, 60% and 80% 1-RM and 2 repetitions at 90% 1-RM. These intensity 149 
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zones were chosen based on their high reliability to predict 1-RM using MPV.49 Up to 3 150 

minutes rest was provided between sets. All relative loads were rounded up to the nearest 1 151 

kg. Participants were instructed to control the eccentric portion of the back-squat at a self-152 

selected pace until full knee flexion was achieved, followed by execution of the concentric 153 

portion with maximal intent until full hip and knee extension was achieved.38 Participants 154 

were told to keep their feet in contact with the ground and to apply constant downward 155 

pressure on the barbell onto the superior aspect of the trapezius muscle.30,49 Visual feedback 156 

of velocity scores and verbal encouragement were provided throughout. Adequate squat 157 

depth was retrospectively confirmed using validated motion-capture software (Coach’s Eye, 158 

TechSmith Corporation, USA, version 6.5.3.0)52 via a smartphone camera system (iPhone 11, 159 

version iOS 14.4.2; Apple, Cupertino, CA) which captured video footage at 60 fps and 160 

1080p. The smartphone was rigged onto a tripod set at a height of 62 cm (floor to camera) 161 

and distance of 250 cm (camera to centre of lifting area) in the sagittal plane. The setup was 162 

identical for all trials. Only repetitions with the highest mean concentric velocity outputs 163 

were analysed.  164 

Individualised LVPs were constructed for each participant using least squares 165 

regression. Relative load was plotted as the independent variable, and velocity measures as 166 

the dependent variable. Both linear and polynomial lines were fitted to the data. Post hoc 167 

analysis was undertaken to predict 1-RM from these LVPs using the minimum velocity 168 

threshold (MVT) method. The MVT for each individual was established using the velocity 169 

from the final successful 1-RM attempt (1RMMVT). This method was employed due to its 170 

greater reliability of indicating general performance potential when compared to alternate 1-171 

RM prediction methods.53  172 

 173 

2.5 Data acquisition 174 
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The Vitruve (Vitruve encoder; Madrid, Spain) was used to measure MPV, MV, and 175 

PV. The unit was placed on the floor with a Velcro attachment strapped around the inside of 176 

the barbell’s right-hand collar. All data was captured at a sampling rate of 100 Hz through 177 

Bluetooth connection to a third-generation iPad tablet (iPad; Apple Inc, Cupertino, CA) using 178 

the Vitruve teams (version 1.11.2) application. The Vitruve recorded displacement-time-179 

curve data by determining changes in the barbell position. Barbell acceleration was then 180 

obtained from double-differentiation of the displacement-time curve. MPV was calculated 181 

using average velocity data during the concentric phase until acceleration was less than 182 

gravity (−9.82 m·s-2). Whereas MV was calculated using average velocity data from the 183 

entire concentric phase. Finally, PV was determined as the maximum value in the same 184 

concentric period. 185 

 186 

2.6 Statistical analyses 187 

All measures were tested for normality using the Shapiro-Wilk test at an α level of 188 

0.05. All data are presented as mean and SD unless stated otherwise. The confidence intervals 189 

(CI) for all analyses were set at 95%. Test re-test reliability of outcome measures from the 190 

LPT and 1-RM predictions were assessed at each relative intensity against the magnitude of 191 

the intraclass correlation coefficient (ICC3,1), CV, and ES. The strength of the correlations 192 

were determined using the following criteria: trivial (0.00-0.09), small (0.10-0.29), moderate 193 

(0.30-0.49), large (0.50-0.69), very large (0.70-0.89), or nearly perfect (0.90-1.0).54 The 194 

magnitude of the CV were categorised as poor (> 10%), moderate (5-10%), or good (< 5%).54 195 

The magnitude of the ES were considered trivial (< 0.19), small (0.2-0.59), moderate (0.60-196 

1.19), large (1.20-1.99), or very large (> 2.0).54 This study considered the variables highly 197 

reliable if they met the following 3 criteria: very large correlation (> 0.70), moderate CV (≤ 198 
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10%), and a small ES (< 0.60).38,49 The smallest detectable difference (SDD) was determined 199 

using the formula55: 200 

SDD = 1.96 × √2  ×  𝑆𝐸𝑀 201 

Where SEM is the standard error of the measurement, which was also calculated.  202 

The relationship between relative load and velocity were examined in GraphPad Prism 203 

(GraphPad Software, San Diego, CA, USA, version 9.1.0). A 1-tailed runs test was 204 

performed on all regression models to detect the presence of autocorrelation. The goodness of 205 

fit of the load-velocity relationships were assessed using the coefficient of determination (r2) 206 

and the standard error of the estimate (SEE). The validity of the 1-RM prediction methods in 207 

relation to measured 1-RM were assessed using Bland-Altman analysis (systematic bias and 208 

95% limits of agreement [LOA]), heteroscedasticity of errors (r2), the Pearson correlation 209 

coefficient (r), CV, ES, and SEE. The threshold for acceptable validity required low 210 

heteroscedasticity of errors (r2 < 0.10),56 a very large correlation (> 0.70), moderate CV (≤ 211 

10%), and a small ES (< 0.60).30,38 Correlations between 1-RM predictions and measured 1-212 

RM were compared using the Fisher r to z-transformation and a 1-tailed Meng’s z-test.57 213 

Finally, comparisons for reliability and validity were assessed for all measures using a 2-214 

tailed paired samples t test with Bonferroni corrections and type 1 error rate set at α < 0.05. 215 

The test re-test reliability and validity analysis were performed via a custom spreadsheet.58 216 

All other analyses were performed on SPSS (version 27.0: SPSS Inc, Chicago, IL). 217 

 218 

3.0 Results 219 

Results from the Shapiro-Wilk test confirmed all measures were normally distributed (p 220 

> 0.05). Group mean peak knee flexion (20% = 131.0 ± 7.3º; 40% = 131.2 ± 8.4º; 60% = 221 

131.3 ± 8.6º; 80% = 131.3 ± 9.4º; 90% = 131.4 ± 9.9º;) are as reported. The group mean 1-222 
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RMMVT were as follows: MPV = 0.28 ± 0.05 m·s-1; MV = 0.26 ± 0.05 m·s-1; PV = 0.74 ± 0.13 223 

m·s-1.  224 

 225 

3.1 Reliability of outcome measures 226 

[Table 1 here] 227 

  [Figure 1 here] 228 

 229 

Group means between trials of velocity measures are presented in table 1. Significant 230 

differences were found for PV and MV at 60% 1-RM. The test re-test reliability results of 231 

velocity measures are shown in figure 1. MPV and MV were highly reliable at all relative 232 

intensities, while PV displayed poor reliability at 60% 1-RM. The low reliability observed at 233 

60% 1-RM was informed by moderate ES and significant differences between trials (table 1). 234 

The SDD of the outcome measures are shown in table 2. 235 

 236 

[Table 2 here] 237 

 238 

3.2 Maximum strength prediction 239 

 240 

[Figure 2 here] 241 

 242 

All LVPs and their corresponding prediction equations can be seen in figure 2. The runs test 243 

produced non-significant results for all linear (MPV: p = 0.90; MV: p = 0.50; PV: p = 0.50) 244 

and polynomial (MPV: p = 0.90; MV: p = 0.90; PV: p = 0.90) regression models. All models 245 

presented nearly perfect r2. Both linear and polynomial regression models for MPV and MV 246 

displayed nearly perfect Pearson’s correlations with relative load. Whilst PV models showed 247 
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a very large correlation with relative load (figure 2). Group mean 1-RM predictions are 248 

shown in table 1. No significant differences were found between mean 1-RM predictions 249 

between trial 1 and trial 2 from either prediction model. The test re-test reliability of the 1-250 

RM prediction models are displayed in figure 3. All models exhibited acceptable reliability.  251 

 252 

[Figure 3 here] 253 

[Figure 4 here] 254 

[Figure 5 here] 255 

[Figure 6 here] 256 

 257 

The paired samples t test revealed that all PV derived 1-RM predictions were not 258 

statistically different to measured 1-RM (PV linear: t24 = −0.23, p = 0.82; PV polynomial: t21 259 

= 0.24, p = 0.81). All other models were found to differ significantly from measured 1-RM 260 

(MPV linear: t24 = −3.23, p = 0.004; MPV polynomial: t24 = −4.09, p < 0.001; MV linear: t24 261 

= −4.87, p < 0.001; MV polynomial: t24 = −2.80, p = 0.01). Figures 4 and 5 feature Bland-262 

Altman plots describing the agreement and heteroscedasticity of error present between 263 

measured and predicted 1-RM using the respective models. Figure 6 contains further validity 264 

findings of 1-RM prediction using data from both trials. The PV polynomial model was the 265 

only regression method which satisfied the acceptable criteria of validity. All models 266 

demonstrated significant (p < 0.001) correlations between measured 1-RM and predicted 1-267 

RM ranging from very large to nearly perfect. The Fisher r to z-transformation revealed all 1-268 

RM prediction models were significantly different from each other (linear models: p < 0.001; 269 

polynomial models: p = 0.001-0.03). Poor CV and moderate ES were apparent in all other 270 

models. Figure 7 expresses the absolute difference between measured 1-RM and predicted 1-271 
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RM. All MPV and MV derived models consistently overestimated 1-RM. Whereas all PV 272 

derived models were capable of overestimating and underestimating 1-RM. 273 

 274 

[Figure 7 here] 275 

 276 

4.0 Discussion  277 

This is the first study to assess the reliability of MPV, MV, and PV to develop LVPs 278 

using the Vitruve LPT during back-squat exercise. The findings deduce MPV and MV are 279 

highly reliable across 20-90% 1-RM. Similarly, PV was highly reliable at all intensities apart 280 

from 60% 1-RM. The secondary aim examined the reliability and validity of 1-RM back-281 

squat predictions derived from MPV, MV, and PV using linear and polynomial regression 282 

models. Notably, this is the first study to compare all velocity measures and regression 283 

methods within the same study. All 1-RM predictions were highly reliable but displayed poor 284 

validity. While both the MPV and MV linear models demonstrated acceptable predictive 285 

ability, the MV model was marginally better, whereas both PV models showed the worst 286 

predictive ability. However, all prediction models overestimated or underestimated 1-RM. 287 

Further, all estimations of 1-RM were significantly different from each other. 288 

 289 

4.1 Reliability of outcome measures 290 

The reliability results from this study compare favourably to that of the GymAware, 291 

which is widely regarded as the most accurate LPT.43 Using the same intensities from this 292 

study, Orange et al42 found the GymAware produced either the same or more SEM for PV 293 

(range = 0.03-0.05 m·s-1) and MV (range = 0.06-0.09 m·s-1). Interestingly, the 95% CI for 294 

ICC were markedly wider than reported in this study for MV (20%: ICC = 0.49-0.86; 60%: 295 

ICC = 0.67-0.92; 80%: ICC = 0.66-0.92) and PV (20%: ICC = 0.57-0.89; 60%: ICC = 0.61-296 
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0.90; 80%: ICC = 0.42-0.84; 90%: ICC = 0.37-0.82) across light to heavy intensities. Using 297 

the correlation classification in this study,54 the ICC at 20%, 80%, and 90% overlap into the 298 

moderate category, which was not observed in our study. The tighter CI from the present 299 

study could signify confidence in the Vitruve’s reliability, although variations in ICC may 300 

also imply the load-velocity relationship is participant-dependant.10,50 Nonetheless, across 20-301 

90% 1-RM the difference in SEM between the Vitruve and GymAware is marginal for MPV 302 

and MV (< 0.02 m·s-1).49 The Vitruve also produced less SEM for MV and PV in comparison 303 

to other free-weight squat investigations.43,44,53,59,60 Although the Vitruve’s reduced reliability 304 

at 90% 1-RM was consistent with other analyses.38,42,43,49,50 This has been attributed to 305 

horizontal variations in the barbell path during the free-weight squat41 and the use of the 306 

SSC.61,62 This is why previous investigations have used Smith machine modalities which 307 

minimise error, but at the cost of ecological validity. For instance, Martinez-Cava et al32 308 

found superior results for PV (ICC = 0.99; CV = 0.86%; SEM = 0.01 m·s-1) and MPV (ICC = 309 

0.99; CV = 1.24%; SEM = 0.01 m·s-1) from the Vitruve.  310 

An unexpected finding was the detection of significant differences for MV and PV 311 

between trials at 60% 1-RM. This unexplained variance could be attributed to the fast 312 

execution of light to moderate loads which may result in a lower degree of limb coordination 313 

and more varied muscle activation patterns.48,49 Collectively, this study recommends all 3 314 

velocity measures can be used to predict 1-RM. Considering that small differences (< 0.1 315 

m·s-1) in movement velocity could represent variations equating to approximately 5% in 316 

training intensity10: changes in velocity greater than the SDD presented herein may be used to 317 

monitor improvements in performance. 318 

 319 

4.2 Maximum strength prediction 320 
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A novel finding from this study was the repeatability of all back-squat 1-RM 321 

estimations, regardless of the velocity measure or regression model used. To date, only 3 322 

studies have investigated back-squat 1-RM prediction using linear regression, MV, and 323 

strength trained males.38,53,63 Neither Banyard et al38 nor Hughes et al 53 detected significant 324 

differences between predictions using loads 20-90% 1-RM, which coincides with this study. 325 

Almost identical variation was observed by Hughes et al53 (ICC = 0.92; CV = 5.0%), and 326 

Banyard et al38 (CV = 5.7%; SEM = 8.6 kg; ES = −0.02). In spite of each study utilising a 327 

different LPT, the similar findings may be explained by methodological parallels in relation 328 

to the sample’s relative strength (> 1.5 squat body ratio) and squat depth (knee flexion: 121.0 329 

± 10.9°).38  330 

Contrariwise, this study adds to the reports of significant overestimations of 1-RM in 331 

the free-weight back-squat.38,53 Large absolute errors and systematic biases were observed, 332 

notwithstanding very large to nearly perfect correlations between load and velocity and little 333 

to no heteroscedasticity of error. This finding reflects other studies,64,65 and demonstrates the 334 

interindividual variability associated with 1-RM predictions in lower body multi joint 335 

exercises.38,53,66-68 Alternatively, 1 study reports lower SEE and systematic biases in tandem 336 

with a tendency for linear models to underestimate back squat 1-RM.63 Although this may be 337 

attributable to the study’s reliance on a different extrapolation method using data up to 80% 338 

1-RM. Other studies found linear models using MV are known to overestimate back-squat 1-339 

RM between 2.2-20.0 kg.38,53 The larger absolute differences found by Banyard et al38 may 340 

be attributed to the researchers 4 trial assessment of 1-RM. Considering the variability of 341 

1RMMVT (CV = 25%), multiple assessments of 1-RM may have amplified the variation 342 

observed in that study in comparison to our study. This supports previous findings that daily 343 

predictions of maximal strength are not sensitive enough to detect fatigue or modify training 344 

load,69 as originally propositioned.10,19 Intriguingly, a recent study found bench press 1-RM 345 
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can be estimated more accurately with machine learning methods than the MVT method,70 346 

but it is unknown if this can be translated into free-weight examinations. This should be a 347 

consideration for future research.  348 

It was not anticipated the data would suggest both PV models possessed the most valid 349 

estimation of back-squat 1-RM in relation to measured 1-RM. Under closer inspection, the 350 

range of estimated 1-RMs from the PV polynomial and PV linear models were considerably 351 

wider in comparison to the MPV and MV models (figure 7). This study does not recommend 352 

the use of PV for back-squat 1-RM prediction. This is informed by both PV models 353 

presenting higher SEE and CV than the other models, which is consistent with other 354 

investigations.48 Though PV may be used to monitor ballistic exercises, this is beyond the 355 

scope of this study. Altogether, this study found the MV linear model displayed the highest 356 

validity.  357 

The higher precision of linear 1-RM estimations in this study weighs in on the assertion 358 

that polynomial regression adds an unnecessary complexity.36,38,49,53,71 Predicting 1-RM 359 

beyond the known data of a polynomial curve is known to yield implausible results.65 In this 360 

study 2 participants (n = 2) exhibited a hyperbolic curve for PV which resulted in no 361 

estimation of 1-RM at all. Moreover, some studies advocating polynomial regression have 362 

breached the assumption of independence by pooling data.10,48 This practice has been 363 

critiqued within the literature.5,22 When data from multiple LVP sessions are combined for a 364 

given participant, the data observations are no longer independent. This causes 365 

autocorrelation which overinflates regression statistics.72 Consequently, overestimations of 366 

relative load may occur. A runs test can be used to detect both autocorrelation and whether a 367 

data set differs from its desired model.73 It is important to note the runs test found none of the 368 

linear models in this study departed from linearity. Furthermore, all of the variance between 369 

load and velocity was accounted for by the linear models. This objectively infers polynomial 370 
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curve fitting in this instance is not only an unnecessary complexity, but also a statistical 371 

misdemeanour. The inclusion of a runs test is a distinguishing feature between this study and 372 

the extensive work of Thompson et al63, whose findings conflict with ours in recommending 373 

quadratic modelling for the prediction of back squat 1-RM. Altogether, the acceptance of a 374 

linear load-velocity relationship would be consistent with the growing consensus concerning 375 

the linearity of the force velocity relationship during multi-joint movements.74  376 

The present study shows that all 3 velocity measures produced by the Vitruve can 377 

generate stable individualised LVPs. Although practitioners should be consistent with their 378 

use of velocity measure. Lamentably, this study was unable to distinguish the variability 379 

associated with the Vitruve LPT from the variability associated with the subjects. Although 380 

the Vitruve is known to display very high inter-device reliability during Smith machine back-381 

squat exercise (MPV: SEM = 0.03 m·s-1; SDC = 0.08 m·s-1; CV = 3.09%; PV: SEM = 0.02 382 

m·s-1; SDC = 0.07 m·s-1; CV = 1.60%),32 future research must consider the influence of 383 

biological variation when assessing the reliability of the Vitruve during free weight 384 

exercise.27 Otherwise researchers risk misreporting the true precision of a given device.37  385 

Prediction methods may not be sensitive enough to replace direct assessment of 1-RM. 386 

However, LVPs using linear regression and MPV or MV may still provide practical 387 

information regarding an individual’s performance potential. Future research should consider 388 

whether a combination of lighter loads, smaller range of velocities, or machine learning can 389 

improve the efficiency of 1-RM prediction in free-weight exercise.  390 

 391 

4.3 Conclusions 392 

The Vitruve provides reliable LVPs for MPV, MV, and PV in the back-squat using 393 

strength-trained males. Linear regression is superior for 1-RM prediction. Any further 394 
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investigations using polynomial regression should publish statistics which confirm the 395 

assumptions of regression are met.  396 
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Table 1. Paired Samples t test Results for Velocity Measures and 1-RM Predictions. 

 

Table 2. Smallest Detectable Difference of Velocity Measures at 20%, 40%, 60%, 80% and 

90% 1-RM. 

 

Figure 1. Forest plot displaying the test re-rest reliability of MPV, MV, and PV in the back 

squat at 20%, 40%, 60%, 80%, and 90% 1-RM load. A, ICC. B, CV. C, ES. D, SEM. Gray-

shaded area indicates the zone of acceptable reliability. Error bars indicate 95% confidence 

limits. MPV indicates mean propulsive velocity; MV, mean velocity; PV, peak velocity; 1-

RM, 1-repetition maximum; ICC, intraclass correlation coefficient; CV, coefficient of 

variation; ES, effect size; SEM, standard error of the measurement. 

 

Figure 2. Relationship between relative load (%1-RM) and MPV, MV, and PV using linear 

and polynomial regression. A, MPV linear fit from 20% to 90% 1-RM. B, MPV polynomial 

fit from 20% to 90% 1-RM. C, MV linear fit from 20% to 90% 1-RM. D, MV polynomial fit 

from 20% to 90% 1-RM. E, PV linear fit from 20% to 90% 1-RM. F, PV polynomial fit from 

20% to 90% 1-RM. Error bars indicate SD. 1-RM indicates 1-repetition maximum; MPV, 

mean propulsive velocity; MV, mean velocity; PV, peak velocity; r2, bivariate coefficient of 

determination; r, Pearson correlation coefficient; SEE, standard error of the estimate. 

 

Figure 3. Forest plot displaying the test re-rest reliability of 1-RM prediction methods using 

linear and polynomial regression with relative loads between 20% to 90% of 1-RM. A, ICC. 

B, CV. C, ES. D, SEM. Gray-shaded area indicates the zone of acceptable reliability. Error 

bars indicate 95% confidence limits. PV indicates peak velocity; MV, mean velocity; MPV, 

mean propulsive velocity; 1-RM, 1-repetition maximum; ICC, intraclass correlation 

coefficient; CV, coefficient of variation; ES, effect size; SEM, standard error of the 

measurement. 

 

Figure 4. Bland-Altman plots illustrating the variation in measured 1-RM against predicted 

1-RM using linear regression and loads 20-90% 1-RM for trials 1 and 2. A, MPV (kg) trial 1; 

B MPV (kg) trial 2; C, MV (kg) trial 1; D, MV (kg) trial 2; E, PV (kg) trial 1; F, PV (kg) trial 

2. — represents mean systemic bias and - - - represents 95% LOA. 1-RM indicates 1-

repitition maximum; MPV, mean propulsive velocity; MV, mean velocity; PV, peak velocity; 

LOA, limits of agreement; r, Pearson product moment correlation; r2, coefficient of 

determination. 

 

Figure 5. Bland-Altman plots illustrating the variation in measured 1-RM against predicted 

1-RM using second order polynomial regression and loads 20-90% 1-RM for trials 1 and 2. 

A, MPV (kg) trial 1; B MPV (kg) trial 2; C, MV (kg) trial 1; D, MV (kg) trial 2; E, PV (kg) 

trial 1; F, PV (kg) trial 2. — represents mean systemic bias and - - - represents 95% LOA. 1-

RM indicates 1-repitition maximum; MPV, mean propulsive velocity; MV, mean velocity; 

PV, peak velocity; LOA, limits of agreement; r, Pearson product moment correlation; r2, 

coefficient of determination. 

 

Figure 6. Forest plot displaying the validity of 1-RM prediction methods using linear and 

polynomial regression with relative loads between 20% to 90% of 1-RM. A, r. B, CV. C, ES. 

D, SEE. Gray-shaded area indicates the zone of acceptable validity. Error bars indicate 95% 

confidence limits. PV indicates peak velocity; MV, mean velocity; MPV, mean propulsive 

velocity; r, Pearson correlation coefficient; CV, coefficient of variation; ES, effect size; SEE, 

standard error of the estimate. 
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Figure 7. Point graph demonstrating the mean absolute difference between measured 1-RM 

and predicted 1-RM using linear and polynomial regression with relative loads between 20% 

to 90% of 1-RM. Error bars indicate SD. 1-RM indicates 1-repetition maximum; MPV, mean 

propulsive velocity; MV, mean velocity; PV, peak velocity. 
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Variable Trial 1 Trial 2 t test p Value 

MPV, mean (SD), m·s-1     

20% 1-RM 1.29 (0.19) 1.32 (0.19) –1.35b 0.19 

40% 1-RM 1.06 (0.13) 1.06 (0.13) –0.12b  0.91 

60% 1-RM 0.83 (0.11) 0.81 (0.10) 1.53b 0.14 

80% 1-RM 0.57 (0.09) 0.58 (0.09) 0.23b  0.82 

90% 1-RM 0.45 (0.10) 0.44 (0.08) 0.62b   0.54 

MV, mean (SD), m·s-1     

20% 1-RM 1.13 (0.12) 1.14 (0.11) –1.00c 0.33 

40% 1-RM 0.97 (0.10) 0.97 (0.10) –0.40b 0.69 

60% 1-RM 0.77 (0.10) 0.76 (0.08)    2.48b 0.02* 

80% 1-RM 0.54 (0.90) 0.54 (0.80) –0.10b 0.92 

90% 1-RM 0.43 (0.10) 0.41 (0.70)       1.10b 0.28 

PV, mean (SD), m·s-1     

20% 1-RM 1.84 (0.19) 1.87 (0.17) –1.03b 0.31 

40% 1-RM 1.57 (0.14) 1.56 (0.14) 0.35b 0.73 

60% 1-RM 1.29 (0.15) 1.26 (0.14) 2.41b 0.02* 

80% 1-RM 1.00 (0.15) 1.00 (0.14) 0.19b 0.85 

90% 1-RM 0.89 (0.17) 0.88 (0.15) 0.20b 0.84 

Linear regression, mean (SD), kg    

MPV 186.9 (30.2) 182.2 (29.6) 1.68b 0.10 

MV 191.1 (30.6) 186.7 (30.0) 1.28b 0.21 

PV 180.4 (28.7) 176.6 (29.2) 1.07b 0.29 

Polynomial regression, mean (SD), kg    

MPV 180.6 (27.8) 184.4 (31.4) –1.17e 0.25 

MV 181.7 (28.1) 180.0 (28.4) 0.66f 0.52 

PV 175.5 (30.2) 179.8 (30.1) –1.04g 0.31 

Abbreviations: 1-RM, 1-repetition maximum; MPV, mean propulsive velocity; MV, mean 

velocity; PV, peak velocity. 
aAnalyses were performed after the removal of outliers. 
bThe df = 24. 
cThe df = 23. 
eThe df = 20. 
fThe df = 22. 
gThe df = 16. 

*p values are significant at < 0.05. 
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Load (%1-RM) MPV, m·s-1 MV, m·s-1 PV, m·s-1 

20 0.07 0.10 0.10 

40 0.06 0.08 0.07 

60 0.05 0.08      0.05ª 

80 0.05 0.08 0.05 

90 0.05 0.09 0.05 

Abbreviation: 1-RM, 1-repetition maximum; CV, coefficient of variation; ES, effect size; 

ICC, intraclass correlation coefficient; MPV, mean propulsive velocity; MV, mean 

velocity; PV, peak velocity. 

ªDid not meet reliability criteria (ICC > 0.70, CV ≤ 10% and ES < 0.60). 
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Figure 1. Forest plot displaying the test re-rest reliability of MPV, MV, and PV in the back 

squat at 20%, 40%, 60%, 80%, and 90% 1-RM load. A, ICC. B, CV. C, ES. D, SEM. Gray-

shaded area indicates the zone of acceptable reliability. Error bars indicate 95% confidence 

limits. MPV indicates mean propulsive velocity; MV, mean velocity; PV, peak velocity; 1-

RM, 1-repetition maximum; ICC, intraclass correlation coefficient; CV, coefficient of 

variation; ES, effect size; SEM, standard error of the measurement. 
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Figure 2. Relationship between relative load (%1-RM) and MPV, MV, and PV using linear 

and polynomial regression. A, MPV linear fit from 20% to 90% 1-RM. B, MPV polynomial 

fit from 20% to 90% 1-RM. C, MV linear fit from 20% to 90% 1-RM. D, MV polynomial fit 

from 20% to 90% 1-RM. E, PV linear fit from 20% to 90% 1-RM. F, PV polynomial fit from 

20% to 90% 1-RM. Error bars indicate SD. 1-RM indicates 1-repetition maximum; MPV, 

mean propulsive velocity; MV, mean velocity; PV, peak velocity; r2, bivariate coefficient of 

determination; r, Pearson correlation coefficient; SEE, standard error of the estimate. 
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Figure 3. Forest plot displaying the test re-rest reliability of 1-RM prediction methods using 

linear and polynomial regression with relative loads between 20% to 90% of 1-RM. A, ICC. 

B, CV. C, ES. D, SEM. Gray-shaded area indicates the zone of acceptable reliability. Error 

bars indicate 95% confidence limits. PV indicates peak velocity; MV, mean velocity; MPV, 

mean propulsive velocity; 1-RM, 1-repetition maximum; ICC, intraclass correlation 

coefficient; CV, coefficient of variation; ES, effect size; SEM, standard error of the 

measurement. 
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Figure 4. Bland-Altman plots illustrating the variation in measured 1-RM against predicted 

1-RM using linear regression and loads 20-90% 1-RM for trials 1 and 2. A, MPV (kg) trial 1; 

B MPV (kg) trial 2; C, MV (kg) trial 1; D, MV (kg) trial 2; E, PV (kg) trial 1; F, PV (kg) trial 

2. — represents mean systemic bias and - - - represents 95% LOA. 1-RM indicates 1-

repitition maximum; MPV, mean propulsive velocity; MV, mean velocity; PV, peak velocity; 

LOA, limits of agreement; r, Pearson product moment correlation; r2, coefficient of 

determination. 
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Figure 5. Bland-Altman plots illustrating the variation in measured 1-RM against predicted 

1-RM using second order polynomial regression and loads 20-90% 1-RM for trials 1 and 2. 

A, MPV (kg) trial 1; B MPV (kg) trial 2; C, MV (kg) trial 1; D, MV (kg) trial 2; E, PV (kg) 

trial 1; F, PV (kg) trial 2. — represents mean systemic bias and - - - represents 95% LOA. 1-

RM indicates 1-repitition maximum; MPV, mean propulsive velocity; MV, mean velocity; 

PV, peak velocity; LOA, limits of agreement; r, Pearson product moment correlation; r2, 

coefficient of determination. 
  



 Accuracy of Velocities and 1-RM Prediction 35 

 
Figure 6. Forest plot displaying the validity of 1-RM prediction methods using linear and 

polynomial regression with relative loads between 20% to 90% of 1-RM. A, r. B, CV. C, ES. 

D, SEE. Gray-shaded area indicates the zone of acceptable validity. Error bars indicate 95% 

confidence limits. PV indicates peak velocity; MV, mean velocity; MPV, mean propulsive 

velocity; r, Pearson correlation coefficient; CV, coefficient of variation; ES, effect size; SEE, 

standard error of the estimate. 
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Figure 7. Point graph demonstrating the mean absolute difference between measured 1-RM 

and predicted 1-RM using linear and polynomial regression with relative loads between 20% 

to 90% of 1-RM. Error bars indicate SD. 1-RM indicates 1-repetition maximum; MPV, mean 

propulsive velocity; MV, mean velocity; PV, peak velocity. 


