
Vol.:(0123456789)1 3

Psychological Research (2023) 87:553–567 
https://doi.org/10.1007/s00426-022-01687-7

ORIGINAL ARTICLE

A Bayesian computational model to investigate expert anticipation 
of a seemingly unpredictable ball bounce

David J. Harris1  · Jamie S. North2  · Oliver R. Runswick3 

Received: 4 August 2021 / Accepted: 5 May 2022 / Published online: 24 May 2022 
© The Author(s) 2022

Abstract
During dynamic and time-constrained sporting tasks performers rely on both online perceptual information and prior contex-
tual knowledge to make effective anticipatory judgments. It has been suggested that performers may integrate these sources 
of information in an approximately Bayesian fashion, by weighting available information sources according to their expected 
precision. In the present work, we extended Bayesian brain approaches to anticipation by using formal computational models 
to estimate how performers weighted different information sources when anticipating the bounce direction of a rugby ball. 
Both recreational (novice) and professional (expert) rugby players (n = 58) were asked to predict the bounce height of an 
oncoming rugby ball in a temporal occlusion paradigm. A computational model, based on a partially observable Markov 
decision process, was fitted to observed responses to estimate participants’ weighting of online sensory cues and prior beliefs 
about ball bounce height. The results showed that experts were more sensitive to online sensory information, but that neither 
experts nor novices relied heavily on prior beliefs about ball trajectories in this task. Experts, but not novices, were observed 
to down-weight priors in their anticipatory decisions as later and more precise visual cues emerged, as predicted by Bayesian 
and active inference accounts of perception.

Introduction

In sport and other time-constrained dynamic tasks, a perfor-
mance advantage can be gained from predicting future out-
comes and executing anticipatory actions, rather than merely 
reacting to unfolding events (Loffing & Cañal-Bruland, 
2017). Indeed, sensory processing latencies mean that dur-
ing the most time-constrained tasks, predictions are neces-
sary for successful performance (Loffing & Cañal-Bruland, 
2017; Morris-Binelli & Müller, 2017). Researchers have 
consistently shown that, across domains, the most skilled 
performers are particularly adept at making predictions (see 

Araújo & Kirlik, 2008; Gredin et al., 2018; Morris-Binelli & 
Müller, 2017; Savelsbergh et al., 2005). However, it remains 
unclear exactly how experts are able to optimally integrate 
and weight multiple, ever-changing, and often incomplete 
information sources to make effective anticipatory judge-
ments (Cañal-Bruland & Mann, 2015; Gredin et al., 2018; 
Williams & Jackson, 2019). In this study, we explore how 
performers weight the importance of different informa-
tion sources when anticipating the bounce of a ball using 
a Bayesian computational model based on active inference 
theories of perception and action (Parr & Friston, 2019; Parr 
et al., 2021).

Anticipation

Skilled anticipation requires integrating multiple sources 
of information to make the most accurate predictions. 
Researchers have previously focused on two broad types of 
information: online sensory cues and contextual priors:

i) Online sensory cues are the sources of perceptual infor-
mation that emerge during action. These cues are often 
visual information, such as the posture of an opponent 
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(Savelsbergh et al., 2002), relative motion between play-
ers in team sports (North et al., 2009), or the flight path 
of a ball that needs to be intercepted (Croft et al., 2010). 
However, other sensory evidence, such as auditory cues 
from racquet-ball contact (Cañal-Bruland et al., 2018), 
can also be informative. Crucially, multiple sources of 
sensory information will be used to support predictions 
as they emerge.

ii) Contextual priors refer to a tiered hierarchy of informa-
tion that is available before sensory cues emerge and 
which facilitate an advance understanding of the situa-
tion. For instance, a returner in tennis may know that the 
server directs their first serve ‘out wide’ on the majority 
of occasions (i.e., their action preferences; Mann et al., 
2014), and can prepare for and anticipate this response. 
Other contextual priors include the current game score 
(Farrow & Reid, 2012) or opponents’ positioning on the 
court or field (Loffing & Hagemann, 2014). But prior 
knowledge extends beyond just current contextual infor-
mation to wider beliefs about regularities in the environ-
ment, such as the physical properties of objects and their 
likely behaviors.1 In essence, prior beliefs include any 
previous knowledge that provides an indication of the 
marginal probability of an outcome, which then facili-
tates responses to more likely events.

The reliability of online sensory cues and priors is 
dependent on the specific task and source of information. In 
rugby, for example, sensory cues from an oncoming oppo-
nent (e.g., motion of head or hips) can be used to either 
enhance action anticipation or can be deceptive (Warren-
West & Jackson, 2020). Particular game scenarios can also 
provide very reliable contextual information. For instance, 
when a player is in possession of the ball, they have good 
kicking ability, their team is winning, and time has expired 
on the clock, there is a high probability that they will kick 
the ball out of play to win the game. By contrast, if the 
player kicked the ball towards you and it bounced, there is 
little contextual information about which way it will bounce 
(Runswick et al., 2020b). You may, however, still hold some 
more general prior beliefs about how high a rugby ball typi-
cally bounces that help to guide your anticipation, in addi-
tion to relying on online sensory cues from ball flight.

Theories of expert performance have proposed that 
extended and focused practice enables elite athletes to 
develop extensive domain-specific knowledge structures 

(Ericsson & Kintsch, 1995; Yarrow et  al., 2009). This 
domain-specific knowledge provides an understanding of 
relevant context but also guides sensitivity to critical cues, 
the planning of actions, continual evaluation of the present 
situation, and prediction of future outcomes. Consequently, 
expert performers not only have access to more information 
to guide anticipation but can create enhanced representa-
tions of the current environment by facilitating the integra-
tion of environmental information with existing represen-
tations (e.g., Ericsson, 2000). However, a greater quantity 
of information is not the only reason for superior anticipa-
tion; experts are also adept at applying this information. For 
instance, experts are less likely to be misled by incongruent 
information, as they are able to identify and down-weight 
deceptive cues (Jackson et al., 2020). It is this integrating 
and weighting of different information sources, not just in 
elite athletes but all performers, that is still to be fully under-
stood (Gredin et al., 2020).

Internal predictive models and active 
inference

Researchers have recently proposed that ‘Bayesian brain’ 
accounts of how individuals integrate multiple informa-
tion sources during perception and decision-making can be 
applied to understand anticipation in sport (Gredin et al., 
2018, 2020; Harris et al., 2021; Helm et al., 2020). The 
Bayesian brain is a formal account of how rational agents 
should reason and make perceptual inferences in  situa-
tions of uncertainty (Clark, 2013; Knill & Pouget, 2004). 
Uncertainty is inherent in all perceptual judgements, arising 
from noisy sensory feedback, imperfect knowledge of the 
world, and a changing environment. In the Bayesian brain, 
information is represented as probability distributions and 
information sources are combined according to their (un)
certainty, such that information that is believed to be more 
precise (e.g., those based on extensive experience) will be 
afforded greater weight in computations (see Fig. 1). Con-
sistent with this proposal, human observers have been found 
to integrate information in an approximately Bayes-optimal 
way (i.e., will minimize error in a probabilistic manner) in 
many tasks (Behrens et al., 2007; Knill & Pouget, 2004; 
Körding & Wolpert, 2006; Yu, 2007). For instance, when 
attempting to estimate the position of a mouse cursor rela-
tive to their hand, participants were observed to increas-
ingly rely on knowledge developed over previous trials (their 
prior) when the current visual information was occluded to 
a greater degree (i.e., more uncertain) (Körding & Wolpert, 
2004). This re-weighting of information during the percep-
tual judgment was consistent with the strategy predicted by 
optimal Bayesian calculations.

1 For current purposes we use the term ‘contextual prior’ to refer to 
information sources like game score or opponent’s tendencies. We 
use the more general term ‘prior’ to include any existing belief that 
guides behavior, such as knowledge of how balls with different physi-
cal properties typically bounce.
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Bayes-optimal decision-making is based on developing 
a generative (predictive) model of the world, which can be 
used to make predictions about events or sensory stimula-
tion (X is likely to lead to Y) or can be inverted to infer the 
hidden cause of some observation (Y was most likely caused 
by X). For human perception, the brain relies on a model of 
the causal relationships among (hidden) states of the world 
that produce sensory input in order to make inferences about 
the causes of its sensations (Friston, 2005, 2010). When pre-
dictions are inaccurate, the generative model is revised to 
improve future predictions. Predictive coding (Rao & Bal-
lard, 1999) describes how this error signaling is achieved 
at a neuronal level: descending cortical projections encode 
predictions and ascending connections signal deviations 
from those predictions, which serve to revise subsequent 
predictions at higher levels of the cortical hierarchy (Shipp 
et al., 2013). Consequently, Bayesian agents always seek to 
minimize the error of their predictions (also known as sur-
prisal; Baldi & Itti, 2010), thereby maximizing the predictive 
value of their generative model of the world.

Active inference extends predictive coding models of per-
ception to the use of action to minimize future prediction 
errors (Friston, 2005; Parr & Friston, 2018, 2019). In addi-
tion to constantly revising their generative model, a Bayesian 
agent can minimize prediction errors through movements 
(e.g., see the use of vision to minimize surprisal; Arthur & 
Harris, 2021; Parr et al., 2021) or can actively change the 
world into the predicted state (Adams et al., 2013; Sarp-
eshkar et al., 2017). Harris et al. (2021) have recently sug-
gested that active inference can enhance our understanding 

of skilled anticipation by providing a principled account 
of how actions are used to optimize predictions, as well 
as accounting for decision-making via Bayesian inference. 
However, such theorizing about the use of action to opti-
mize predictions is largely missing from current accounts of 
anticipation, as identified in Runswick et al. (2020a, 2020b) 
framework.

An additional benefit of Bayesian brain and active infer-
ence frameworks is that they are rooted in computational 
models of perceptual processes (Adams et al., 2015; Parr 
et al., 2021; Smith et al., 2020). These models formalize 
active inference, and the process of Bayesian belief updat-
ing, making mechanistic explanations potentially clear and 
testable. For current purposes, applying computational mod-
els to empirical data also enables us to estimate the relative 
weightings that individuals apply to different informational 
sources. This affords an opportunity to examine the effect 
of factors like expertise and visual occlusion on the rela-
tive weightings of priors and sensory cues. Therefore, in the 
present study, we adopted a computational active inference 
model of perception to investigate the anticipatory behavior 
of novice and expert rugby union players when predicting 
the bounce of a rugby ball.

The present work

The future trajectory of a bouncing rugby ball is notori-
ously hard to predict. Due to its oval shape, the reaction 
force can act ahead of or behind the center of the ball and 

Fig. 1  Illustration of Bayesian probabilistic integration. Beta density 
plots show the principle of integrating information sources according 
to their precision. The posterior belief is a joint estimate of the prior 
belief and the sensory information (likelihood distribution). On the 

left, the sensory cues are centered on p = 0.5, but are relatively weak/
imprecise (wider distribution). On the right, the sensory cues distri-
bution is still centered on p = 0.5 but is more certain, hence the poste-
rior is pulled closer towards the sensory cues distribution
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hence, when projected with topspin, the ball can either 
roll before bouncing or suddenly bounce to a much greater 
height. However, the highly variable bounce profiles do 
correspond to describable physical laws (see Cross, 2010) 
and therefore experts (with extensive domain knowledge) 
may have prior beliefs about likely bounce profiles that 
enhance their predictions about bounce height. Consistent 
with this proposal (Runswick et al., 2020a) demonstrated 
that task experts (professional rugby players) were better 
able to predict the bounce of an oncoming rugby ball than 
novice participants. Using a temporal occlusion method, 
Runswick et al. (2020a, 2020b) reported that both novice 
and expert groups anticipated ball bounce more accurately 
when more sensory cues were available (the ball flight and 
postural cues from the kicker), and that expert differences 
were most pronounced for early occlusion (postural cues 
only). Active inference accounts of anticipation (Harris 
et al., 2021) explain the underlying mechanism of these 
effects based on the developed generative model of the 
expert performer and the relative contribution of less cer-
tain sensory cues (i.e., during visual occlusion). However, 
active inference models are yet to be explicitly applied to 
empirical data during anticipation in sport. Therefore, we 
aimed to extend the active inference approach to anticipa-
tion (Harris et al., 2021) by scrutinizing the relative con-
tributions of online sensory information and prior beliefs 
during expert anticipation. To this end, we performed a 
reanalysis of the data reported in Runswick et al. (2020a) 
by fitting a Bayesian computational model to the anticipa-
tory behavior of novice and expert players to determine the 
role of priors (in the form of prior knowledge about the 
behaviors of a bouncing oval ball) and sensitivity to sen-
sory information (in the form of the opponent’s kinemat-
ics during the kick and the kinematics of the ball during 
flight) in their anticipation performance.

Hypotheses H1—Experts will be able to make better use of 
both ball bounce priors and sensory cues:

While no explicit contextual information (e.g., game 
score) was provided in this task, experts should have a more 
developed generative model of the ball bounce task based 
on their extensive experience. Consequently, they will have 
stronger prior expectations about the most likely bounce tra-
jectories, as well as an established mapping between sensory 
cues and likely outcome states that will enable them to be 
more attuned to sensory information.

H2—Experts will rely more on priors when sensory infor-
mation is less reliable:

Both groups should, if integrating information in a Bayes-
ian fashion, rely more strongly on prior predictions when 
sensory information is less certain (i.e., when it is occluded 
earlier). However, as novices are likely to be insensitive to 
the sensory information in this task anyway, it is expected 

that this effect will only be present in experts (Gredin et al., 
2018).

Methods

Preregistration

Following data collection, but prior to data analysis, we pre-
registered the primary hypotheses and planned analyses on 
the Open Science Framework, which can be viewed here: 
https:// osf. io/ x64bh/. Any deviations from the analysis plan 
are specified as exploratory.

Design

This study adopted a mixed design, with independent groups 
for skill level (expert and novice), and repeated measures 
for temporal occlusion conditions (postural cues only; ball 
flight only; postural cues and ball flight) and kick type (chip 
or grubber kick).

Participants

Fifty-eight participants took part in the experiment; the 
expert group consisted of 38 professional rugby union play-
ers (Mage = 25.9 ± 3.4 years; Mexperience = 11.9 ± 6.8 years) 
while the novice group consisted of 20 less-skilled players 
(Mage = 22.4 ± 3.6 years; Mexperience = 1.9 ± 2.2 years). At the 
time of recruitment, all participants in the expert group were 
competing in the English Championship (the second tier of 
professional rugby) and reported a mean weekly playing 
time of 13.5 ± 8.4 h at that level. Of the expert participants, 
17 had prior playing experience at Premiership or Interna-
tional level rugby. The less-skilled participants had no his-
tory of competitive rugby beyond recreational participation 
and compulsory school classes. The study received ethical 
approval from the lead University ethics committee. All par-
ticipants provided fully informed written consent prior to 
taking part.

As this study was a reanalysis of an existing dataset 
(described in Runswick et al. (2020a) and no a priori power 
calculation was possible, we generated a series of power 
curves for a range of effect sizes to determine the effects 
that we were powered to detect. Power curves were gen-
erated using the R package ‘simR’ (Green & MacLeod, 
2016), and were based on the known variance of the exist-
ing data. For the primary effect of group in a mixed-effects 
model, with participant as a random factor, power curves 
indicated that the current sample provided > 95% power for 
a large-to-medium effect of std. beta = 0.5, ~ 85% power for 
a medium effect of std beta = 0.4, and ~ 65% power for a 

https://osf.io/x64bh/
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small-to-medium effect of std beta = 0.3. The power curves, 
and R code for generating them, are available from the 
online supplementary files (https:// osf. io/ x64bh/).

Task and materials

The experimental task consisted of a video anticipation test 
with temporal occlusion in which participants were asked to 
predict the future location of a bouncing rugby ball. Video 
stimuli featured a right-footed rugby union player (Univer-
sity First XV) performing two kick types: ‘grubber’ and 
‘chip kicks’. Grubber kicks refer to when the ball is struck 
to roll along the ground, mostly rotating end over end. Chip 
kicks are struck so as to travel in a high arc and bounce only 
once. The kicks were performed on a grass rugby field with 
a size five rugby ball (Gilbert Photon), from a distance of 
15 m from the camera. Videos were recorded with a Pana-
sonic HC-V210 HD camcorder at 50 Hz (Panasonic UK 
Ltd., Berkshire, UK) set at eye-level at a height (1.7 m). 
Clips of 23 grubber kicks and 14 chip kicks were edited to 
occlude the video at three different time points: (i) occlu-
sion immediately prior to ball-foot contact (postural cues 
only—PC); (ii) occlusion at the last frame of ball-to-ground 
contact (postural cues and ball flight—PC&BF); and (iii) 
occlusion before the point of foot-to-ball contact and after 
the last frame of ball-to-ground contact (ball flight only—
BF). These occlusion conditions represented different levels 
of precision in the available sensory information. Combined 
postural cues and ball flight provided the most precise and 
informative cues. Postural cues provided only the earliest 

information and therefore possibly the least precise informa-
tion, while ball flight provided slightly later and therefore 
possibly more precise information. No additional contextual 
information (e.g., game situation) was provided. Clips were 
repeated across each of the three occlusion points to account 
for any variation in trial difficulty. The resultant 111 video 
clips (mean length of 2.4 ± 1 s) were put together in a ran-
domized order into one 20-min video. The video was then 
checked to ensure that clips repeated across conditions were 
not displayed sequentially. To maintain the representative-
ness of the footage (i.e., to allow experts to make use of 
any ball bounce priors) the distribution of kick outcomes 
was not controlled. Instead, all kicks that bounced within a 
4 m × 4 m target area were included, which resulted in 48 
low bouncing and 21 high bouncing grubber kicks, and a 
further 21 for each of high bouncing chips kicks and low 
bouncing chip kicks.

The video anticipation test was displayed via a projection 
(Sanyo PDG-DET100L Projector; Sanyo Electric Co Ltd., 
Osaka, Japan) onto a white wall to create a large 5 m × 3.5 m 
image. Participants were instructed to predict the direction 
that they believed the ball would bounce. The original study 
by Runswick et al. (2020a) recorded predicted bounce direc-
tion in horizontal (left, middle, or right) and vertical (high 
or low) directions. However, as no performance effects were 
reported for the horizontal direction, we only modeled the 
responses in the vertical direction. Vertical bounce location 
was defined in relation to whether the ball-bounced into the 
top two thirds of the screen (approximately equivalent to 
receiving the ball at chest height or above), or the bottom 

High 

Low 

Fig. 2  Screenshot from the video anticipation task. This image is 
taken from one of the stimulus videos in the experiment. Kicks were 
executed in the direction of the camera from 15  m away and then 
projected on a screen measuring 5 × 3.5 m. The image shows the ball 

in flight after being kicked, and the demarcation between a ‘high’ 
(meaning participants would receive the ball at chest height or above) 
and a ‘low’ (meaning participants would need to lower their chest to 
receive the ball) bounce, that participants were asked to predict

https://osf.io/x64bh/
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third (approximately equivalent to needing to reach down to 
intercept the ball; see Fig. 2). Additional details of the task 
can be obtained from Runswick et al. (2020a).

Procedure

All participants had the purpose of the experiment explained 
to them and provided written informed consent prior to 
taking part in the experiment. Next, participants viewed a 
familiarization video which consisted of the same process 
as one experimental trial for each trial possibility (i.e., six 
trials showing chip and grubber kicks for all three occlu-
sion possibilities). Participants then completed the video 
anticipation test by marking their prediction about bounce 
location using pencil and paper and a response grid. The test 
was completed either alone or in small groups. During small 
group testing, participants were seated apart and square on 
to the screen.

Computational model

To model anticipatory behavior in the ball bounce antici-
pation task, we adopted a Bayesian model of perception 
derived from a partially observable Markov decision pro-
cess (POMDP) (Da Costa et al., 2020; Friston et al., 2017; 
Smith et al., 2020, 2021). To avoid the computational model 

‘black box’ (Stafford, 2009) we provide a detailed descrip-
tion of all elements of the model (and all code: https:// osf. io/ 
x64bh/). Put simply, the model performs Bayesian inference 
through combining prior beliefs with observations accord-
ing to their respective precisions (e.g., Fig. 1) to produce a 
posterior belief about the true state of ball bounciness. As 
participants’ beliefs following each trial were known from 
their responses, we performed gradient descent over two 
free parameters in the model to optimize estimates for prior 
beliefs (pB) and sensory precision (SP) that maximized the 
predictive power of the model, given the known responses. 
The estimated pB and SP parameters were then model out-
puts which we compared between groups and conditions. 
Figure 3 provides a graphical description of the model and 
associated vectors and matrices.

Each trial in the POMDP model was formalized as 
consisting of two timesteps (t = 1 and t = 2). At t = 1, the 
participant always began in the “start” state and made the 
associated “start” observation. At t = 2, the participant 
observed visual cues from the video stimulus and inferred 
whether they had transitioned into the high bounce state 
or the low bounce state. That is, they inferred a posterior 
distribution over P(st = 2) that assigned a probability to the 
high versus low state, based on a Bayesian integration of 
prior beliefs about transitioning to the respective states 
P(st = 2|st = 1) and beliefs about the likelihood of observing 

Fig. 3  Bayesian network representation of perceptual inference dur-
ing ball bounce anticipation. The POMDP generative model is 
depicted graphically; arrows represent dependencies between vari-
ables, circles (‘nodes’) correspond to variables (states and observa-
tions) and squares represent factors mediating the conditional rela-
tionships. At each time point (t), observations (o) depend on hidden 

states (s), where this relationship is specified by the A matrix which 
maps the likelihood of states given observations. Those states, in 
turn, depend on previous states (as specified by the B matrix, or the 
initial states specified by the D vector). Subscripts for states and 
observations indicate time points within a trial (τ)

https://osf.io/x64bh/
https://osf.io/x64bh/
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a high cue or low cue given an underlying high or low 
state, P(ot|st) (i.e., the likelihood mapping). Observations 
in the model (denoted o) were categorical and consisted of 
a “start” observation, a high bounce cue observation, and 
a low bounce cue observation. In the task, the ‘high/low 
bounce cue observation’ consisted of all the early sensory 
indicators that might predict a high or low ball bounce, 
such as the kinematics of the kicker and the flight of the 
ball. These observations provided only partial information 
about bounce outcome but will be referred to as the ‘high/
low bounce cue’ from hereon. Hidden states (denoted s) in 
the model (also categorical), were a “start” state, a “high 
bounce” state, and a “low bounce” state. Hidden states 
are inferred from observed instances, mediated by the A 
matrix, which is illustrated by the dependency arrow in 
the figure.

The vector D encoded prior beliefs over initial states, 
P(st = 1), which specified that the participant always started 
the trial in the “start” state and was certain in their belief. 
The matrix B encoded the probability of each state transi-
tioning into any other between timepoints:

Columns (left to right) denote the start state, the high 
state, and the low state at time t = 1, and rows (top to bot-
tom) denote the start state, the high state, and the low 
state at time t = 2. The parameter pB, therefore, represents 
the probability of transitioning from the start state to the 
high state—with values above 0.5 showing prior beliefs 
that transitions to the low bounce state are more likely 
and those below 0.5 showing that high bounce states are 
more likely. Determining this parameter for each partici-
pant therefore indicates the direction and strength of their 
belief about moving to each state—effectively their prior 
beliefs about bounciness. The second and third columns 
encode that once entering a high or low state the state does 
not change within that trial.

The A matrix mapped the probability of possible obser-
vations given hidden states, through which the participant 
could infer the high or low state from the observed cues. 
This equates to the inversion of the agent’s generative 
model where they infer likely causes from observed stim-
uli. Formally:

Columns (left to right) denote the “start” state, the high 
bounce state, and the low bounce state, and rows (top to 

B = P
�
s
t=2�st=1

�
=

⎡
⎢⎢⎣

0 0 0

1 − pB 1 0

pB 0 1

⎤⎥⎥⎦

A = P
�
o
t
�s

t

�
=

⎡
⎢⎢⎣

1 0 0

0 SP 1 − SP

0 1 − SP SP

⎤
⎥⎥⎦
.

bottom) denote the “start” observation, the high bounce 
cue observation, and the low bounce cue observation. The 
probability of observing a high or low cue, given a high or 
low state was encoded by a “sensory precision” parameter 
(SP). An SP value of 0.5 indicates minimal precision (no 
relationship between the cue and hidden state), while a 
value approaching 1 suggests high precision (the prob-
ability of observing a high bounce cue is high in a high 
bounce state and low when in a low bounce state (and vice 
versa for values approaching 0 for low bounce). In behav-
ioral terms, SP values approaching 1 would indicate that 
a participant consistently responded ‘high’ when a high 
cue was present.

Bayesian belief updating in the model was based on the 
following equations for the two timepoints (t = 1 and t = 2, 
respectively):

Here, � indicates a SoftMax function which converts the 
belief to a proper probability distribution and ln refers to the 
natural logarithm. In essence, beliefs at t = 2 are a function 
of integrating SP and pB based on their precision, according 
to Bayes’ rule. Our model assumes that the probability of 
selecting a high or low bounce response was directly related 
to the posterior distribution over states at time t = 2 in each 
trial, such that choices to select high increased as the poste-
rior over high approached 1 (i.e., P(high) = P(st = 2 = high)). 
The observed responses of participants were modeled using 
the Bayesian model of perception described here.

The target parameters (SP and pB) within the model 
were then estimated using a Bayesian optimization algo-
rithm (called Variational Bayes) which identifies the param-
eter values that maximize the likelihood of the participants 
responses (e.g., see Schwartenbeck & Friston, 2016). Param-
eter estimation first required setting prior means and vari-
ances for each parameter. We set a high precision value of 
1/2 for each parameter to deter overfitting and work from 
prior means SP = 0.5 and pB = 0.5. We first ran a POMDP 
model to estimate overall SP and pB parameters for nov-
ice and expert groups, then ran a second model to estimate 
SP and pB across all kick type and occlusion conditions. 
Parameter recoverability analyses indicated that the model 
was sensitive to changes in the true parameters, such that 
artificially inputted true parameters were highly recover-
able for both SP (R2 = 0.84, p < 0.001) and pB (R2 = 0.82, 
p < 0.001) (see supplementary files for plots). It should be 
noted that the SP and pB are somewhat arbitrary values on 
the scale of 0–1 which are indicative of relative strength and 
direction of beliefs for modeling purposes (Table 1).

s
t=1 = �

(
1

2

(
lnD + lnB ∙ s

t+1) + lnA ∙ o
t

)
,

s
t=2 = �

(
lnBst−1 + lnA ∙ ot

)
.
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Data analysis

Computational modeling was performed in MATLAB 
R2019a (Mathsworks, MA) and statistical analysis in 
RStudio v1.0.143 (R Core Team, 2017). Parameter esti-
mates were retrieved from the POMDP models and then 
screened for outlying values (> 3 standard deviations 
from the mean; Tabachnick & Fidell, 1996). Outliers were 
replaced with a Winsorized score by changing the outlying 
value to a value 1% larger (or smaller) than the next most 
extreme score (6 values; < 1%).

A linear mixed-effects model was used to examine the 
effect of group (novice vs expert) and occlusion condi-
tion (PC vs BF vs PC&BF) on the model outputs. Mod-
els were run using the lme4 package for R (Bates et al., 
2014). As specified in the pre-registration, a ‘maximal’ 
model was initially run, with all possible random fac-
tors for participants and condition (Barr et al., 2013). A 
Principal Components Analysis was then used to identify 
which random factors explained additional variance, and 
factors with little explanatory power were removed from 
the model to avoid overfitting, as described in Bates et al. 
(2018). The Akaike information criterion was then used 
to compare models and ensure that the simplified model 
did indeed provide a better fit to the data. When interpret-
ing the results of mixed-effects models, we followed the 
rules of thumb outlined in Acock (2014), who suggested 
that standardized beta effect sizes can be interpreted simi-
larly to r (i.e., < 0.2 is weak, 0.2–0.5 is moderate, and > 0.5 
is strong). A standardized beta of 0.5 indicates that a 
one standard deviation change in the predictor variable 
equates to a half standard deviation change in the outcome 
variable.

Bayes Factors (using JZS priors) for mixed-effects mod-
els were calculated using the BayesFactor package (Morey 
& Rouder, 2015) to provide more informative conclusions 
about null effects and derive conclusions not based on a 
single approach. We report BF for main effects and overall 
interactions, which denotes the probability of the data under 
the alternative hypothesis (against the intercept-only null); 
values greater than one (> 1) indicate the alternative to be 
the more likely model, while values less than one (< 1) indi-
cate the null to be more likely. All analysis scripts are avail-
able in the supplementary materials from the Open Science 
Framework: https:// osf. io/ x64bh/.

Results

Effect of expertise

To test whether experts were more sensitive to sensory 
cues and held stronger priors during anticipation  (H1), we 
analyzed the parameter estimates taken from the overall 
POMDP, using a simple linear model. The linear model 
explained a significant and large proportion of variance 
in sensory precision scores (F (1, 56) = 17.69, p < 0.001, 
R2 = 0.23). The model's intercept was at 0.62 (SE = 0.01, 
95% CI [0.60, 0.64], p < 0.001). Within this model the effect 
of expertise was very large and significant (beta = -0.06, 
SE = 0.01, std. beta = 1.02, p < 0.001, BF = 229.07), with 
experts displaying higher sensory precision values (see 
Fig. 4). However, a second model indicated that there was 
no overall difference between novices and experts in the use 
of priors (F (1, 56) = 0.99, p = 0.32, R2 = 0.02). The mod-
el's intercept was at 0.41 (SE 0.01, 95% CI [0.39, 0.44], 

Fig. 4  Grouped scatterplot of 
sensory precision and prior 
belief parameters (with means 
and 95% CIs). SP values around 
0.5 indicate that there was little 
mapping between observations 
and beliefs about hidden states 
(i.e., insensitive to online cues) 
while values approaching 1 
indicate increasing sensitivity. 
pB values above 0.5 indicate a 
prior belief that low bounces 
are more likely to occur (with 
values closer to 1 indicating 
stronger beliefs), and vice versa 
for values below 0.5

https://osf.io/x64bh/
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p < 0.001), with the effect of group being small and not sig-
nificant (beta = − 0.02, SE 0.02, std. beta = − 0.27, p = 0.32, 
BF 0.42) (see Fig. 4). Model fit checks are available in the 
supplementary files.

Effect of occlusion

To examine whether experts relied more heavily on pri-
ors, and less on sensory cues, when sensory inputs were 
more uncertain (i.e., during earlier occlusion)  (H2) we 
examined SP and pB parameters across conditions and 
kick types. We fitted a linear mixed model (estimated using 
maximum likelihood) predicting sensory precision values 
from group and occlusion condition. The final model sim-
ply included ‘participant’ as a random effect (i.e., random 
intercepts). The total explanatory power of the model was 
large (R2 = 0.19) with the fixed effects alone explaining 
10% of the variance. The model's intercept (correspond-
ing to SP = 0, group = Expert, and Occlusion = PC), was at 
0.55 (SE 0.01, 95% CI [0.54, 0.57], p < 0.001). Within this 
model there was a medium sized, and significant, effect of 
group (beta = − 0.05, SE = 0.02, std. beta = − 0.57, p = 0.003, 
BF = 2.29 ×  104). Relative to the reference category (PC) the 
effect of occlusion was small/medium and significant for 
both BF (beta = 0.03, SE 0.01, std. beta = 0.37, p = 0.01) and 
PC&BF (beta = 0.03, SE 0.01, std. beta = 0.35, p = 0.02). 
The overall BayesFactor for the effect of occlusion was 
moderate (BF = 4.41). Bonferroni-Holm corrected pairwise 
comparisons confirmed significant differences between PC 
and BF (p = 0.047), PC and PC&BF (p = 0.01), but not BF 
and PC&BF (p = 0.86). There were no interaction effects 
(ps > 0.79, BF 0.08).

For ball bounce priors, the linear mixed model explained 
little variance (R2 = 0.01). The model's intercept was at 
0.47 (SE 0.02, 95% CI [0.43, 0.50], p < 0.001). Within this 
model the effect of group was very small and not significant 
(beta = 0.01, SE 0.03, std. beta = 0.07, p = 0.72, BF = 0.13). 
Relative to the reference category (PC) the effects of BF 
(beta = − 0.03, SE 0.03, std. beta = − 0.16, p = 0.313) 
and PC&BF (beta = − 0.02, SE 0.03, std. beta = − 0.12, 
p = 0.457) were very small and not significant (overall 
BF = 0.13). There were also no interaction effects (ps > 0.50, 
BF = 0.06).

Exploratory analysis

As an exploratory analysis, we added kick type to the sta-
tistical model to examine whether participants had differ-
ent prior expectations of the two kick types, and whether 
they were differentially sensitive to the pre-bounce cues. 
For SP, kick type was found to be a large and significant 
predictor when added to the previous model (beta = 0.05, SE 
0.02, std. beta = 0.63, p = 0.001, BF = 2363.60) (see Fig. 5). 

The higher SP values for grubber kicks indicated that par-
ticipants were better able to detect early cues for grubber 
kicks than chip kicks. The other effects reported above all 
remained significant in the expanded model.2 There were 
no significant interactions between kick types and the other 
predictors (ps > 0.62, BFs < 1.77).

For pB, the addition of kick type had a considerable effect 
on the model. The total explanatory power of the expanded 
model became very large (R2 = 0.54) with the fixed effects 
alone explaining 52% of the variance. The model's intercept 
(corresponding to pB = 0, group = expert, occlusion = PC, 
and kick type = chip) was at 0.65 (SE 0.02, 95% CI [0.61, 
0.69], p < 0.001). Within this model, the effect of group was 
very small and not significant (beta = − 0.02, SE 0.03, std. 
beta = − 0.13, p = 0.50, BF = 0.14). For occlusion conditions, 
relative to PC, the effect of BF (beta = − 0.12, SE = 0.03, 
std. beta = − 0.71, p < 0.001) and PC&BF (beta = − 0.14, SE 
0.03, std. beta = − 0.82, p < 0.001) were large and signifi-
cant (overall BF = 1.34 ×  104). Additionally, the effect of kick 
type was very large and significant (beta = − 0.36, SE 0.03, 
std. beta = − 2.06, p < 0.001, BF = 6.52 ×  1048), indicating 
that participants expected higher bounces for grubber kicks 
than chip kicks.

Large and significant two-way interaction effects 
were observed for occlusion[BF] × kick type[grubber] 
(beta = 0.19, SE 0.04, std. beta = 1.09, p < 0.001) and 
occlusion[PC&BF] × kick type[grubber] (beta = 0.25, 
SE 0.04, std. beta = 1.40, p < 0.001). Large and sig-
nificant three-way interaction effects were observed 
for group × occlusion[BF] × kick type[grubber] 
(beta = − 0.16, SE = 0.07, std. beta = − 0.88, p = 0.02) 
and group × occlusion[PC&BF] × kick type[grubber] 
(beta = − 0.20, SE = 0.07, std. beta = − 1.16, p = 0.002). Other 
interaction effects were not significant (ps > 0.13) (reported 
in full in supplementary files) (see Fig. 5). Results from 
Bayesian models supported similar conclusions, indicating 
strong support for occlusion × kick type (BF = 5.00 ×  104) 
and group × occlusion × kick type (BF = 620.34) interactions, 
but favored the null for group × kick type (BF = 0.59) and 
group × occlusion (BF = 0.09) interactions.

To unpick the interaction effects, pairwise comparisons 
with a Bonferroni–Holm correction were used to compare 
the differences between priors across occlusion conditions, 
for each group and each kick type. These tests indicated 
that the interaction was driven by experts adjusting their 
priors across conditions, but not novices. For novices, there 
were no differences between pB across occlusion conditions 

2 As the effects in the model remained similar after the addition of 
kick type they have not been re-reported for brevity, but full details of 
the expanded model with the addition of kick type are reported in the 
supplementary files: https:// osf. io/ x64bh/

https://osf.io/x64bh/
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Fig. 5  Sensory precision and prior belief parameters across occlusion 
conditions and kick type (means and 95% CIs). Panels A and B show 
means and 95% CIs for the SP and pB parameters from the POMDP 
model. In panel B, values above 0.5 indicate a belief that lower 
bounces are more likely and lower values that higher bounces are 

more likely. Panel C illustrates the absolute strength (i.e., deviation 
from 0.5) of priors across kick type and occlusion condition. Panels D 
and E show the ratio of SP to pB values across the conditions (shaded 
areas represent 95%CIs)
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(ps > 0.43). Experts showed a reduction in the weight of 
the prior from PC to BF (p = 0.001) and PC to PC&BF 
(p = 0.001) for chip kicks, and from PC to PC&BF for grub-
ber kicks (see Table 2).

Discussion

Recent work has outlined how applying Bayesian brain per-
spectives (see Friston et al., 2017; Knill & Pouget, 2004; 
Rao & Ballard, 1999) to the study of sporting anticipation 
can help to explain how performers integrate and weight 
multiple sources of information to make predictions during 
time-constrained tasks (see Gredin et al., 2018, 2020; Har-
ris et al., 2021). In the present study, we used a Bayesian 
active inference model of perception to examine observers’ 
prior beliefs regarding likely ball bounce trajectories and 

their sensitivity to early postural cues from the kicker and 
ball flight trajectory. Overall, the responses of both novice 
and experts in this task were largely driven by responding 
to online visual cues rather than prior knowledge. Experts 
were much more sensitive than novices to early postural and 
kinematic cues from the kicker and flight of the ball but 
there was little difference in their use of prior knowledge of 
likely ball bounces. Additionally, experts were observed to 
rely less on priors when more online information from pos-
tural cues and ball flight was available, while novices’ use 
of priors changed very little when more sensory information 
became available (see Fig. 5).

Our initial hypothesis, that experts would use both sen-
sory cues and prior knowledge more than novices, was partly 
supported. Experts showed greater sensitivity to online 
visual information (std. beta = 1.02, p < 0.001) (see Figs. 4 
and 5A), but there was no overall difference in use of pri-
ors. Figure 4 illustrates that both groups tended towards a 
belief in higher ball bounces, but these beliefs were similar 
across experts and novices. Consequently, expertise in this 
task appears to be characterized by attunement to relevant 
sensory cues, rather than a strong prior belief in particular 
bounce trajectories. Previous work in this area (e.g., Gredin 
et al., 2018) has suggested that experts will integrate both 
contextual priors and online sensory cues during anticipa-
tion. However, there was no explicit contextual informa-
tion available in this task, only prior knowledge of typical 
bounce heights. The irregular nature of a rugby ball bounce 
may mean that even experienced performers did not have a 
strong prior belief that either high or low bounces were the 
more likely outcome. Instead, they relied on cues from the 
kicker and ball flight, from which they were able to make 
effective inferences about likely bounce outcomes (i.e., 
p(state|observation)). In Bayesian terms, the precision of 
the distribution of prior beliefs about likely ball trajectories 

Table 1  Description of computational elements for generative model

Model variable General definition Model-specific definition

τ Timepoint within a trial Here there are just two timepoints: a start state, then seeing 
the bounce cue

oτ Observable outcomes at time τ Start observation
High cue
Low cue

sτ Hidden states at time τ The agent makes inferences about the hidden state of ball 
bounce height:

High
Low

A matrix (p(oτ|sτ)) Matrix encoding beliefs about the relationship between hid-
den states and observable outcomes (i.e., the likelihood)

The relationship between observed cues and hidden state of 
ball bounce height

B matrix (p(sτ+1|sτ)) Matrix encoding how beliefs about states will evolve over 
time

Encodes the prior belief that either a high or low bounce 
would occur at τ = 2

D vector (p(sτ=1)) Matrix encoding beliefs about initial hidden states Starting prior belief about the prevalence of high and low 
bounces

Table 2  Significance values from pairwise comparisons for prior 
beliefs across occlusion conditions

Significance values corrected for multiple comparisons (Bonferroni–
Holm method). *p < 0.05

Expert Chip PC v BF 0.001*
PC v PC&BF 0.001*
BF v PC&BF 1.00

Grubber PC v BF 0.15
PC v PC&BF 0.003*
BF v PC&BF 1.00

Novice Chip PC v BF 0.43
PC v PC&BF 0.44
BF v PC&BF 1.00

Grubber PC v BF 1.00
PC v PC&BF 0.68
BF v PC&BF 1.00
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was comparatively low, and therefore was not weighted 
strongly during anticipation (e.g., Fig. 1). This is an impor-
tant consideration for the sports anticipation literature that 
has investigated priors and their importance in the anticipa-
tion process (Runswick et al., 2020b). The majority of this 
work has explicitly provided contextual priors or deliberately 
developed tasks that are embedded with reliable contextual 
information (Simonet et al., 2019), potentially up-weighting 
their importance in the anticipation process compared to the 
present work.

Based on Bayesian brain accounts of belief updating, we 
also predicted that when sensory information became more 
certain, in PC&BF compared to BF or PC occlusion condi-
tions, sensory precision would be higher and priors would 
be downweighted (i.e., pB values closer to 0.5). The mixed-
effects model showed that SP values were indeed higher in 
BF compared to PC (p = 0.047), and in BF&PC compared 
to PC only (p = 0.01), but that pB values did not vary across 
occlusion conditions. Again, this partially supported our 
initial hypothesis, as SP values were adjusted according 
to uncertainty, but there was no change in pB. Given the 
preceding finding—that expertise in the task was primarily 
related to SP rather than pB—the insensitivity of pB to the 
occlusion conditions may simply indicate that sensory cues 
were more important than priors about likely bounce heights 
for anticipation in this task.

The addition of kick type to the statistical model 
explained a significant additional amount of variance, as 
kick type was found to have a large effect on both SP and pB 
values. Both novices and experts were more attuned to sen-
sory cues (higher SP values) from grubber kicks than chip 
kicks, regardless of occlusion condition, as is illustrated in 
Fig. 5A. Novices and experts also expected to observe high 
bounces for grubber kicks, while pB for chip kicks was close 
to 0.5, or slightly favored low bounces. Notably, three-way 
interaction effects between group, occlusion condition, and 
kick type were also observed for pB values. Follow up analy-
ses indicated that the interactions were driven by experts, but 
not novices, adjusting the weight of pB in the later occlusion 
conditions (BF and PC&BF). Experts effectively did not use 
bounce height priors for chip kicks in BF and PC&BF condi-
tions, and the influence of pB for grubber kicks was similarly 
reduced from PC to BF to PC&BF. The plot of the absolute 
pB values (deviation from 0.5; Fig. 5C) further illustrates 
that the strength of pB was similar across the occlusion con-
ditions for novices, but experts reduced the weight they gave 
to priors as sensory cues became more certain, as predicted 
by active inference and Bayesian brain frameworks.

One interpretation of this result is that novices were rigid 
in their use of information or poor at down-weighting priors 
when more sensory cues were available. However, Bayesian 
approaches would predict that a Bayes-optimal weighting 
of information would lead to a reduced role for priors when 

the sensory cues were comparatively more certain. Novices, 
without a developed sensitivity to sensory cues through 
their generative model, were not very sensitive to kinematic 
cues even when occlusion occurred later. As a result, both 
groups were likely displaying ‘Bayes-optimal behaviour’; 
for experts switching to sensory cues during later occlusion, 
but for novices continuing to use some prior expectations in 
an attempt to guide predictions as their sensitivity to cues 
was low. This result adds to previous findings by Helm et al. 
(2020) in a handball task where a similar adaptation to the 
ambiguity of kinematic cues was reported as observers relied 
more on prior probabilistic information when cues were less 
reliable. Alongside previous studies adopting a Bayesian 
approach to anticipation (Gredin et al., 2018, 2021; Helm 
et al., 2020), the current results support the benefits of this 
approach in understanding the integration and weighting of 
multiple information sources to make effective predictions.

The findings from the current study extend knowledge 
of anticipation in sports by developing an understanding 
of precision-based weighting of information sources. Pre-
vious models of anticipation in sport have pointed to the 
use of contextual priors and online sensory input (Müller 
& Abernethy, 2012), discussed issues related to how these 
information sources are weighted based on reliability (Gray 
& Cañal-Bruland, 2018; Runswick et al., 2020b), and sug-
gested a Bayesian approach to tackle this question (Gredin 
et al., 2018; Harris et al., 2021). However, the work pre-
sented in this study is the first to combine these narratives in 
the literature to investigate information integration processes 
in expert performers using a combination of empirical data 
and computational modeling. This new approach builds from 
findings that infer the occurrence of such processes based 
on self-report from performers (Runswick et al., 2018) to 
testing explicit predictions using computational methods that 
can be applied to a variety of important tasks in the domain 
such as penalty kicks.

Conclusion

In summary, we aimed to use a Bayesian computational 
model of perception to examine the relative weighting of 
priors and sensory cues when anticipating the bounce of a 
rugby ball. The findings indicated that, in this task, expert 
observers with extensive task-specific experience were more 
sensitive to sensory cues but placed little weight on ball 
bounce priors. When examining priors and sensory preci-
sion across different kick types and occlusion conditions it 
was observed that experts downweighted their priors as later 
and more precise visual cues emerged. Novices, however, 
showed little variation in their use of the two information 
sources, possibly due to their insensitivity to the more pre-
cise later visual cues. This work provides an illustration of 
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how Bayesian brain and active inference approaches can 
be used to understand skilled anticipation in sporting tasks 
(Arthur & Harris, 2021; Harris et al., 2021) and yields sport 
psychology with a computational framework by which to 
understand how performers optimize predictions (Clark, 
2013; Friston, 2010; Harris et al., 2021).
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