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Abstract 30 

Background: This study aimed to identify the predictor variables which account for neutral breast 31 

position variance using a full independent variable dataset (the gravity-loaded breast position, age and 32 

anthropometrics, and magnetic resonance imaging breast composition data), and a simplified 33 

independent variable dataset (magnetic resonance imaging breast composition data excluded).  34 

Methods: Breast position (three-dimensional neutral and static gravity-loaded), age, anthropometrics 35 

and magnetic resonance imaging breast composition data were collected for 80 females (bra size 32A 36 

to 38D). Correlations between the neutral breast position and the gravity-loaded breast position, age, 37 

anthropometrics, and magnetic resonance imaging breast composition data were assessed. Multiple 38 

linear and multivariate multiple regression models were utilised to predict neutral breast positions, with 39 

mean absolute differences and root mean square error comparing observed and predicted neutral breast 40 

positions.  41 

Findings: Breast volume was the only breast composition variable to contribute as a predictor of the 42 

neutral breast position. While ≥69% of the variance in the anteroposterior and mediolateral neutral 43 

breast positions were accounted for utilising the gravity-loaded breast position, multivariate multiple 44 

regression modelling resulted in mean absolute differences >5 mm.  45 

Interpretation: Due to the marginal contribution of breast composition data, a full independent variable 46 

dataset may be unnecessary for this application. Additionally, the gravity-loaded breast position, age, 47 

anthropometrics, and breast composition data do not successfully predict the neutral breast position. 48 

Incorporation of the neutral breast position into breast support garments may enhance bra development. 49 

However, further identification of variables which predict the neutral breast position is required.  50 

 51 

Keywords: Breast composition, skin strain, breast position, garment development.   52 

 53 

 54 

 55 

 56 

1. Introduction 57 



 

3 

 

During dynamic movement, independent breast motion and the associated breast pain can be reduced 58 

with the application of external breast support (Zhou et al., 2011). Recently, research has proposed that 59 

breast support garment development could be improved by controlling the effects of gravity on the 60 

breast (Mills et al., 2016). Sanchez et al., (2017) defined the neutral breast position as the position in 61 

which breast skin is not under gravitational loading (unloaded), with the breast therefore optimally 62 

positioned in terms of minimising the risk of exceeding breast skin strain limits (Sanchez et al., 2017). 63 

Any breast support garment which initially positions the breast in the neutral breast position, may act 64 

protectively in limiting breast skin strain values within their reversible deformation limits (Silver et al., 65 

2001).  66 

 67 

Previous research has estimated the neutral breast position using 3D motion capture of the breast during 68 

water and soybean oil immersion (Mills et al., 2016; Sanchez et al., 2017), or water immersion alone 69 

(Norris et al., 2020, 2018). However, to the author’s knowledge no attempt has been made to predict 70 

the neutral breast position. Predictive regression analysis in breast biomechanics has primarily focused 71 

on the prediction of breast volume (Koch et al., 2011), breast deformations after breast conserving 72 

surgery (Zolfagharnasab et al., 2018), upper torso musculoskeletal pain (Coltman et al., 2018) and 73 

breast mass (Brown et al., 2012). Regardless, when conducting regression analysis, consideration must 74 

be given to (1) the identification of relevant independent (predictor) variables which ensure model 75 

accuracy and (2) the elimination of unnecessary independent (predictor) variables which allows for 76 

simplified future data collection without compromising model accuracy (Halinski and Feldt, 1970), and 77 

in this case may improve the ability to utilise the prediction model within the bra industry.  78 

 79 

Firstly, to appropriately identify relevant independent predictor variables there must be an 80 

understanding of the factors which influence the neutral breast position. As the neutral breast position 81 

estimates the non-gravity-loaded breast position (Mills et al., 2016), it is likely that gravity-loaded 82 

breast position is of importance in this prediction model. Additionally, characteristics which help to 83 

inform the static, two-dimensional (2D) gravity-loaded breast position, such as breast ptosis and splay, 84 

may also influence the neutral breast position. To date it has been stated that breast composition 85 
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variables such as breast mass (of more than 400 grams), ligamentous laxity, previous weight loss, 86 

postoperative changes, dermatochalasis, and glandular hormonal regression (postpartum or 87 

menopausal) are all causes of breast ptosis (Georgiade et al., 1990; Regnault, 1976; Rinker et al., 2010). 88 

Those displaying greater breast splay generally display hypertrophic breast volumes and increased 89 

ptosis, whilst breast splay is also thought to be related to participants age and body mass index (BMI) 90 

(Coltman et al., 2018). Furthermore, measures of body fat, such as the sum of eight skinfolds, have been 91 

identified to display a positive relationship with breast mass (Brown et al., 2012). It may therefore be 92 

important to consider age and anthropometrics, when predicting the neutral breast position. Previously, 93 

magnetic resonance imaging (MRI) has been utilised to assess breast volume and composition, 94 

including breast tissue differentiation (Graham et al., 1996; Klifa et al., 2010), breast volume assessment 95 

(Herold et al., 2010) and breast density estimation (Nie et al., 2008). MRI is therefore a recognised 96 

method of estimating breast volume and composition, both of which may be related to the neutral breast 97 

position.   98 

 99 

It is also important to ensure that unnecessary independent (predictor) variables are excluded from 100 

regression models, to improve the ability to implement the prediction model within the bra industry. 101 

Gravity-loaded breast characteristics and participant anthropometrics are already utilised within the bra 102 

industry, with both Victoria’s Secret® and Rigby and Peller® utilising 3D body scanning to identify 103 

breast characteristics (bust shape) (McCann and Bryson 2014) and participant anthropometrics (140 104 

upper body measurements) (Rigby and Pellar, 2022) to inform bra size. These variables may therefore 105 

not add increased complication within bra development processes. While MRI breast composition data 106 

may be costly to obtain (Caruso et al., 2006), it is not yet known if it enhances neutral breast position 107 

prediction. Establishing this would help identify if current variables utilised within the bra development 108 

process, are sufficient when predicting the neutral breast position, or if MRI breast composition is 109 

required. 110 

 111 

Therefore, this novel study firstly aimed to utilise regression modelling to identify the predictor 112 

variables which account for neutral breast position variance using a full independent variable dataset 113 
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(the gravity-loaded breast position, age and anthropometrics, and MRI breast composition data), and a 114 

simplified independent variable dataset (MRI breast composition data excluded). This study then aimed 115 

to assess model prediction accuracy, with a threshold of 5 mm (Hansson et al., 2014). 116 

 117 

2. Methods 118 

Data collection consisted of two testing sessions; (1) a laboratory testing session which included a 119 

professional bra fit, anthropometric assessment and static breast measurements and (2) a hospital-based 120 

breast MRI. Participants were required to complete the laboratory testing session and breast MRI (in 121 

any order) within 48 hours of each other to minimise any breast changes (Fowler et al., 1990). 122 

 123 

2.1 Participants 124 

Following institutional ethical approval (SFEC 2018-109, Science Faculty Ethics Committee, 125 

University of Portsmouth, Portsmouth, United Kingdom), 80 females gave written informed consent to 126 

participate. Participants were (median and range) aged 25 years (18 to 37 years) with a BMI of 24.1 127 

kg/m2 (16.9 to 37.1 kg/m2), had not undergone any surgical procedures to their breasts and were not 128 

pregnant or currently breastfeeding. Participants had their bra size assessed by a trained bra fitter using 129 

best-fit criteria (McGhee and Steele, 2010; White and Scurr, 2012) (mode UK size 34B (range 32A to 130 

38D)), and their chest circumference (median 79 cm, (range 67 to 101 cm)) and bust circumference 131 

(median 92 cm, (range 80 to 126 cm)) measurements were recorded. 132 

 133 

2.2 Laboratory protocol and analysis 134 

2.2.1 Anthropometrics  135 

Stretch stature (m) and body mass (kg) measurements were taken to a precision of 10 mm and 0.1 kg 136 

respectively, using a Seca free-standing height measure and calibrated Seca scales (Seca, Hamburg, 137 

Germany). In accordance with International Society for the Advancement of Kinanthropometry (ISAK) 138 

protocols (Marfell-Jones et al., 2012), skinfold measurements were taken at eight sites (triceps, biceps, 139 

subscapular, iliac crest, supraspinale, abdominal, front thigh and calf) using Harpenden Skinfold 140 

callipers (Baty International, West Sussex, United Kingdom), and waist and hip circumference were 141 
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measured using a flexible, steel tape (Lufkin W606PM). Acromiale-radiale length and biacromial 142 

breadth (previously investigated in breast anatomy (Cardoso et al., 2015) and bra design research (Chen 143 

et al., 2014; Zheng et al., 2007)) were also recorded using a segmometer (Rosscraft) and a large sliding 144 

bone calliper (Rosscraft), respectively. Two ISAK trained researchers completed all anthropometric 145 

measurements. Both anthropometrists demonstrated high intra-tester reliability producing technical 146 

error of measurement for repeated measurements of < 6% for skinfolds and < 2% for all circumferences, 147 

breadth, and length measurements. Each measurement was taken twice; with a third measure taken 148 

when the technical error of measurement, advised by ISAK (within 7.5% of the first for skinfolds and 149 

within 1.5% of the first for remaining measures), was exceeded. The mean skinfold value was calculated 150 

where duplicate measurements were recorded, whilst the median skinfold value was utilised where three 151 

measurements were recorded (Hume et al., 2017). BMI (kg/m2) and the sum of eight skinfolds were 152 

then calculated for each participant.  153 

 154 

2.2.2 Breast position 155 

Electromagnetic sensors (240 Hz, Liberty, Polhemus, Vermont, USA) were applied to the centre of the 156 

left nipple (LNIP) (Zhou et al., 2011) (with the nipple utilised to represent breast position (Mills et al., 157 

2016)) and torso (suprasternal notch (STN), xiphoid process (XP), 7th cervical vertebrae (C7) and 8th 158 

thoracic vertebrae (T8)) (Wu et al., 2005) to allow for the breast position to be quantified relative to the 159 

torso (Figure 1). 160 

 161 

STN 

XP 

C7 

T8 

LNIP 

ML 

AP 

SI 
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Figure 1. Local coordinate system (SI, superoinferior; ML mediolateral; AP, anteroposterior) 162 

and electromagnetic sensor locations on the left breast and torso. 163 

 164 
Static gravity-loaded sensor coordinates were recorded for 10 s while participants stood in the 165 

anatomical position. The neutral breast position was then identified while participants were seated 166 

upright, immersed in water (37⁰ C) to the level of their suprasternal notch sensor (Norris et al., 2020). 167 

The static positions of the sensors while underwater were recorded for a 10 s trial.  168 

 169 

Positional data from the electromagnetic sensors on the breast and torso during standing and water 170 

immersion were exported to Visual 3D (v4.96.4, C-motion, Washington DC, USA), and filtered using 171 

a generalised cross-validatory quintic spline (Sanchez et al., 2017). A reference torso segment using the 172 

4 torso sensors was created in Visual 3D, to provide a reference co-ordinate system. The proximal end 173 

of the torso segment (the origin) was defined using the midpoint between the STN and C7 sensors, and 174 

the distal end was defined using the midpoint between the XP and T8 sensors. Mean gravity-loaded and 175 

neutral breast positions were then calculated, in all directions, relative to the torso coordinate system. 176 

 177 

2.3 MRI protocol and analysis 178 

Prior to the MRI, participants had their bilateral breast boundary identified using the folding line method 179 

(Lee et al., 2004). This breast boundary was then outlined with a surgical marker and defined utilising 180 

multiple 1000 mg fish-oil capsules attached to the skin. The MRI was then acquired as the participant 181 

lay prone, with a breast coil on a Philips Ingenia 1.5 T (Philips Healthcare, Best, Netherlands) using the 182 

dual-echo mDixon sequence (software version 5.1.7.2) (Eggers et al., 2011). An acquisition matrix of 183 

300 x 300 was used with in-plane resolution of 1.5 x 1.5 mm2 and a slice thickness of 3 mm. Anonymised 184 

digital imaging and communications in medicine (DICOM) datasets were processed at the Centre for 185 

Medical Image Science and Visualization (CMIV) at Linkoping University, Sweden. The automated 186 

image analysis was performed using AMRA Researcher® (Advanced MR Analytics AB, Linkoping, 187 

Sweden).  188 

 189 
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The posterior boundary of the breast segmentation was medially set in the fatty tissue anterior of the 190 

pectoral muscle, and laterally by a line crossing the pectoral muscle and sternum. The lateral, medial, 191 

superior, and inferior boundaries were defined using the previously attached fish-oil capsules. The 192 

following MRI breast variables were then established: bilateral breast volume (cc), breast volume 193 

fibroglandular percentage (%), breast volume fat percentage (%), breast fibroglandular mass (kg), breast 194 

fat mass (kg), total breast mass (kg) and breast mass-density (kg/m3). The quantitative fat images were 195 

computed by calibrating the original fat images using fatty tissue as an internal intensity reference, thus, 196 

allowing fatty tissue volume to be quantified within segmentation (Peterson et al., 2016). The fatty and 197 

total breast volumes (cc) were computed based on manual whole-breast segmentation of quantitative 198 

water-fat MRI images. Breast volume fibroglandular percentage and breast volume fat percentage were 199 

computed as the ratio of fibroglandular and fatty tissue volume to total breast volume respectively 200 

(Karlsson et al., 2015). Breast fibroglandular mass, fat mass and total mass were estimated using the 201 

MRI composition data, combined with reported mass-density values for both fatty and fibroglandular 202 

tissue (Sanchez et al., 2016). Right breast MRI data were then omitted as only left breast position data 203 

were collected within the current study (in line with previous studies investigating the neutral breast 204 

position (Knight et al., 2014; Mills et al., 2016; Sanchez et al., 2017). 205 

 206 

2.4 Statistical analyses    207 

Data were checked for normality and continuous data that approximated a normal distribution were 208 

described using means and standard deviations (SD). Skewed data were described using medians and 209 

interquartile ranges (IQR). Shapiro Wilks test was used to determine normality and means/standard 210 

deviations, or median/interquartile ranges were presented as appropriate. While descriptive statistics 211 

were identified for both breast volume fibroglandular percentage and breast volume fat percentage, due 212 

to lack of variable independence, only breast volume fibroglandular percentage was included for further 213 

statistical analysis. Breast volume fibroglandular percentage was included due to its association with 214 

bra cup size and age (Huang et al., 2011).  215 

 216 
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Following this, the dependent variable dataset (3 variables) was identified as the neutral breast position 217 

variables (anteroposterior, mediolateral and superoinferior) and the full independent variable dataset 218 

(17 variables) was identified as the gravity-loaded breast position (in anteroposterior, mediolateral and 219 

superoinferior directions), age and anthropometrics (age, BMI, waist-hip ratio, underband 220 

circumference, bust circumference, biacromial breadth, acromiale-radiale length and sum of eight 221 

skinfolds), and the MRI breast composition variables (breast volume, breast volume fibroglandular 222 

percentage, breast fibroglandular mass, breast fat mass, total breast mass and breast mass density). 223 

Following this, the simplified independent variable dataset (11 variables) was identified as the full 224 

independent variable dataset, minus the MRI breast composition variables (6 variables).  225 

 226 

Paired samples t-test was used to identify any significant differences between gravity loaded and neutral 227 

breast positions. Pearson’s correlation test was used to examine the linear relationship status between 228 

dependent and independent variables, with the Pearson’s correlation coefficient (r) calculated to 229 

measure the strength of the associations between the dependent variable dataset and the full independent 230 

variable dataset, with associations identified as trivial (< 0.3), low (≥ 0.3  and < 0.5), moderate (≥0.5 231 

and < 0.7), high (≥ 0.7 and < 0.9) and very high (≥ 0.9) (Hinkle et al., 1990). Backwards stepwise 232 

multiple linear regression models were then conducted to investigate the effect of the full and simplified 233 

independent variable datasets and on each of the dependent variables individually (3D neutral breast 234 

position in anteroposterior, mediolateral and superoinferior directions). Additionally, due to the 235 

presence of multiple dependent variables multivariate multiple regression was utilised to investigate the 236 

effect of the full and simplified independent variable datasets on the combined neutral breast position 237 

(representing the 3D neutral breast positions assessed within one model). Each combination of 238 

independent variables was investigated to determine the best multivariate multiple regression model, 239 

with a maximum of eight independent variables included due to sample size restrictions (Hair et al., 240 

2016). For multivariate multiple regression model selection, the models were then evaluated with 241 

respect to having minimum average error (calculated as the Euclidean distance between the observed 242 

and model predicted position in the 3D space), and maximum average R2. For multiple linear and 243 



 

10 

 

multivariate multiple regression analysis the assumption of multicollinearity were assessed based on 244 

variance inflation factor (VIF) values, with VIF values ≤ 5 deemed acceptable (Rogerson, 2010). 245 

Regression equations were identified for all regression models. 246 

 247 

Furthermore, to assess model prediction accuracy, where possible (dependent on the predictor variables 248 

identified), previously identified (observed) neutral breast positions (n = 39; mode UK size 34B, range 249 

32C to 36G, Norris et al., (2020)) will be compared to predicted neutral breast positions (calculated via 250 

identified regression equations). Linear regression plots, mean absolute difference (MAD) (m) and root 251 

mean square error (RMSE) (m) will be utilised to be quantify accuracy (Piñeiro et al., 2008). A threshold 252 

of 5 mm was selected as an acceptable threshold for MAD (Gill, 2015; Hansson et al., 2014). Statistical 253 

analysis was undertaken using SPSS Version 24 and R software, with a 5% level of significance used 254 

for all statistical tests. 255 

 256 

3. Results 257 

3.1 Descriptive statistics 258 

Descriptive statistics for the neutral breast position, gravity-loaded breast position, age and 259 

anthropometrics and MRI breast composition data illustrated participants with a median age of 25 years 260 

(IQR = 11 years), a median breast volume of 635.86 cc (IQR = 468.30 cc) and median total breast mass 261 

of 0.61 kg (IQR = 0.43 kg).  262 

Table 1. Descriptive statistics for the left neutral breast position, gravity-loaded breast position, 263 
age and anthropometrics, and MRI breast composition data. 264 

Category Variable Mean (SD) 

Neutral breast position 

Anteroposterior (m) 0.13 (0.02) 

Mediolateral (m) 0.11 (0.02) 

Superoinferior (m) -0.18 (0.02) 

Gravity-loaded breast position 

Anteroposterior (m) 0.13 (0.02) 

Mediolateral (m) 0.11 (0.01) 

Superoinferior (m) -0.21 (0.02) 

Age and anthropometrics 
Age1 (years) 25.0 (11.0) 

BMI1 (kg/m2) 24.1 (4.8) 
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Waist-hip ratio1 0.74 (0.06) 

Underband circumference1 (cm) 78.5 (5.3) 

Bust circumference1 (cm) 91.7 (9.5) 

Biacromial breadth (cm) 37.1 (1.9) 

Acromiale-radiale length (cm) 31.6 (1.9) 

Sum of eight skinfolds (mm) 154.6 (53.9) 

MRI 

Breast volume1 (cc) 635.86 (468.30) 

Breast volume fibroglandular percentage1 (%) 23 (22) 

Breast volume fat percentage1 (%) 78 (22) 

Breast fibroglandular mass1 (kg) 0.16 (0.10) 

Breast fat mass1 (kg) 0.41 (0.44) 

Total breast mass1 (kg) 0.61 (0.43) 

Breast mass-density1 (kg/m3) 935.33 (34.54) 

Note. 1Skewed data, median (IQR) presented. 265 

 266 

3.1 Paired t-test 267 

Results from the paired sample t-test identified a statistically significant increase in the position of the 268 

breast, as you move from a gravity-loaded breast position to a neutral breast position (P < 0.001 in all 269 

directions) (Table 2). 270 

Table 2. Paired t-test of the gravity-loaded breast position and the neutral breast position. 271 

Gravity loaded breast position - Neutral breast position Mean difference (SD) P 

Anteroposterior -0.004 (0.01) <0.001 

Mediolateral  -0.006 (0.01) <0.001 

Superoinferior -0.032 (0.02) <0.001 

 272 

3.2 Associations  273 

For the anteroposterior and the mediolateral neutral breast positions the majority of associations with 274 

the independent variables were significant and linearly related (anteroposterior; 77%, 13/17 and 275 

mediolateral; 71%, 12/17 (Table 3). However, for the superoinferior neutral breast position, only seven 276 

significant, linear relationships with the independent variables were identified (41%), and in general 277 

these correlations were weaker than those observed between the independent variables and the 278 

anteroposterior and mediolateral neutral breast positions. For example, breast fat mass displayed an r 279 

of 0.78 (P < 0.001), 0.62 (P <0.001), and -0.24 (P = 0.04) for the anteroposterior, mediolateral and 280 

superoinferior neutral breast positions, respectively. The strongest significant associations identified 281 
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were the anteroposterior neutral breast position with the anteroposterior gravity-loaded breast position 282 

(r = 0.90, P < 0.001), the anteroposterior neutral breast position with the breast volume (r = 0.81, P < 283 

0.001), and the mediolateral neutral breast position with the mediolateral gravity-loaded breast position 284 

(r = 0.81, P < 0.001).  285 

Table 3. Pearson’s correlations [r] (P value) between the dependent variables (individual 3D 286 

neutral breast position in anteroposterior, mediolateral and superoinferior directions) and the 287 

full independent variable dataset (3D gravity-loaded breast position, age and anthropometrics 288 

and MRI breast composition data).  289 

  Neutral breast position 

Category Variable Anteroposterior Mediolateral Superoinferior 

Gravity- loaded 

breast position 

Anteroposterior 0.90 (<0.001) 0.42 (<0.001) -0.24 (0.03) 

Mediolateral  0.32 (0.004) 0.81 (<0.001) -0.10 (0.40) 

Superoinferior -0.60 (<0.001) -0.57 (<0.001) 0.62 (<0.001) 

Age and 

anthropometrics 

Age 0.03 (0.79) -0.10 (0.93) -0.08 (0.49) 

BMI 0.72 (<0.001) 0.55 (<0.001) -0.16 (0.15) 

Waist-hip ratio 0.26 (0.02) 0.11 (0.33) 0.09 (0.43) 

Underband circumference 0.65 (<0.001) 0.55 (<0.001) -0.14 (0.23) 

Bust circumference 0.78 (<0.001) 0.61 (<0.001) -0.21 (0.06) 

Biacromial breadth 0.15 (0.18) 0.11 (0.32) -0.29 (0.008) 

Acromiale-radiale length 0.02 (0.84) 0.13 (0.25) -0.32 (0.004) 

Sum of eight skinfolds 0.63 (<0.001) 0.48 (<0.001) -0.10 (0.40) 

MRI 

Breast volume 0.81 (<0.001) 0.64 (<0.001) -0.28 (0.01) 

Breast volume fibroglandular 

percentage 

-0.45 (<0.001) -0.30 (0.006) 0.04 (0.71) 

Breast fibroglandular mass 0.08 (0.51) 0.07 (0.54) -0.15 (0.17) 

Breast fat mass 0.78 (<0.001) 0.62 (<0.001) -0.24 (0.04) 

Total breast mass 0.80 <0.001) 0.64 (<0.001) -0.28 (0.01) 

Breast mass-density -0.45 (<0.001) -0.30 (0.006) 0.04 (0.71) 

Note. P < 0.05 presented in bold. 290 

 291 

3.3. Regression Analysis  292 

VIF values indicated no multicollinearity was present among independent variables (all VIF values ≤ 293 

5), supported by the majority of correlation coefficients between independent variables identified as 294 

trivial, low or moderate (r < 0.7) (Appendix 1).  295 
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 296 

3.3.1 Multiple Linear Regression  297 

Three multiple linear regression models were utilised to investigate the relationship between the full 298 

independent variable dataset and the dependent variables (individual 3D neutral breast positions) (Table 299 

4). The adjusted R2 values for the anteroposterior (Model 1), mediolateral (Model 2) and superoinferior 300 

(Model 3) neutral breast positions were 0.86, 0.74, and 0.50, respectively. 301 

 302 

Table 4. Multiple linear regression models of the independent 3D neutral breast position in 303 

anteroposterior (Model 1), mediolateral (Model 2) and superoinferior (Model 3) directions, with 304 

the full independent variable dataset (the gravity-loaded breast position, age and 305 

anthropometrics, and MRI breast composition data). 306 

 β SE P F-ratio df P 

Model 1. Anteroposterior neutral breast position       

Anteroposterior gravity-loaded breast position 0.75 0.08 <0.001 142.19 3 <0.001 

Biacromial breadth -0.12 0.00 0.01    

Breast volume 0.23 0.00 0.002    

       

Model 2. Mediolateral neutral breast position        

Mediolateral gravity-loaded breast position 0.68 0.08 <0.001 57.29 4 <0.001 

Superoinferior gravity-loaded breast position -0.21 0.05 0.003    

Underband circumference -0.19 0.00 0.007    

Acromiale-radiale length -0.13 0.00 0.04    

       

Model 3: Superoinferior neutral breast position       

Anteroposterior gravity-loaded breast position 0.24 0.09 0.02 20.58 4 <0.001 

Mediolateral gravity-loaded breast position  0.29 0.10 0.002    

Superoinferior gravity-loaded breast position  0.85 0.07 <0.001    

Acromiale-radiale length -0.26 0.00 0.002    

Note. β: standardised beta coefficient; SE: standard error; P: p-value.    

 307 

The anteroposterior neutral breast position (m) was predicted as 0.064 + (0.826 x anteroposterior 308 

gravity-loaded breast position) + (-0.001 x biacromial breadth) + (0.000 x breast volume).  309 
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The mediolateral neutral breast position (m) was predicted as -0.011 + (0.826 x mediolateral gravity-310 

loaded breast position) + (-0.151 x superoinferior gravity-loaded breast position) + (0.001 x underband 311 

circumference) + (-0.001 x acromiale-radiale length).  312 

The superoinferior neutral breast position (m) was predicted as -0.059 + (0.213 x anteroposterior 313 

gravity-loaded breast position) + (0.307 x mediolateral gravity-loaded breast position) + (0.527 x 314 

superoinferior gravity-loaded breast position) + (-0.002 x acromiale-radiale length). 315 

Three multiple linear regression models were also utilised to investigate the relationship between the 316 

simplified independent variable dataset and the dependent variables (individual 3D neutral breast 317 

positions) (Table 5). The adjusted R2 values for the anteroposterior (Model 1), mediolateral (Model 2) 318 

and superoinferior (Model 3) neutral breast positions were 0.83, 0.74, and 0.50, respectively. 319 

 320 

Table 5. Multiple linear regression models for the dependent neutral breast position in all 321 

directions, anteroposterior (Model 1), mediolateral (Model 2) and superoinferior (Model 3), with 322 

the simplified independent variable dataset (the gravity-loaded breast position, age and 323 

anthropometrics). 324 

 β SE P F-ratio df p 

Model 1 Anteroposterior neutral breast position       

Anteroposterior gravity-loaded breast position 0.83 0.08 <0.001 132.41 3 <0.001 

BMI 0.15 0.00 0.03    

Biacromial breadth -0.14 0.00 0.002    

       

Model 2. Mediolateral neutral breast position        

Mediolateral gravity-loaded breast position 0.68 0.08 <0.001 57.29 4 <0.001 

Superoinferior gravity-loaded breast position -0.21 0.05 0.003    

Underband circumference 0.19 0.00 0.007    

Acromiale-radiale length -0.13 0.00 0.04    

       

Model 3: Superoinferior neutral breast position       

Anteroposterior gravity-loaded breast position 0.24 0.09 0.02 20.58 4 <0.001 

Mediolateral gravity-loaded breast position  0.29 0.10 0.002    

Superoinferior gravity-loaded breast position  0.85 0.07 <0.001    
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Acromiale-radiale length -0.26 0.00 0.002    

Note. β: standardised beta coefficient; SE: standard error; P: p-value.    

 325 

The anteroposterior neutral breast position (m) was predicted as 0.050 + (0.912 x anteroposterior 326 

gravity-loaded breast position) + (0.001 x BMI) + (-0.001 x biacromial breadth).  327 

The mediolateral neutral breast position (m) was predicted as -0.011 + (0.826 x mediolateral gravity-328 

loaded breast position) + (-0.151 x superoinferior gravity-loaded breast position) + (0.001 x underband 329 

circumference) + (-0.001 x acromiale-radiale length).  330 

The superoinferior neutral breast position (m) was predicted as -0.059 + (0.213 x anteroposterior 331 

gravity-loaded breast position) + (0.307 x mediolateral gravity-loaded breast position) + (0.527 x 332 

superoinferior gravity-loaded breast position) + (-0.002 x acromiale-radiale length).  333 

 334 

3.3.2 Multivariate Multiple Regression  335 

 Within the multivariate multiple regression analysis (utilised to predict the combined neutral breast 336 

position), model iterations were evaluated with respect to having minimum average error (calculated as 337 

the Euclidean distance between the observed and model predicted 3D position), and maximum average 338 

adjusted R2. While multivariate multiple regression analysis was performed for both the full and 339 

simplified independent variable datasets, both analyses resulted in the same model with the shortest 340 

average error, with this model including only the anteroposterior gravity-loaded breast position and the 341 

mediolateral gravity-loaded breast position as independent variables (Table 6). The average adjusted R2 342 

values for this multivariate multiple regression were 0.81, 0.69 and 0.03 for the anteroposterior, 343 

mediolateral and superoinferior positions, respectively. Additionally, the top ten multivariate multiple 344 

regression models for both the full and simplified independent variable datasets were identified and 345 

presented based on these performance metrics (Appendix 2 and 3).  346 

 347 

Variable β SE P F df p 
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 Table 6. Multivariate multiple regression for the combined neutral breast position. 348 

 Note. Β: standardised beta coefficient; SE: standard error; P: p-value. 349 

The anteroposterior neutral breast position (m) was predicted as -0.004 + (0.961 x anteroposterior 350 

gravity-loaded breast position) + (0.119 x mediolateral gravity-loaded breast position).  351 

The mediolateral neutral breast position (m) was predicted as -0.014 + (0.228 x anteroposterior gravity-352 

loaded breast position) + (0.911 x mediolateral gravity-loaded breast position). 353 

The superoinferior neutral breast position (m) was predicted as -0.148 + (-0.199 x anteroposterior 354 

gravity-loaded breast position) + (-0.038 x mediolateral gravity-loaded breast position). 355 

 356 

3.3.3 Evaluating model prediction accuracy 357 

Following on from the regression analysis, the multivariate multiple linear regression models were then 358 

assessed for accuracy (Figure 2). R2 values of 0.82, 0.45 and 0.16, MAD values of 0.006 m, 0.009 m 359 

and 0.015 m, and RMSE values of 0.007 m, 0.013 m and 0.018 m were identified for the anteroposterior, 360 

mediolateral and superoinferior neutral breast positions, respectively. All MAD values were > 0.005 m 361 

and therefore multivariate model prediction was identified as inaccurate.  362 

Anteroposterior       

Anteroposterior gravity-loaded breast position 0.96 0.06 <0.001 174.60 2 <0.001 

Mediolateral gravity-loaded breast position 0.12 0.07 0.08    

Mediolateral       

Anteroposterior gravity-loaded breast position 0.23 0.07 <0.001 89.70 2 <0.001 

Mediolateral gravity-loaded breast position 0.91 0.08 <0.001    

Superoinferior       

Anteroposterior gravity-loaded breast position -0.20 0.10 0.05 2.341 2 0.10 

Mediolateral gravity-loaded breast position -0.04 0.12 0.76    
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 Figure 2. Observed (Norris et al., 2020) versus predicted neutral breast position (m) linear 366 

regression plots, in the (a) anteroposterior, (b) mediolateral and (c) superoinferior direction. 367 

4. Discussion 368 

This study firstly aimed to utilise regression modelling to identify the predictor variables which account 369 

for neutral breast position variance, using a full independent variable dataset, and a simplified 370 

independent variable dataset. Based on the predictive models conducted, 3% to 86% of variance in the 371 

neutral breast position was accounted for by the gravity-loaded breast position (in all directions), 372 

anthropometrics (BMI, biacromial breadth, underband circumference and acromial-radiale length) and 373 

MRI breast composition data (breast volume). This study then aimed to assess model prediction 374 

accuracy, with a threshold of 5 mm. When utilising multivariate multiple regression modelling, the 375 

gravity loaded breast position alone (anteroposterior and mediolateral gravity-loaded breast positions) 376 

predicted the neutral breast positions to within 6 mm, when compared to previously identified neutral 377 

breast positions (Norris et al., 2020), and therefore did not accurately predict the neutral breast position.  378 

 379 

In general, the anteroposterior and mediolateral neutral breast positions displayed stronger correlations 380 

with the independent variables, than the superoinferior neutral breast position. The superoinferior breast 381 

position may be more impacted by the mechanical properties of the breast supporting structures than 382 

the anteroposterior and mediolateral breast positions. Within the current study, the mechanical 383 

properties of the Coopers ligaments and breast skin were not investigated, and it is therefore possible 384 

that these variables may contributed to the change in superoinferior breast position not currently 385 

explained. Additionally, Mills et al., (2016) identified that the breast moves superiorly when immersed 386 

in water, compared to when gravity-loaded. While this was observed in the current study, Mills et al., 387 

(2016) also suggested that the range of breast densities observed in a group of females may mean that 388 

breast immersion in water (which has a uniform density) is unlikely to replicate the neutral breast 389 

position for every female. This was supported by the findings from Mills et al., (2016) who reported 390 

significant differences in the superoinferior nipple position, between immersion in water and soybean 391 

oil (which is denser than water). Within the current study, the use of water for neutral breast position 392 
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estimation, may have resulted in weaker relationships occurring with the superoinferior neutral breast 393 

position. Breast volume fibroglandular percentages for participants within the current study fell in 394 

multiple BI-RADS breast density categories, category 1 (<25% breast volume fibroglandular 395 

percentage, 42 participants), 2 (25% to 50% breast volume fibroglandular percentage, 27 participants) 396 

and 3 (51% to 75% breast volume fibroglandular percentage, 11 participants) (Gweon et al., 2013), with 397 

this variation in breast density possibly not replicated by water immersion alone. However, water alone 398 

has been previously utilised (Rajagopal et al., 2008), and shown to produce acceptable estimates of the 399 

neutral breast position (within 5.6 mm) (Mills et al., 2016).  400 

 401 

When investigating potential predictors of the neutral breast position, breast volume was the only MRI 402 

breast composition variable to contribute, and this was solely in the anteroposterior direction. This 403 

contribution was possibly unnecessary however, as while 86% of the variance in the anteroposterior 404 

neutral breast position was accounted for when utilising the full independent dataset, this only decreased 405 

to 83% when utilising the simplified independent dataset. Additionally, when utilising the simplified 406 

independent variable dataset 74% of the variance in the mediolateral neutral breast position was 407 

accounted for, along with 50% of the variance in the superoinferior direction. The amount of variance 408 

accounted for within the multiple regression models conducted within this study, on individual 3D 409 

neutral breast positions (50% to 86%), were higher than that identified by Coltman et al., (2018) when 410 

predicting upper torso musculoskeletal pain from breast characteristics (23%), and similar to that 411 

identified by Koch et al., (2011) when predicting breast volume (59% to 77%). However, when 412 

multivariate multiple linear regression was utilised to predict the combined neutral position, less 413 

variance was accounted for (3% to 81%). Given the complexity of MRI breast composition data 414 

collection and its marginal contribution to neutral breast position prediction, the current study suggests 415 

that it is unnecessary for this application.  416 

 417 

The gravity-loaded breast position was identified as a predictor in both the neutral breast position when 418 

assessed in each 3D direction individually, and the combined neutral breast position. Additionally, the 419 

anthropometric measures BMI, biacromial breadth, underband circumference and acromiale-radiale 420 
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length were all included as significant predictors of the neutral breast position when assessed in each 421 

3D direction individually. BMI, along with sternal notch to nipple distance, has previously been 422 

identified to contribute to half the variance in breast mass (Brown et al., 2012), with current results 423 

further supporting Brown et al., (2012) suggestion that body composition (although possibly not breast 424 

composition) may affect breast support requirements. In regards to biacromial breadth and underband 425 

circumference, the results of the current study compliments work by Zheng et al., (2007), who identified 426 

circumference variables (body build indices such as BMI, body width and depth variables) as Factor 1 427 

when utilising Principal Component Analysis (PCA) to identify anthropometric variables which best 428 

describe body shape. When combined with the current results, this may further support the role of 429 

anthropometrics in describing, and in fact predicting breast characteristics such as shape and position.  430 

 431 

When assessing model prediction accuracy, predicted anteroposterior, mediolateral and superoinferior 432 

neutral breast positions were all > 5 mm different from previously identified neutral breast positions, 433 

indicating that the gravity-loaded anteroposterior and mediolateral breast positions alone, do not 434 

accurately predict the neutral breast position. If integrated into the bra design and development process, 435 

imprecise breast positioning may contribute to the development of poorly designed bras, which when 436 

added to the bra market may cause consumer dissatisfaction (Chen et al., 2011). While Chan et al., 437 

(2001) suggested that continual innovation should occur, and improvements should be made within the 438 

bra industry to improve bra development and performance, further work is required within this 439 

innovative research to identify additional variables which accurately predict the neutral breast position 440 

to within 5 mm.  441 

 442 

While this is the first study to investigate predicting the neutral breast position, it is not without 443 

limitations. Firstly, while we identified an extensive selection of biomechanical and physiological 444 

variables as potential neutral breast position predictors, it is possible further predictors exist. For 445 

example, when developing a new Chinese bra sizing system Zheng et al., (2007) identified 98 breast 446 

characteristics which described breast shape utilising 3D body scanning. While Zheng et al., (2007) 98 447 

breast characteristics may aid in the prediction of the neutral breast position, this study focused on the 448 
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collection of a number of simple variables (excluding MRI breast composition data), to increase the 449 

feasibility of neutral breast position integration within the bra industry.  450 

 451 

5. Conclusion 452 

The current study identified that MRI breast composition data only marginally contributed to neutral 453 

breast position prediction, with only breast volume identified as a predictor of the anteroposterior 454 

neutral breast position. Additionally, when predicting the combined neutral breast position, while the 455 

gravity-loaded breast position alone (anteroposterior, and mediolateral) accounted for 81% and 69% of 456 

the variance in the anteroposterior and mediolateral neutral breast positions, 97% of the variance in the 457 

superoinferior neutral breast position remains unexplained. Lastly, the gravity-loaded breast position 458 

alone does not accurately predict the neutral breast position (MAD > 5 mm in all directions), when 459 

compared to observed neutral breast positions. Prior to implementation in bra development, further 460 

work is required to identify additional variables which successfully predict the neutral breast position. 461 
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Independent 

Variables 

Gravity loaded 

breast position 

(anteroposterior) 

Gravity loaded 

breast position 

(mediolateral) 

Gravity loaded 

breast position 

(superoinferior) 

Age BMI 
Waist-

hip ratio 

Underband 

circumference 

Bust 

circumference 

Biacromial 

breadth 

Acromiale-

radiale 

length 

Sum of 

eight 

skinfolds 

Breast 

volume 

Breast 

volume FG 

percentage 

Breast 

FG mass 

Breast 

fat mass 

Total 

breast 

mass 

Breast 

mass-

density 

Gravity loaded 

breast position 

(anteroposterior) 

1                 

Gravity loaded 

breast position 

(mediolateral) 

0.26*   1                

Gravity loaded 

breast position 

(superoinferior) 

-0.62*** -0.44*** 1               

Age 0.06   -0.06  -0.08   1              

BMI 0.72*** 0.38** -0.57*** 0.06  1             

Waist-hip ratio 0.20  0.07   -0.05   -0.15  0.28* 1            

Underband 

circumference 
0.70*** 0.40*** -0.47*** 0.13  0.81*** 0.38*** 1           

Bust 

circumference 
0.80*** 0.49*** -0.60*** 0.08  0.85*** 0.32** 0.82*** 1          

Biacromial 

breadth 
0.30** 0.01   -0.33** -0.07  0.24* 0.13 0.18 0.28* 1         

Acromiale-

radiale length 
0.11  0.30** -0.20   0.08  -0.09 -0.15 0.06 0.10 0.37** 1        

Sum of eight 

skinfolds 
0.62*** 0.40*** -0.48*** 0.02  0.82*** 0.24* 0.61*** 0.70*** 0.04  -0.03  1       

Breast volume 0.79*** 0.54*** -0.74*** -0.08  0.75*** 0.18 0.63*** 0.83*** 0.18  0.08  0.73*** 1      

Breast volume 

FG percentage 
-0.44*** 

 

-0.21   
0.39*** -0.20  -0.65*** -0.21 -0.59*** -0.57*** -0.04  0.17  -0.71*** -0.53*** 1     

Breast FG mass 0.05   0.17   -0.12   -0.26* -0.32 -0.19 -0.32** -0.12 0.02  0.20  -0.23* 0.11 0.69*** 1    

Breast fat mass 0.77*** 0.49*** -0.71*** -0.01  0.81*** 0.23* 0.71*** 0.86*** 0.17  0.03  0.79*** 0.97***  -0.70*** -0.14  1   

Total breast mass 0.79*** 0.54*** -0.74*** -0.09  0.74*** 0.18 0.61*** 0.82*** 0.18  0.09  0.71*** 0.99*** -0.49*** 0.16  0.96*** 1  

LB mass-density -0.44***  -0.21   0.39*** -0.20  -0.65*** -0.21 -0.59*** -0.57*** -0.04 0.17  -0.71*** -0.53*** 1.0*** 0.69*** -0.70*** -0.49***  1 

Appendix 1. Pearson’s correlation coefficient (r) values for all independent variables.  

Note. High (≥ 0.7 and < 0.9) and very high (≥ 0.9) correlations represented in bold. * P < 0.05, ** P < 0.01 and *** P < 0.001. FG: fibroglandular.  
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Appendix 2. Model selection statistics for the top ten performing multivariate multiple regression 

models utilising the full independent variable dataset. 

Note. †calculated as the Euclidean distance between the observed and model predicted position in the three- 

dimensional space. 

 

 

 

 

 

 

 

Performance Variables included 
Average 

error† 

Adjusted 

R2 

Average 

adjusted R2 

1 
Anteroposterior gravity-loaded breast position, 

mediolateral gravity-loaded breast position. 
0.017 

X:0.81 

Y:0.69 

Z:0.03 

0.51 

2 

Age, sum of eight skinfolds, breast volume, 

breast volume fibroglandular percentage, breast 

fibroglandular mass, breast fat mass. 

0.021 

X:0.64 

Y:0.37 

Z:0.07 

0.36 

3 
BMI, breast volume, breast volume 

fibroglandular percentage, breast fat mass. 
0.021 

X:0.67 

Y:0.40 

Z:0.05 

0.37 

4 
BMI, breast volume, breast volume 

fibroglandular percentage.  
0.021 

X:0.67 

Y:0.40 

Z:0.07 

0.38 

5 

BMI, breast volume, breast volume 

fibroglandular percentage, breast fat mass, 

breast mass-density.  

0.021 

X:0.67 

Y:0.40 

Z:0.05 

0.41 

6 

Waist-hip ratio, sum of eight skinfolds, breast 

volume, breast volume fibroglandular 

percentage, breast fibroglandular mass, breast 

fat mass, total breast mass, breast mass-density. 

0.021 

X:0.64 

Y:0.36 

Z:0.05 

0.35 

7 
BMI, bust circumference, acromiale-radiale 

length, breast fibroglandular mass. 
0.021 

X:0.64 

Y:0.37 

Z:0.11 

0.37 

8 

Age, sum of eight skinfolds, breast volume, 

breast fibroglandular mass, breast volume 

fibroglandular percentage, breast mass-density.  

0.021 

X:0.64 

Y:0.37 

Z:0.07 

0.37 

9 

Age, sum of eight skinfolds, breast volume, 

breast volume fibroglandular percentage, breast 

fibroglandular mass, breast mass-density.  

0.021 

X:0.64 

Y:0.37 

Z:0.07 

0.36 

10 
BMI, breast volume, breast volume 

fibroglandular percentage, breast mass-density. 
0.021 

X:0.67 

Y:0.40 

Z:0.05 

0.37 
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Appendix 3. Model selection statistics for the top ten performing multivariate multiple regression 

models utilising the simplified independent variable dataset. 

Performance Variables included 
Average 

error† 

Adjusted 

R2 

Average 

adjusted R2 

1 
Anteroposterior gravity-loaded breast position, 

mediolateral gravity-loaded breast position. 
0.017 

X:0.81 

Y:0.69 

Z:0.03 

0.51 

2 

BMI, waist-hip ratio, underband circumference, 

bust circumference, biacromial breadth, 

acromiale-radiale length.  

0.021 

X:0.59 

Y:0.35 

Z:0.11 

0.35 

3 

Age, BMI, underband circumference, bust 

circumference, biacromial breadth, acromiale-

radiale length, sum of eight skinfolds. 

0.021 

X:0.59 

Y:0.34 

Z:0.09 

0.34 

4 

Age, waist-hip ratio, bust circumference, 

biacromial breadth, acromiale-radiale length, 

sum of eight skinfolds.  

0.021 

X:0.59 

Y:0.35 

Z:0.11 

0.35 

5 

Age, BMI, waist-hip ratio, underband 

circumference, bust circumference, biacromial 

breadth, acromiale-radiale length. 

0.021 

X:0.59 

Y:0.35 

Z:0.10 

0.35 

6 

BMI, underband circumference, bust 

circumference, biacromial breadth, acromiale-

radiale length, sum of eight skinfolds.  

0.021 

X:0.59 

Y:0.34 

Z:0.10 

0.34 

7 

Waist-hip ratio, bust circumference, biacromial 

breadth, acromiale-radiale length, sum of eight 

skinfolds. 

0.021 

X:0.59 

Y:0.35 

Z:0.12 

0.35 

8 

Age, BMI, waist-hip ratio, bust circumference, 

biacromial breadth, acromiale-radiale length, 

sum of eight skinfolds. 

0.021 

X:0.59 

Y:0.35 

Z:0.10 

0.35 

9 

Age, waist-hip ratio, underband circumference, 

bust circumference, biacromial breadth, 

acromiale-radiale length, sum of eight 

skinfolds.  

0.021 

X:0.58 

Y:0.35 

Z:0.09 

0.34 

10 

BMI, waist-hip ratio, bust circumference, 

biacromial breadth, acromiale-radiale length, 

sum of eight skinfolds. 

0.021 

X:0.59 

Y:0.35 

Z:0.11 

0.35 

Note. †calculated as the Euclidean distance between the observed and model predicted position in the three- 

dimensional space. 

 

 


