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ABSTRACT

Training Load and Injury in Professional Ballet

Joseph W. Shaw
St. Mary’s University, Twickenham

Doctor of Philosophy
In professional ballet, training load has frequently been suggested to be associated with
the risk of musculoskeletal injury. Despite a recent surge in the number of training load
research studies in high performance sport, relatively little research has been conducted
investigating training load in ballet. The aim of this thesis was, therefore, to describe the
training loads undertaken by professional ballet dancers, explore the load-injury relation-
ship in ballet, and provide valid methods and recommendations for load management in
professional ballet.
Two five-season cohort studies were conducted, investigating scheduling and medical data
at an elite professional ballet company. Shared frailty models were used to investigate rela-
tionships between individual risk factors, accumulated dance volume, and hazard ratios for
injury risk. Greater week-to-week changes in dance volume and smaller seven-day dance
volume were associated with increase rates of overuse injury, whilst age (traumatic injury),
previous injury, and company rank (overuse injury) were also associated with increases
in hazard ratios for injury. Analyses of scheduling data were consistent with previous re-
search regarding the large rehearsal and performance volumes completed by ballet dancers.
For the first time, however, the present research revealed the large variation in dance hours
occurring from week-to-week, across the season, and between company ranks. In profes-
sional ballet, there is great scope to optimise training loads from increased emphasis on
periodisation of the repertoire and rehearsal schedule alone.
Three methodological studies explored the development and validation of training load
measures in professional ballet. Firstly, the validity of session rating of perceived exertion
in professional ballet dancers was investigated, revealing very large positive linear rela-
tionships with Edwards and Banister training impulse scores. Correlation coefficients were
comparable across men and women, though were larger in rehearsals compared with bal-
let class. Secondly, a rule-based classifier for measuring jump frequency and height from
accelerometer data was developed and validated, demonstrating a high degree of accuracy,
and providing a simple means of managing jump load. Finally, a series of recurrent neu-
ral networks were developed to facilitate the measurement of tissue-specific forces outside
of a laboratory using inertial measurement units, outperforming single variable linear re-
gression approaches for the measurement of Achilles tendon, patellar tendon, and tibial
force. Open-source software was developed and presented to house these algorithms, and
database and visualize longitudinal training load data.
This thesis demonstrates the importance of managing a rehearsal and performance sched-
ule throughout a professional ballet season. Where more in-depth understanding of training
load is required for managing high-risk dancers, this thesis provides practical, valid, and
open-source methods for quantifying load.
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CHAPTER 1

Introduction

1.1 Context

1.1.1 A History of Classical Ballet

Ballet is a form of performance art through which dancers may portray an emotion, express
an idea, or convey a narrative through dance. The origins of ballet can be traced back to the
Italian Renaissance, where dances would be performed in the royal courts during formal
events and celebrations [1]. In the 16th century, the marriage of Catherine de’ Medici to
King Henry II brought ballet to France [1]. It was in France, in the 17th century, that the
art became formalised, developing its own vocabulary and technique. King Louis XIV
founded the Académie Royale de Danse, the first formal ballet organisation, and had his
ballet instructor Pierre Beauchamp codify the art form [1]. The spread of ballet in the
19th and 20th centuries, firstly across Europe, and subsequently the rest of world, led to the
emergence of more professional companies and teaching methods [1].

1.1.2 Ballet Technique

The formalisation of ballet brought with it the development of ballet technique, governing
the movement and form of dancers. Whilst variations exist between teaching methods, the
underlying foundations of ballet technique remain constant [2]. These include: posture

(or alignment)—the integration of the whole body to form a cohesive whole, such that a
vertical line can be drawn from the head, down through the torso, pelvis and the feet; turn-
out—the external rotation of the leg, from the hip; placement—the positioning of each body
part, throughout movement, such that its natural relationship with others is maintained; and
lengthening (or extension)—elongation of the limbs through extension of the joints [2].
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1.1.3 Long Term Development of Ballet Dancers

Many dancers will begin learning ballet at a young age, often leaving home at the age of
11 to begin full-time training alongside academic classes [3]. Following graduation from a
ballet school, classical dancers may seek employment from a professional company. The
career of a dancer begins in the corps de ballet, for which roles are typically performed as
part of an ensemble. As their career progresses, a dancer may be promoted to the rank of
soloist, performing solo or supporting roles in a production. Finally, a selection of dancers
will reach the rank of principal—the most senior artistic rank—performing leading roles in
the company’s productions.

For classical dancers employed by resident companies (i.e., not touring companies),
a dancer’s day-to-day schedule is relatively consistent in its structure. The day typically
begins with ballet class: a 60–90 min session where dancers can hone their technique,
featuring a progression in both physical and technical intensity as dancers move from exer-
cises at the barre (stationary exercises supported by a handrail), to adagio exercises in the
centre of the studio, progressing to petit allegro and finally, more explosive grand allegro

exercises across the studio [4]. Following ballet class, dancers complete rehearsals: ses-
sions during which they will be learning or practicing choreography for a specific ballet.
On any given day a company may also perform for a public audience, either during the day
(a matinée) or in the evening [5]. Performances, typically ˜3 h in duration with intervals,
may be comprised of a single full-length ballet (e.g., Romeo and Juliet, The Nutcracker,
etc.), or several shorter ballets.

1.2 Science and Medicine Support in Ballet

The activity profile of ballet is intermittent [6]; dancers complete high intensity explosive
movements interspersed with movements requiring fine motor control, and periods of rest
or low intensity activity. In recent years, the physical demands of professional ballet have
been increasingly recognised, with dancers having been termed ‘performing athletes’ in
sports medicine research [7]. To this end, many of the foremost ballet companies and
schools now house sports science and medicine departments—comparable to those seen in
elite sports teams—providing services such as physiotherapy, strength and conditioning,
Pilates, and performance nutrition. Nonetheless, both the provision and uptake of science
and medicine in dance, as well as the research underpinning these services, currently trails
that observed in sport [8].

One area of sports medicine research that has grown vastly in recent years is training
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load, and its relationships with athletic performance and health [9, 10, 11]. For those work-
ing in professional ballet, it is well-known that the rehearsal and performance schedules
undertaken by dancers impose considerable physical and cognitive stress [12, 13]. How-
ever, research into the training load demands of professional ballet, and its implications for
dancer health and performance, is scant. Some limited evidence, though, is sufficient to
warrant further research: dancers engage in > 5 h.day-1 of dance [5]; companies perform
~140 shows per season [14]; and 68 and 60% of injuries, in women and men, respectively,
are overuse in onset [15].

1.3 Thesis Aims

Some limited low-level or anecdotal evidence suggests that the training loads undertaken
by professional ballet dancers are high in comparison to those seen in sportspeople. Sev-
eral research groups have suggested that these training loads are associated with injury
risk, and thus require careful management. To date, however, research describing training
loads in ballet, investigating the relationships between training loads and injury in ballet,
or validating methods for quantifying training load, is extremely limited.

Three broad aims will, therefore, guide this thesis:

1. To understand the training load demands experienced by professional ballet dancers.

2. To explore the relationship between training load and musculoskeletal injury in pro-
fessional ballet.

3. To investigate the validity and reliability of measures of internal and external training
load, and provide professional ballet companies with practical tools and best practice
recommendations for the management of training load.

Chapter 2 will review current literature in the field of training load in sport and dance,
following which these broad thesis aims will be refined into specific research questions.
These research questions, as well as an overview of the thesis structure, are presented at
the conclusion of Chapter 2.
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CHAPTER 2

The Quantification and Implications of Training
Load in Sport and Dance: A Literature Review

2.1 Outline

This chapter reviews and summarises training load research in sport and dance. Firstly,
this review covers and defines concepts underpinning the quantification and manipulation
of training; methods of training load quantification are then discussed and critiqued; an
overview of load-injury research is presented, and specifically the methodological issues
observed in longitudinal load-injury research; and finally, the current body of training load
injury in dance is reviewed, both in terms of methodological approaches to training load
quanification, and existing load-injury research. Research into the specific activity demands
and physiological responses observed in professional ballet is covered in the systematic
review presented in Chapter 3.

2.2 Context

Increasing training volume and training intensity is desirable to athletes and sports teams
seeking to elevate their performance level above that of their competitors [16]. Similarly,
in professional ballet, greater training volumes and intensities allow dancers and compa-
nies to continually hone the execution of movements and choreography, and subsequently
amass artistic esteem, career success, and financial rewards. Whilst effective prescription
of training provides a means by which athletes and dancers can improve their performance,
inappropriate management of training load may result in adverse outcomes such as over-
training syndrome, illness, and injury [17]. The ability to quantify training stress, and
understand the relationship between training stress and the resulting adaptive or maladap-
tive response is, therefore, of primary interest to athletes and dancers, and their coaches
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[17].

2.2.1 Defining Training Load

Load has been used as a global term encapsulating the cognitive and physiological stress
experienced by an individual [18]. The load experienced by an athlete is not limited to the
stress resulting from participation in athletic training or competition, but also extends to
further psychosocial stress resulting from lifestyle factors such as an athlete’s personal life,
travel requirements, or academic commitments [19].

Training load can be defined as a training or competition-induced input variable which
elicits a psychophysiological response [20]. Training load is the parameter which the coach
attempts to manipulate to stimulate physiological adaptation; Coutts et al., [21] therefore,
suggest that the quantification of training load forms the basis of any athlete monitoring
system. Measures of training load can be either external or internal [18]. External training
loads relate to the physical work which is performed during an exercise bout; for example,
the number of sets or repetitions of an exercise, the distance travelled, the weight lifted,
or the speed of movement [18]. Given its relative simplicity to measure in practice [19],
training is commonly prescribed in terms of the external training load, with the aim of ma-
nipulating an athlete’s internal training load. Internal training loads are those which are
measured internally to the athlete, quantifying a tissue or system’s response to an external
load; for example, heart rate (HR), session rating of perceived exertion (s-RPE), or blood
lactate concentration [BLa] [18]. Thus, two athletes may undertake identical external train-
ing loads, yet incur different internal training loads. Importantly, it is the internal training
load, and not the external training load, that provides the stimulus for physiological adap-
tation.

2.2.2 The Training Process

The training process is underpinned by the concept of adaptation [22]. Training is designed
to impose stress, offsetting the body’s homeostasis, and provoking a transient physiological
response. An acute reduction in neuromuscular performance is, therefore, observed after
the application of a training stimulus; following a period of recovery, however, a supercom-
pensation effect occurs, such that a subsequent training bout of an equal magnitude would
not offset homeostasis to the same extent (Figure 2.1 A) [23]. The repetition of a physio-
logical stress over time stimulates a chronic adaptive response, leading to semi-permanent
physiological changes. Should rest and recovery be insufficient following a training bout,
an athlete’s capacity for load will instead be reduced as further training stress is applied,
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Figure 2.1: A) Biological adaptation and B) biological maladaptation through cycles of
loading and recovery. Redrawn from Soligard et al. [17]

ultimately resulting in maladaptive responses (Figure 2.1B).
The relationship between load and athlete health has been conceptualised as a well-

being continuum (Figure 2.2) [23]. The application of load results in a rightward shift
along the continuum, whilst a period of recovery results in a leftward shift. When load
is prescribed appropriately, homeostasis is offset such that an acute performance decre-
ment is seen lasting days to weeks, followed by a supercompensation effect and a perfor-
mance improvement; a process referred to as functional overreaching. Conversely, when
further loading stimuli are applied before sufficient recovery, non-functional overreaching

may occur, whereby the neuromuscular performance decrement may extend from weeks to
months; whilst full recovery may be achieved, no supercompensation effect is observed.
Also included in the wellness continuum are clinical pathologies, such as clinical symp-

toms, overtraining syndrome, time-loss injury, and illness, which may diminish perfor-
mance for longer periods, or force the cessation of further loading [17].
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Figure 2.2: Well-being continuum. Redrawn from Soligard et al. [17], based on the
original work of Fry et al. [23].

The physical states along the wellbeing continuum are not discrete events, but instead,
represent a gradual transition in performance and wellbeing. Thus, neither the manipu-
lation of an athlete’s status nor the identification of their exact status at any given time
is straightforward. Furthermore, an athlete does not need to undergo each physical state
in turn; for example, time-loss injury may occur before the onset of non-functional over-
reaching [17]. Finally, it should also be recognized that movement across the continuum
is not dictated by training load alone, but is a result of the interplay between training load
and non-sport stress placed on the athlete. For example, lifestyle factors such as sleep,
nutrition, travel, personal relationships, psychological stress, etc., may all contribute to an
athlete’s state of wellbeing. It is, therefore, important that coaches account for all types of
load when planning training and recovery.

2.2.3 Training and Performance

The understanding that the manipulation of an athlete’s training load can bring about
changes in their physical status is not a new concept. Calvert et al. [24] presented a sys-
tems model of the effects of training on physical performance, whereby performance (p(t))
is determined by the interplay between fitness and fatigue, determined by the equation:

p (t) = [(e
−t
τ1 − e

−t
τ2 ) −Ke

−t
τ3 ]*w(t)

Where K is a constant adjusting the magnitude of the fatigue response in relation to
the fitness response, τ1 and τ2 are time constants associated with the calculation of fitness
(50 and 5 days, respectively, in Calvert et al. [24]), τ3 is a time constant associated with
the calculation of fatigue (15 days in Calvert et al. [24]), w(t) is the training impulse, *
represents convolution, and t indicates the day of the training impulse. Following its initial
publication, Banister’s group updated their model, removing the second fitness parameter
which was not supported by their data, such that fitness (g(t)) and fatigue (h(t)) are modelled
as:
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g (t) = g (t− i) e
−i
τ1 + w(t)

and

h (t) = h (t− i) e
−i
τ2 + w(t)

where i is the duration since the previous training session, and τ1 and τ2 are the decay
constants for each input. Performance is subsequently calculated as the difference between
fitness and fatigue, adjusted for weighting factors. Thus, the idea that a bout of training can
bring about both positive and negative adaptations is well established in the literature.

2.2.4 Principles of Training

In an effort to ensure the training process elicits the desired adaptations, coaches are guided
by common principles [25]:

• Specificity – the movement patterns and intensity of the training stimulus should
target a specific task or component of fitness/performance.

• Overload – the training stimulus imposed on an athlete must be greater than that to
which the athlete is already accustomed.

• Progression – over time the training stimulus must gradually increase, such that over-
load is maintained throughout a training programme.

• Reversibility – following the removal of a training stimulus, training adaptations will
be lost over time.

• Periodization – a planned and systematic variation in training to target differing phys-
iological adaptations, and mitigate the risk of illness, injury, and overtraining.

• Rest and Recovery – an appropriate period of offload should be given to allow nec-
essary recovery and adaptation to take place.

Furthermore, the type and magnitude of training adaptations are dependent on the train-
ing stress imposed. Training load itself may, therefore, be manipulated by four further
principles [26]:

• Frequency – the number of training sessions in any given period.
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• Intensity – the exertion of any given physiological system required to complete the
exercise.

• Duration – the length of time which the exercise or training session lasts.

• Modality – the nature of the exercise(s) being performed.

2.3 Quantifying Training Load

To effectively plan and evaluate training programmes, it is important that sports science
and medicine practitioners possess a valid and reliable means of quantifying training load.
There is no universal gold standard measure of training load; instead, the method should be
specific to the activity in question [18]. For example, HR may be an appropriate measure of
metabolic load during endurance cycling, but is less relevant during heavy resistance train-
ing. The following section is not an exhaustive list of methods used for the quantification
of load, but instead details common methods used in sport.

2.3.1 Internal Training Load

2.3.1.1 Heart Rate

Heart rate monitoring provides science and medicine practitioners with a non-invasive and
objective means of measuring an athlete’s cardiovascular response to exercise. At any given
moment, HR provides a snapshot into the metabolic intensity experienced by an athlete
[27]. The affordability of HR monitors, and their relatively small impact on comfort and
movement make them a practical tool for monitoring internal training load in field settings.

At the most basic level, HR is used in field settings to measure and manipulate exer-
cise intensity. Exercise intensity domains [28] can be determined through an incremental
exercise test, and subsequently used to guide the intensity of training. For example, iden-
tification of the HR at which more meaningful physiological responses occur (e.g., blood
lactate thresholds, oxygen uptake kinetics) allows the practitioner to accurately manipulate
training intensity without the need for invasive or impractical measures [29]. Following
a training or competition session, HR data may be used to calculate training load vari-
ables; this may be as straightforward as calculating an athlete’s mean HR during a session
or drill. More commonly, however, training load is calculated as the product of volume
(session duration) and intensity (HR) [24].

Morton et al. [30] identified HR and session duration as variables which when con-
sidered together, explain much of the training stimulus incurred during a session. The
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concept of a training impulse (TRIMP) was, therefore, proposed to quantify the training
load incurred during a specific session or drill as a single value:

TRIMP = exercise duration (∆HR ratio) Y

where HR ratio is defined by the formula:

HR ratio =
HRex − HRrest

HRmax − HRrest

where HRex is the mean HR rate during exercise, HRrest is the athlete’s resting HR, and
HRmax is the athlete’s maximal HR; and where Y is defined by the formula:

Y = ebx

where b is a weighting factor of 1.92 for males or 1.67 for females, and x is the HR ratio;
accounting for the exponential rise in blood lactate concentration observed with progressive
exercise intensity, and the differences in this curve across sexes. This method is henceforth
referred to as b-TRIMP.

The TRIMP concept has since been simplified by Edwards [31] (e-TRIMP), using five
HR zones (50–60%, 60–70%, 70–80%, 80–90%, and 90–100% HRmax); the duration spent
in each zone is multiplied by a scaling factor (1, 2, 3, 4, and 5, respectively), following
which each value is summated to calculate the e-TRIMP. The e-TRIMP calculation may
better account for changes in intensity in intermittent activities, where a mean HR may not
give an accurate representation of the metabolic load experienced by the athlete. Similarly,
for professional cyclists, Lucia et al. [32] proposed a system based on intensity zones,
though in this instance three zones were used, delineated by the ventilatory threshold and
the respiratory compensation point (l-TRIMP).

Manzi et al. [33] demonstrated that should it be practical to conduct a maximal incre-
mental test before exercise, an individualised version of TRIMP (i-TRIMP) may provide a
greater degree of validity. The i-TRIMP method has two improvements over the original:
firstly, it uses an individualised weighting factor based on each athlete’s blood lactate curve;
and secondly, rather than use the athlete’s mean HR, a TRIMP value is calculated at each
HR measurement during the session, and thus accounts for sessions of variable intensity. In
the absence of individualised blood lactate curves a modified TRIMP method (m-TRIMP),
using the generic weighting factor from b-TRIMP, but the timepoint-specific calculation
from i-TRIMP, may nonetheless represent an improvement on b-TRIMP for intermittent
exercise [33]:
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Figure 2.3: A) Borg CR-10 scale and B) Borg CR-100 scale.

m−TRIMP =
∑

HR ratio × duration × ebx

where b is a weighting factor of 1.92 for males or 1.67 for females, and χis the HR
ratio.

2.3.1.2 Session Rating of Perceived Exertion

Foster et al. [34] proposed the s-RPE, extending the conceptual basis of TRIMP (i.e., du-
ration × intensity) to use with an athlete’s rating of perceived exertion (RPE). Session-RPE
is calculated by multiplying the session duration by the athlete’s RPE—typically measured
using Borg’s CR-10, a category-ratio scale anchored at the number 10 [35] (Figure 2.3
A)—to provide a training load value measured in arbitrary units (AUs). Since its inception,
s-RPE has been validated in numerous sports, against several criterion measures of internal
load, for example, b-TRIMP [36, 37, 38], e-TRIMP [36, 37, 38], l-TRIMP [36, 38], and
blood lactate concentration [37, 39].

Several alterations to the methodology of s-RPE have been suggested to increase the
degree to which the measurement accurately reflects a physiological construct. The use
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of a CR-100 scale (Figure 2.3 B) instead of a CR-10 scale, may provide a greater degree
of sensitivity to small differences in exertion, and avoid directing athletes toward ratings
associated with verbal anchors [40]. Differential s-RPEs (d-RPE) have been proposed to
increase the specificity of the load construct being measured, by asking the athlete for
separate RPEs for key sensory inputs, for example, central and peripheral exertion [41].
For example, a “very hard” RPE may be given in response to both a continuous bout of
cycling exercise and a resistance training session, though the physiological responses are
likely to differ considerably.

2.3.2 External Training Load

2.3.2.1 Manual Observation of Volume or Intensity

In several sports, some level of external training load can be quantified through simple ob-
servation. At the most basic level, the duration of an exercise bout or the number of exercise
bouts can serve as an approximation of external load. In some instances, the structure of the
activity itself may facilitate a straightforward means of quantifying training volume; for ex-
ample, in baseball, a pitcher’s load may be quantified via the number of pitches thrown [42],
whilst in cricket, a bowler’s load may be reasonably accurately quantified via the number
of overs bowled [43]. In sports such as weightlifting, both the volume and intensity of the
activity are inherent in the training programme itself through the repetitions performed and
the weight lifted. Similarly, in running events, volume and intensity are evident from the
distance travelled, and the pace of the run. Finally, when practitioners have the available
time and high levels of detail are required—particularly in complex open sports—time mo-
tion and video analysis may provide further insight into the demands of an activity. Time
motion and video analysis, for example, has been used to calculate work-to-rest ratios,
movement intensities, and the frequencies of sport or dance-specific actions [44, 45, 46].

2.3.2.2 Inertial Measurement Units

Inertial measurement units (IMUs) house accelerometers, gyroscopes, and sometimes mag-
netometers, measuring the linear acceleration, angular velocity, and orientation of a body,
respectively [47]. An IMU typically contains three of each device; one aligned to each of
the x, y, and z axes. The integration of angular velocity to calculate orientation, and the
double integration of linear acceleration (following the subtraction of gravity) to calculate
displacement, can, therefore, be used to locate the position of the IMU relative to a known
point in space; a process known as dead reckoning [48].
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Whilst dead reckoning using accelerometers and gyroscopes alone is theoretically vi-
able, errors in the measurements of linear acceleration and angular velocity lead to inac-
curacies in position estimation [48]. Measurement error is in two primary forms: bias and
noise [48]. Since position at each time point is calculated relative to the previous time
point, measurement errors are cumulative. As a result, bias in the measurement of angular
displacement, being the first integral of angular velocity as a function of time, therefore, in-
creases linearly with time (Figure 2.4 A); bias in displacement, being the second integral of
acceleration as a function of time, will, therefore, increase exponentially with time (Figure
2.4 B). The presence of random noise results in random walk (Figure 2.4 C). In other words,
in the absence of bias, the error follows a normal distribution around the mean, however, it
is not possible to predict the direction of this error during a single measurement. To garner
accurate positional data over long periods, IMU data are combined with other positional
data sources which do not suffer from measurement drift [48]. To calculate accurate ori-
entation, IMUs are often combined with magnetometer data, whilst to calculate position,
IMU data may be combined with global positioning systems, camera, or ultra-wideband
data.

26



Figure 2.4: Sources of inertial measurement unit error. A) Constant drift resulting from
integration of a signal with a constant bias. B) Exponential drift resulting from double
integration of a signal with a constant bias. C) Random walk resulting from a signal subject
to random noise.
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In physical activity and health research, accelerometers have long been used to quantify
energy expenditure [49]. Whilst the use of accelerometers and IMUs is historically less
common in sporting research, their applications have been wide-ranging; for example, to
quantify the magnitude of head impacts [50], the forces of punches and kicks [51], and
intra-stroke kayak velocity [52]. In training load research, studies using accelerometers
and IMUs typically fall into one of three categories. Firstly, IMUs have been used to aid in
the identification of specific actions during training or competition; for example, machine
learning approaches have been used to monitor shot types and counts in badminton [53] and
tennis [54], and jump counts during figure skating [55]. Secondly, whole-body movement
demands have been quantified through variables such as accelerations, decelerations, high

metabolic load, PlayerLoad™, and collisions [56, 57]. Finally, the kinetics and kinematics
of specific movements have been measured using IMUs; for example, the measurement of
tibial acceleration during individual foot-strikes in runners [58], or the estimation of knee
and hip joint angles during jump landings [59].

2.4 Training Load and Injury

The relationship between training load and injury has been at the forefront of sports medicine
research in recent years [60]. This section will first review the conceptual relationship be-
tween load and musculoskeletal injury, followed by longitudinal research into the load-
injury relationship in professional sport, and finally, common methodological issues within
this field of research.

2.4.1 Injury Aetiology Models

In sports medicine literature, aetiological models have been proposed with the goal of out-
lining pathways by which athletic injuries occur, and facilitating research and applied in-
terventions targeting injury prediction and prevention. Though it is beyond the scope of
the work to comprehensively review the evolution of injury aetiology models, several mod-
els key to understanding the load-injury relationship will be discussed. Common amongst
these models, either implicitly or explicitly, is the concept of load vs. capacity, whereby
injury occurs when load exceeds capacity.

The balance of load and capacity was first evident in Ettema’s stress-capacity model
of human injury, describing an interaction between external and internal factors [61]. The
stress component of this model is a product of the athlete’s environment, whilst the capac-
ity component is determined by internal factors. In van Dijk’s update stress-strain-capacity
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Figure 2.5: Stress-strain-capacity model. Redrawn from van Dijk et al. [62]

model [62] (Figure 2.5), a third component, strain, represents the response of an athlete to
a bout of load; in this regard, the occurrence of injury is no longer simply a balance of two
isolated parameters, but instead, it is a complex interaction of multiple factors over time.
Importantly, the stress-strain-capacity model depicts the athlete as an active manipulator of
the load experienced, and not simply a passive recipient. Furthermore, the model accounts
for the recurrent nature of load, acknowledging the short and long-term psychophysiologi-
cal effects of a bout of load.

More recently, aetiology models have focused on the multifactorial nature of athletic
injury. Meeuwisse’s [63] multifactorial model originates with an athlete who may or may
not be predisposed to injury, determined by internal risk factors such as age, physical char-
acteristics, and prior injury. Importantly though, internal risk factors alone are unlikely to
result in injury. The action of external risk factors such as playing surface or weather may
further increase the athlete’s susceptibility to injury. Finally, an inciting event is necessary
for injury to occur; for example, a ballet dancer may underrotate during a double tour en

l’air, leading to a landing with excessive knee torsion, and consequently an anterior cruci-
ate ligament tear. Whilst the landing may have been the inciting event, the athlete may have
been susceptible due to factors such as previous knee injuries, lower body weakness, or a
hard floor surface. Meeuwisse et al. [64] updated the multifactorial (Figure 2.6) to account
for the recurrent nature of athletic activity; risk factors are not stationary, but instead shift
as a result of repeated exposure, and the resulting adaptation or maladaptation.

Bittencourt et al. [65] proposed a paradigm shift from reductionism to complexity,
arguing for movement away from isolated risk factors and instead towards interactive
relationships—ultimately, injuries do not occur as a result of a single risk factor. The
authors proposed a complex systems model, i.e., a model comprised of multiple parts that
inconsistently and non-linearly interact with each other (Figure 2.7). Furthermore, these
parts are altered, and new parts may emerge, as a result of their interaction. Thus, athletic
injury is a result of a recursive and unpredictable interplay between multiple physiological,
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Figure 2.6: A dynamic, recursive model of etiology in sport injury. Redrawn from
Meeuwisse et al. [64]

technical, environmental, and psychological factors.
The previously outlined models, whilst outlining an injury pathway, fail to describe an

explicit chain of events, at a structural level, which detail the process by which injuries
occur. McIntosh [66] devised a biomechanical model of sports injury, whereby injury is
akin to structural failure of a physiological tissue, occurring as a result of energy transfer to
the tissue. Importantly, McIntosh [66] identifies the mechanical properties of the tissue as
determining the manner in which the body responds to the load. Injury prevention strategies
must, therefore, target either a reduction in the load experienced by the tissue, or an increase
in the tolerance of the tissue to that load.

2.4.1.1 A Materials Science Approach to the Load-Injury Relationship

In recent years, several etiological models have been devised with the intent of more explic-
itly defining a specific chain of causal events culminating in athletic injury. These pathways
have built on McIntosh’s model [66], adopting a materials science approach whereby mus-
culoskeletal injury is a biomechanical event, occurring when physiological tissue reaches
a point of material failure (i.e., fracture or deformation) [67]. In essence, whilst athletic
injury is multifactorial, ultimately, these factors contribute to injury by affecting physio-
logical tissue load or capacity, and thus influencing a mechanical fatigue pathway.

This approach is underpinned by the assumption that physiological tissue follows the
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Figure 2.7: Complex model for sports injury. Redrawn from Bittencourt et al. [65]

same physical laws as any other material: when the stress and strain placed on a tissue
exceed the strength of that tissue, material failure will occur [67]. At a tissue level, mi-
crostructural damage accumulates (i.e., mechanical fatigue) in response to repeated me-
chanical load [68]. The load-bearing properties of the tissue are often reduced follow-
ing microstructural damage; the accumulation of this microdamage may result in material
failure at mechanical loads below the material’s monotonic strength [67]. In bone, this
microdamage most commonly manifests as either linear microcracks—50–100 μm cracks
resulting from repetitive loading—or diffuse damage—clusters of cracks which typically
occur in tensile regions of bone due to creep (i.e., material deformation following repeti-
tive mechanical stress) [69]. In tendon, microdamage takes the form of kinked fibres, or
localized fibre dissociation and ruptures [67].

Microdamage, whilst providing the stimulus for remodelling and adaptation [68], may
also be implicated in the development of macro-stress and material failure. A stress-life
plot (Figure 2.8) describes the relationship between the magnitude of material stress and the
number of cycles the material can endure before failure. This relationship can be described
by an inverse power law:
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Figure 2.8: Theoretical stress-life plot, or S-N curve, for a material subjected to cyclic
loading. Redrawn from Edwards et al. [67]

Nf = A · σ−b

where Nf is the number of cycles until failure, A is a proportionality constant, σ is the
peak magnitude of the stress, and b is the slope of the curve. If this relationship does apply
to overuse injuries in sport, then tissue damage would increase much more rapidly with
tissue stress magnitude than with the number of loading cycles. Thus, cumulative tissue
load does not equate to cumulative tissue damage; the damage incurred from one cycle at
2 σ, for example, would theoretically be greater than two cycles at 1 σ.

The framing of athletic injury as a mechanical fatigue phenomenon holds important
implications for measurement of training load [67]. From a mechanical loading perspec-
tive, the aim of a load measurement tool is ultimately to estimate the forces experienced
by a given physiological tissue (or a proxy of these forces), such that the damage to that
tissue, and subsequently its risk of mechanical failure, can be quantified [20]. Researchers
and practitioners should, therefore, first question the extent to which a load measurement
tool is even a valid measure of the forces experienced by a physiological tissue. Secondly,
should the tool be valid, is it suitably accurate to approximate tissue damage; given the ex-
ponential relationship between tissue load and tissue damage, the magnitude of any errors
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in this measurement are amplified. To illustrate this shortcoming, even the 3% errors in
tibial force estimation calculated by Matijevich et al. [70] translate to an ˜18% error in the
measurement of bone damage; to the author’s knowledge, no currently available wearable
system offers field-measurement of tissue forces with error in the region of 3%.

Importantly, the risk of tissue failure is determined not solely by tissue load, but by the
interplay between tissue load and tissue load capacity [71, 72]. To this end, Kalkhoven et
al. [72] presented a detailed conceptual framework for stress-related, strain-related, and
overuse injury, characterized by the relationship between these two factors (Figure 2.8).
The athlete’s physiology serves as the base of this model, composed of modifiable intrinsic
physiological factors (e.g., muscle mass, tendon composition), non-modifiable intrinsic
physiological factors (e.g., age, anatomy, injury history), and extrinsic factors contributing
to physiology (e.g., training load, nutrition).

The model then diverges into two pathways, the first of which defines factors affect-
ing tissue-specific strength. Tissue-specific strength is dictated by the relationship between
the passive mechanical properties of the tissue, and the active regulation of the mechanical
properties of the tissue. For tissue types that cannot actively alter their mechanical prop-
erties (i.e., bone, tendon), changes in tissue strength are determined by prior physiological
adaptation. For example, bone mineral density, and tendon stiffness, elasticity, and cross-
sectional area have been shown to increase following mechanical load. The mechanical
properties of muscles and joints, on the other hand, can be actively regulated via muscle
activation. Consequently, several injury risk factors may influence injury risk via altering
muscle activation, e.g., fatigue, glycogen depletion.

The second pathway defines factors contributing the loads experienced by a given phys-
iological tissue, whereby the stress and strain experienced is a product of two interrelated
factors. Firstly, the forces experienced by that tissue, determined by the impact or force
applied during the movement (e.g., ground reaction force), external factors affecting the
tissue-specific loading (e.g., footwear, playing surface), and the athlete’s physical charac-
teristics which contribute to the loading of the tissue (e.g., neuromuscular control, strength).
Secondly, the forces experienced by the tissue interacts with the tissue’s mechanical proper-
ties to determine the stress and strain, illustrated in junction one of Figure 2.9. Importantly,
some biological tissues have the ability toto alter their stiffness, and thus their material
properties are not consistent.

The two pathways come together at junction two of Figure 2.9, representing the inter-
play of tissue-specific stress and strain and the strength of the tissue. The extent of the
resulting damage determines the outcome of the bout of loading; whilst either acute or
gradual onset injuries occur when the tissue-specific stress and strain exceeds the material
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Figure 2.9: A detailed framework for stress-related, strain-related, and overuse injury.
Redrawn from Kalkhoven et al. [72].
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strength of that tissue, microdamage is an important stimulus for adaptation. The outcome
of any given loading cycle, therefore, feed back into the individual’s modifiable physiolog-
ical factors for future loading bouts.

Sections 4.2–4.4 will address research studies that have investigated associations be-
tween training load and musculoskeletal injury. Sections 4.2 and 4.3 will provide brief
overviews of the results of studies investigating absolute and relative training loads, re-
spectively, whereas critical analysis of the flaws of these studies will be discussed more
broadly in section 4.4 as many limitations are common amongst these studies.

2.4.2 Absolute Training Loads

A large body of research has investigated the relationships between the training load accu-
mulated by an athlete or athletes in a fixed period and the subsequent risk of injury. Most
commonly, this period of training load has been grouped by one or more weeks (i.e., one-
week load [73, 74], two-week load [73], etc.), grouped by a single session (e.g., distance
run in training [75], overs delivered in a match [43], pitches thrown in a match [42], etc.), or
grouped by a season or pre-season (e.g., 12-month match exposure [76], pre-season session
count [77]).

The first study investigating the relationship between training load and injury risk was
that of Lyman et al. [42] in a sample of 298 youth baseball pitchers across two seasons.
A J-shaped relationship was observed between the cumulative number of pitches thrown
before a game, and the odds ratio for elbow pain during or following that game. Similar
investigations into the load-injury relationship have since been conducted in sports such as
cricket [78, 79], Australian football [80], association football [73, 81], rugby union [82],
and rugby league [83], amongst others [84]. Whilst findings vary across studies and sports,
two common themes have emerged from the literature:

• Moderate to high chronic loads may have a protective effect against injury [73, 85,
43]. Exposure to load may be an important stimulus for adaptation. As a result, those
athletes who have not experienced a high prior load may possess underdeveloped
physical qualities, and thus may be at a greater risk of injury. Chronic training loads
have, therefore, been suggested to be synonymous to the athlete’s fitness [86].

• Very high loads may increase the risk of injury [74, 87]. Exposure to excessive
load can result in tissue microdamage and reductions in cognitive and neuromuscular
performance, which may indirectly or directly result in injury. In this respect, some
authors have suggested that acute loads are synonymous to fatigue [73].

35



The J-shaped relationship between training load and injury first identified by Lyman
et al. [42] has, therefore, become well-established, underpinning many load-management
principles and strategies existing in high-performance sport today.

2.4.3 Relative Training Loads

Load-injury research has commonly investigated relative training loads, either as an alter-
native to, or in addition to absolute training loads. In other words, researchers are interested
not only in the magnitude of the accumulated load, but also how that load relates to a prior
period of load. Theoretically, excessive progressions in training load are indicative of a
level of physical stress for which the athlete is not prepared.

2.4.3.1 Week-to-Week Changes in Training Load

One of the most common measures of relative training load used is the week-to-week
change in load experienced by an athlete. Large week-to-week changes in load have been
associated with injury in professional rugby union [82], rugby league [16], association
football [88], and Australian football [80, 89] players, and novice runners [90]. Further, an
anecdotal ‘10% rule’ is commonly referenced by non-academic websites or blogs, suggest-
ing week-to-week increases in load should not exceed 10% [91, 92].

2.4.3.2 The Acute Chronic Workload Ratio

The acute:chronic workload ratio (ACWR) [85] is a method of monitoring the relationship
between two components of training load: a recent period of load (acute load), suggested
to represent the athlete’s state of fatigue, and the training load accumulated over a longer
period (chronic load), suggested to represent an athlete’s fitness. To calculate the ACWR,
the acute load is divided by the chronic load, such that a value greater than one represents
a relative increase in load, whilst a value below one represents a relative decrease in load
[85]. Acute:chronic workload ratios outside of a certain ‘sweet spot’ (typically 0.8–1.3) are
suggested to be indicative of an increase in injury risk [17].

The ACWR is derived from Banister’s systems model of human performance, whereby
the interplay between fitness and fatigue has been extrapolated to athletic injury [93]. The
ACWR was first presented in the scientific literature by Hulin et al. [78] under the name
training stress balance. The internal (session-RPE) and external (total number of balls
bowled) workloads of 28 fast bowlers were measured over five Australian domestic cricket
seasons. Both internal and external ACWRs above 2 were associated with significant in-
creases in injury risk in the following week. The ACWR has since been applied to nu-
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merous sports, using a multitude of training load variables, the results of which are mixed.
Since its proposal, the ACWR has been widely adopted by science and medicine practi-
tioners working in sport, but has also been the subject of considerable criticism and debate
(see section 4.4).

One central theme has emerged from research into relative training loads and injury
risk: acute spikes in training load may be associated with an increased risk of injury [17].
Current best practice regarding load-management for the mitigation of athletic injury risk
can, therefore, be simplified into three broad rules of thumb [17]:

1. Athletes should avoid periods of very high acute or chronic training loads.

2. In-season, athletes should establish and maintain moderate-to-high chronic training
loads.

3. Athletes should avoid rapid increases in training load.

2.4.4 Considerations for Longitudinal Load-Injury Research

A large body of recent research exploring the load-injury relationship has used a cohort
design, in which a group of athletes are observed over one or more competitive seasons.
Training load and injury data are recorded, following which statistical analyses are under-
taken to determine associations between the two. Whilst this study design is not novel
within epidemiological research, load-injury cohort studies became far more common fol-
lowing initial ACWR research [78]; many aspects of these studies have since been cri-
tiqued. This section will first explore overarching critiques common across this body of
research, followed by those applying to specific articles.

2.4.4.1 Correlation and Causation

A common flaw of load-injury cohort studies is the overinterpretation of their results,
whereby the authors erroneously suggest that due to a correlation between load and injury,
this relationship is causal [94]. Examples of this overinterpretation are common:

“sudden increases in workload, above which fast bowlers are accustomed, in-
crease the likelihood of injury in the following 1-week period” [78]

“Acute:chronic workloads of 1.00–1.25 offer protective effects for players.
Therefore, medical and coaching staff should utilise this training load com-
ponent as it has shown relationships with injury risk for elite soccer players”
[81]
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“athletes should limit weekly increases of their training load to < 10%, or
maintain an acute:chronic load ratio within a range of 0.8–1.3, to stay in posi-
tive adaptation and thus reduce the risk of injuries” [17]

This assumption of a cause-effect relationship is invalid if the underlying intention,
study design, and statistical analysis underpinning the research do not facilitate this out-
come. This is particularly true for the load-injury relationship, for which a myriad of po-
tentially confounding factors exists. As a result, the suggestion that alterations in load can
meaningfully affect injury risk is yet unfounded, and recommendations to remove athletes
from training or meet certain thresholds are unjustified [95].

2.4.4.2 Hypothesizing After the Results are Known

Kerr [96] presented the concept of hypothesizing after the results are known (HARKing),
whereby researchers use their results to formulate a hypothesis which is presented as if
it were a priori. There are multiple reasons for which a researcher may knowingly or
unknowingly HARK, for example, to increase the chances of publication, because of hind-
sight bias, or to improve the narrative of the investigation. The field of load-injury research
has previously been suggested to be at high-risk of HARKing [94]; this is perhaps a result
of the dogma which has been established in several ACWR studies (i.e., the protective ef-
fect of high chronic training loads and the increase in injury risk following an acute spike
in training load), and their conformity to a theoretical model that was embraced by science
and medical practitioners in sport.

2.4.4.3 Statistical Power

Achieving a sample size to reliably determine load-injury associations is challenging for
several reasons. Firstly, injury events are rare. As a result, researchers are required to
collect hundreds of thousands of athlete exposure hours such that sufficient injury events
will have occurred to reliably determine associations with risk factors [97]. Secondly, the
multifactorial nature of athletic injury means that a host of known risk factors should be
included in an analysis, and as a result, the number of required injury events increases
to account for the additional covariates [97]. Finally, it has been suggested that because
not all injuries share common mechanisms, it is invalid to analyse all injuries under the
assumption that the load-injury relationship will be consistent across each injury type [20].
In other words, the load-injury relationship for one injury type may not be the same as the
load-injury relationship for another injury type. As a result, the researcher should observe
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a sufficient number of each injury sub-group, and not simply consider all injuries to be
comparable.

2.4.4.4 Conceptual Basis

Regardless of any associations which have been observed in load-injury studies, some aca-
demics have questioned the extent to which training load variables and injury are even
conceptually related [20]. In other words, is there any valid causal pathway between com-
monly measured training load variables and a musculoskeletal injury? This argument stems
from i) the fact that existing training load variables are inaccurate measures of physiologi-
cal tissue load [70], ii) the non-linear relationship between tissue load and tissue damage,
increasing the magnitude of these inaccuracies [67], and iii) the stochastic nature of tis-
sue failure, making injury prediction uncertain even in the presence of a perfect measure-
ment of tissue damage [67]. When discussing this critique, it is important to consider that
even a weak relationship between a training load variable and tissue damage may reveal a
meaningful relationship given sufficient sample size. However, whilst wearable data may,
therefore, justify some broad strokes recommendations regarding training load manipula-
tion (e.g., avoid large spikes in training load, progress training load gradually, etc.), the
validity of manipulating training load to alter injury risk in individual cases is unjustified
given the high degree of error [20].

2.4.4.5 Statistical Analysis

Load-injury study designs are complex, and often this complexity is not accounted for in
the statistical analysis [98]. For example, data are commonly sourced from sports teams
over multiple seasons, resulting in unbalanced repeated measures designs, and both time-
varying and time-invariant variables. Furthermore, injury is multifactorial in nature, and
thus a multitude of risk factors should be accounted for. Finally, the load-injury relationship
may be confounded by a host of factors which may not be immediately apparent [65].

In a commentary on the use of longitudinal study designs in load-injury research, Windt
et al. [98] outlined five challenges in the application of statistical modelling: inclusion of
between-person and within-person effects; use of time-varying and time-invariant vari-
ables; violation of independency assumptions due to repeated measures on the same indi-
viduals; missing or unbalanced data; and the role of time. Of the 34 articles reviewed in
the study, 22 used a regression (most commonly binary logistic regression) and 10 used a
correlation. Furthermore, over half of the articles did not address the assumptions of the
model, and 44% provided no justification for the use of their model.
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2.4.4.6 Multiple Comparisons

Multiplicity issues arise due to an inflated rate of type 1 errors as a result of multiple testing
[99]. For example, if a dataset is used to investigate the load-injury relationship, multiplic-
ity issues may arise in three main cases. Firstly, when statistical tests are conducted to
investigate the relationship between multiple independent variables (e.g., one-week load,
two-week load, three-week load, etc.) and the dependent variable (injury); secondly, when
statistical tests are conducted to investigate differences between multiple levels of an inde-
pendent variable (e.g., moderate load vs. low load, moderate load vs. high load, moderate
load vs. very high load); and thirdly, when statistical tests are conducted to investigate rela-
tionships between an independent variable (training load) and multiple dependent variables
(e.g., multiple injury types) [99]. As more tests are conducted, the likelihood of encounter-
ing a type I error due to random sampling error increases [99]. When conducting multiple
statistical tests, it is important that researchers either make adjustments for multiple com-
parisons, or acknowledge the implications of multiplicity for their results.

2.4.4.7 Confounding via schedule

Bornn et al. [100] presented a simulation study demonstrating a confounding effect of
training schedule on the relationship between ACWR and injury risk. The authors used
real-world association and American football data to simulate 1000 competitive seasons
such that injury risk for each session was directly proportional to the PlayerLoadTM mea-
sured in that session. In doing this, injury data were simulated such that ACWR would
have no influence on injury risk. Nonetheless, ACWRs below 0.8 and above 1.3 were pre-
dicted to result in 6.8% (association football) and 10.5% (American football) increases in
injury risk. Whilst this example is specific to the ACWR (because the current session load
is included in the acute load), training schedule may feasibly confound the load-injury re-
lationship in other cases. For example, the load undertaken in any given session may be
related to prior training scheduling, and thus injury may be related to that prior training via
the current session load.

2.4.4.8 Confounding via Exposure

It is both logical and evidenced that the chance of sustaining an injury increases with ex-
posure (e.g., if someone train for more time, all else equal, there is more chance they will
be injured). Kalkhoven et al. [20] highlight that not only is the above true, but a positive
relationship also exists between exposure time and cumulative load. Load-injury associ-
ations may, therefore, result simply from a failure to account for exposure time, i.e., it is
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unsurprising that a high load may be associated with injury given that in order to achieve a
high load the athlete is likely to have been exposed to training or competition for a greater
duration. When attempting to identify relationships between load and injury, researchers
must, therefore, account for the duration for which the athlete is ‘at risk’.

2.4.4.9 Unnecessary discretization

The transformation of a continuous variable into a number of discrete categories is common
in load-injury research [101]. For example, a continuous cumulative load variable may be
converted into low, moderate, or high load categories; or a group of individuals may be
divided into weak and strong groups based on a continuous measure of lower-limb strength.
This approach results in a loss of information, as any intra-category variation is lost. In
the case of dividing athletes by strength, for example, an athlete at the 50th percentile is
considered to be at the same risk of injury as an athlete at the 99th percentile). Discretization
of a continuous variable may also result in an increase in the false discovery rate, as each
category is typically compared to a reference category, without accounting for the increase
in statistical comparisons. Finally, Wainer et al. [102] demonstrated that the binning of a
continuous variable can result in the appearance of a trend that does not truly exist. Instead,
the use of polynomials or splines has been recommended where non-linear trends may exist
in continuous data [103].

2.4.4.10 Scaling of a ratio

Ratios are typically used to control for a denominator that shares a relationship with the
numerator [104]. If this relationship exists, then it should hold true that no relationship
will exist between the ratio and the denominator. Conversely, when no relationship exists
between the numerator and the denominator, a relationship between the ratio and the de-
nominator will be constructed artificially. In the context of the ACWR, Lolli et al. [105]
used data from professional association football players to demonstrate the absence of a
relationship between uncoupled acute and chronic training loads, and subsequently an un-
wanted negative relationship between the ACWR and the chronic training load. Thus, the
conversion of acute and chronic training loads into an inappropriate ratio may, in fact, sim-
ply add noise to the data.

2.4.4.11 Mathematical coupling

Lolli et al. [106] identified that the use of an ACWR in which the acute period is included
in the chronic period (e.g., where the acute period is days -1 to -7, and the chronic period
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is days -1 to -28) results in spurious correlation between the acute and chronic values. In
other words, correlation will be evident despite there being no physiological association
between the two parameters. This mathematical coupling affects the ACWR itself, and
thus any relationship between coupled ACWRs and injury risk may not be grounded in any
physiological process.

2.4.4.12 Summary

It is evident from critiques of existing training load research that recent approaches to load-
injury research have failed to adequately address the methodological issues that arise in
longitudinal epidemiological research. Though it is likely—and perhaps unavoidable—that
applied research in this field will have methodological limitations, researchers should make
a serious attempt to address these pitfalls where possible. In many cases, and particularly
those relating to decisions around the analysis of data, these limitations are avoidable.

2.5 Training Load in Dance

In recent years there has been a large increase in the number of research articles inves-
tigating the quantification and implications of training load in sport. Whilst this interest
in training load is increasingly present in the world of dance [107, 108]—and a modest
increase in training load research in dance is evident—the training loads experienced by
dancers, and methods for the quantification of that training load, remain comparatively un-
explored. Nonetheless, non-balletic genres of dance likely represent the closest comparison
to the training loads undertaken in ballet, and as such, warrant discussion. This section will
first discuss research into methodological approaches to the quantification of load in dance,
followed by qualitative and quantitative research into the load-injury relationship in dance.
Descriptive studies into the training load demands of professional ballet are excluded from
this section due to their inclusion in Chapter 3.

2.5.1 Research into Methods of Quantifying Training Load in Dance

2.5.1.1 Session-RPE

Three studies have investigated the validity of s-RPE in dance. In a cohort of pre-professional
contemporary dancers, Jeffries et al. [109] observed mean individual correlation coeffi-
cients of 0.72 and 0.77 for relationships between s-RPE and e-TRIMP, and s-RPE and
b-TRIMP, respectively. Correlations were weaker, however, during ballet class compared
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with both contemporary class and rehearsals. Similarly, in pre-professional contemporary
dancers, Surgenor and Wyon [110] observed a correlation coefficient of 0.72 between s-
RPE and e-TRIMP, though it should be noted that the analyses failed to account for the re-
peated measures within individuals. Like the results of Jeffries et al. [109] weaker relation-
ships were observed during ballet class compared with contemporary class and rehearsals.
Whilst the authors suggest this may reflect factors such as the differences in movement de-
mands between genres, or environmental factors, it may simply reflect a range restriction
bought about by the lack of variation observed between ballet classes (this possibility is
discussed further in Chapter 6). Unlike both Jeffries et al. [109] and Surgenor and Wyon
[110], in a cohort of elite adolescent ballet dancers Volkova et al. [111] observed no sig-
nificant relationships between s-RPE and either e-TRIMP or b-TRIMP during a variety of
dance classes. Differences in results between these studies may reflect the relatively young
age of the cohort observed by Volkova et al. [111] (12–17 years of age). However, several
methodological differences exist, for example, the measurement of resting HR, statistical
analysis, and timepoint of data collection post-session.

2.5.1.2 Inertial Measurement Units and Accelerometers

Three methodological papers have explored the use of wearable technology as a means of
quantifying external training load in dance. Almonroeder et al. [112] secured accelerom-
eters to the superior iliac spine of their participants, observing very strong positive cor-
relations between peak vertical acceleration and peak vertical ground reaction force (r =
0.95–0.98, p < .001), and between peak vertical ground reaction force and peak loading
rates (r = 0.80–0.88, p < .001) across a series of changement de pied to exhaustion. It
should be noted, however, that the mean values from a series of jumps were analysed (e.g.,
mean peak acceleration from the final 10 jumps), and not the relationships between peak
values measured during single jumps. It is possible that this approach artificially inflated
the strength of the relationship, as inaccuracies in individual jumps may have been averaged
out across multiple jumps.

Hendry et al. [113] used accelerometer data and machine learning methods (support
vector machines and artificial neural networks) to estimate continuous ground reaction
forces during a series of unilateral and bilateral ballet jumps. Whilst root-mean-square-
error values were low for entire ground reaction force profiles, relatively large error was
observed in the estimation of peak forces. In the context of quantifying lower-limb load
this may be particularly important given that small differences in tissue load may translate
to large differences in tissue damage [67]. In a separate study, Hendry et al. [114] investi-
gated the use of convolutional neural networks to identify balletic jumps and leg lifts. The
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algorithms were highly accurate in the identification of simple movement types (i.e., jump
or leg lift) without the inclusion of transition movements (> 97.3%). Less accurate identi-
fication was observed, however, with the addition of transition movements (80.6–84.0%),
and the requirement to classify movements more precisely (56.5–74.9%). For simplistic
classifications, single sensor algorithms performed similarly to multi-sensor algorithms,
though for more complex classifications multi-sensor algorithms were required.

Finally, one research group investigated the use of accelerometers to quantify the biome-
chanical demands of the dance aerobic fitness test [115]. Triaxial accelerometers were se-
cured to the cervical spine and the distal aspect of the lower limb in 26 university dancers.
Progressive increases in both cervical spine and lower limb PlayerLoad™ were observed
across the five stages of the test, leading the authors to conclude that triaxial accelerometry
is a valid measure of the biomechanical demands of dance. It is important to note though,
that no criterion measure of biomechanical load was used, and the dance aerobic fitness
test is validated against oxygen uptake [116]. Furthermore, the authors suggest that distal
lower-limb accelerometry is a more valid measure of training load than cervical accelerom-
etry; this suggestion is not based on any data collected in the study, and is contrary to the
suggestions of other research groups [117].

2.5.2 Load-Injury Research in Dance

2.5.2.1 Qualitative Research

Several research groups have conducted qualitative investigations into injury and/or train-
ing load in dance. Bowling [118] surveyed 188 UK-based professional dancers (139 classi-
cal, 49 modern) on their chronic and recent injury history. Of the dancers who had sustained
an injury in the previous six months, 38% cited feelings of being overtired, overworked, and
run down as the cause of injury, whilst 12% cited the demands of difficult choreography,
and 7% cited the continual repetition of difficult movements during rehearsals. Further-
more, 29% of all respondents suggested less pressure and overwork as an injury prevention
strategy. Similarly, in a national enquiry into dancers’ health and injury [119], 57% of
ballet professionals perceived fatigue/overwork to be a cause of injury (the highest cited
cause), whilst 38% stated that repetitive movements were a contributing factor.

Bolling et al. [12] conducted focus groups with professional ballet dancers and staff
of the Dutch National Ballet, identifying key themes relating to ballet injuries, injury risk
factors, and injury prevention strategies. Both staff and dancers identified excessive work-
loads, and the imbalance between load and load capacity, as the primary reasons for injury
occurrence. Participants specifically identified the inconsistency of loading across the cal-

44



endar, and the limited recovery time the schedule permits, as load-related factors contribut-
ing to injury. Regarding the concept of load capacity, dancers suggested that the limited
prior knowledge of the roles for which they must prepare made it challenging to prepare
physically; this is compounded by the difficulty dancers face preparing for a role whilst
concurrently experiencing high rehearsal workloads.

Unlike the previously mentioned studies, a sample of vocational dance students did
not deem the workloads associated with their educational course to be excessive [120];
dancers did, however, allude to a culture of overtraining. Some dancers believed that this
culture may have been designed to prepare students for the demands of a professional
career, though most dancers suggested that following the transition from pre-professional
to professional dance workloads decreased.

Whilst the qualitative research into the load-injury relationship in dance is relatively
sparse, it is consistent in its allusion to high workloads. Evidently, both dancers and artistic
staff believe that these workloads are implicated in injury, and there is scope for improve-
ments in the scheduling of rehearsal and performance schedules.

2.5.2.2 Quantitative Research

Jeffries et al. [121] collected s-RPE and injury data across a single season in a professional
contemporary dance company (n = 7 men and 9 women). The mean weekly s-RPE was
6685 ± 1605 AU (range 464–10391 AU). Dancers’ RPEs were higher during performances
than rehearsals (8.0 ± 1.4 AU vs. 5.2 ± 1.9 AU), however, performances were shorter in
duration (84.9 ± 34.1 min vs. 109 ± 34.1 min). Whilst the sample size was insufficient to
reliably determine any associations between load and injury, the authors did observe the
highest injury rates when dancers completed their highest training loads (individualised
upper 33% of weeks).

Boeding et al. [122] investigated the relationships between s-RPE and symptoms of
overuse injury (Self-Estimated Functional Inability because of Pain questionnaire) across
a seven-week training period in 21 dancers (11 men, 10 women). Mean weekly train-
ing loads were between 2540–4761 AU, across a mean of 14.4 dance events per week. The
greatest number of rehearsal exposures was observed in weeks with the least number of per-
formance exposures. A mixed-effects model revealed no significant associations between
s-RPE and symptoms of overuse injury; however, a t-test indicated that weekly training
loads were significantly greater in symptomatic dancers.

Finally, Cahalan et al. [123] investigated relationships between dance exposure, mea-
sures of wellbeing, and self-reported injury in collegiate Irish (n = 21) and contemporary
dancers (n = 29). Mean weekly dance exposure was 12.2 ± 3.2 and 7.6 ± 2.4 h·week-1
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for contemporary and Irish dancers, respectively. Wilcoxon signed rank tests were used to
investigate relationships between injury events and dance exposure. In weeks preceding
an injury event, contemporary dancers reported higher dance exposure compared with the
four previous weeks, though no such finding was observed in Irish dancers.

When considering these investigations, it is important to note that many of the method-
ological issues discussed in section 2.4.4 are common. Most notably, the use of inappro-
priate statistical tests (e.g., correlational analyses), small sample sizes, non-standard injury
definitions, and a failure to account for known confounders. It is, therefore, reasonable to
suggest that until further high-quality load-injury research in dance is published, best prac-
tices for load management in dance should instead be extrapolated from sporting research.

2.6 Thesis Structure and Chapter Aims

This thesis is organised into three sections (Figure 2.9), dividing the chapters into three
broad research themes detailed below. For each experimental chapter, a specific research
question is detailed at the start of each paragraph.

2.6.1 Thesis Section 1

The first section of this thesis—Chapters 2 and 3—reviews current research into training
load in sport, training load in dance, and the activity demands of ballet.

2.6.1.1 Chapter 2: The Quantification and Implications of Training Load in Sport
and Dance: A Literature Review

In this chapter, a critical review of current research relevant to this thesis was presented.
Given the sparsity of research investigating training load in dance, much of this chapter
focused on research from the field of sports medicine. The review began with an overview
of high-level concepts relating to training load and the training process, before discussing
common methods for the quantification of training load. The chapter then went on to exam-
ine literature concerning the relationship between training load and injury. Finally, research
into methods of training load quantification in dance, and the load-injury relationship in
dance was reviewed.
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2.6.1.2 Chapter 3: The Activity Demands and Physiological Responses Observed in
Professional Ballet: A Systematic Review

What are the physical demands undertaken by professional ballet dancers?

This chapter presents a systematic review of literature investigating the activity de-
mands or physiological responses observed in professional ballet. Four subject areas are
included in this review: i) session-specific activity demands of ballet, ii) general activity
demands of ballet (i.e., not limited to a single session), iii) immediate physiological re-
sponses to ballet, and iv) delayed physiological responses to ballet. Unlike the previous
chapter, this review was limited to studies concerning only professional ballet dancers,
and not broader genres of dance. Twenty-two relevant research articles are identified, the
methods and results of which are synthesized and reviewed.
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Figure 2.10: Schematic illustrating the structure of the thesis.



2.6.2 Thesis Section 2

The second section of this thesis—Chapters 4 and 5—contains an exploration and analysis
of five seasons of scheduling and injury data at The Royal Ballet.

2.6.2.1 Chapter 4: Dance Exposure, Individual Characteristics, and Injury Risk
over Five Seasons in a Professional Ballet Company

What relationships exist between patterns of rehearsal and performance exposure, and the

risk of musculoskeletal injury?

This chapter investigates the relationships between dance exposure variables (7-day ac-
cumulated exposure, 28-day accumulated exposure, week-to-week change in exposure),
individual characteristics (age, sex, company rank, injury history), and musculoskeletal in-
jury rates (overuse medical attention injuries, overuse time-loss injuries, traumatic medical
attention injuries, traumatic time-loss injuries). Hazard ratios for each injury type and in-
dependent variable are extracted from cox proportional hazards and shared frailty models,
accounting for repeated measures across individuals, and controlling for exposure time.
The practical implications of the results for load management in professional ballet are
discussed.

2.6.2.2 Chapter 5: The Structure of a Professional Ballet Season: A Longitudinal
Analysis of Scheduling Demands Across Five Years

How are rehearsals and performances scheduled, and how can these schedules be manip-

ulated and optimised?

This chapter contains an in-depth analysis of the scheduling practices and seasonal
structure at The Royal Ballet. The study focuses on providing data and practical recom-
mendations with which load management strategies—as recommended in Chapter 4—can
be implemented. Firstly, a descriptive analysis of the rehearsal and performance volume
imposed by a professional ballet schedule is conducted, with a focus on the variation within
and between sexes, company ranks, and timepoints in the season. Secondly, differences in
the durations of rehearsal dancers completed in preparation for various ballets are investi-
gated, as are the factors associated with these differences.

2.6.3 Thesis Section 3

The third section of this thesis—Chapters 6 to 9—contains the development and validation
of several practical methods for the quantification of training load in ballet, and an open-
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source application with which healthcare practitioners working in ballet can manage the
training load of dancers.

2.6.3.1 Chapter 6: The Validity of the Session Rating of Perceived Exertion Method
for Measuring Internal Training Load in Professional Ballet Dancers

Is session-RPE a valid measure of internal training load in professional ballet?

This chapter investigates the validity of s-RPE as a measure of internal training load in
professional ballet dancers. Dancers are observed across a total of 79 ballet classes and 139
rehearsals during which s-RPE and continuous HR are measured. Reference measures of
internal load are b-TRIMP and e-TRIMP. Individual and repeated measures correlations for
the relationships between s-RPE and each reference measure are calculated to investigate
the validity of s-RPE.

2.6.3.2 Chapter 7: The Validity of an Open-Source Rule-Based Algorithm for Mea-
suring Jump Frequency and Height in Ballet using Wearable Accelerometer
Data

Can IMUs be used to quantify jump load in professional ballet?

This chapter investigates the validity of a rule-based algorithm to calculate jump load
from wearable accelerometer data. Firstly, the accuracy of the algorithm’s jump event
identification is investigated during ballet class, using time-motion analysis as a reference
measure. Secondly, the accuracy of the algorithm’s jump height estimation for sautés, jetés,
and double tours is investigated using a force plate as the reference measure.

2.6.3.3 Chapter 8: Lower Limb Tissue-specific Force Prediction During Jumping
and Landing Using Inertial Measurement Units and Recurrent Neural Net-
works

Can IMUs be used to quantify lower-limb tissue forces during jumping movements for use

outside of a laboratory?

This chapter presents the development and evaluation of a recurrent neural network
which estimates lower-limb physiological tissue forces from IMU data. Participants wear-
ing five IMUs completed 18 sets of jumping movements on a force plate whilst motion
capture data are recorded. Musculoskeletal modelling is conducted using the FreeBody
lower-limb model to calculate Achilles and patellar tendon forces. Recurrent neural net-
works, with IMU variables as features and FreeBody forces as targets, are trained and
evaluated using a leave-one-subject-out cross validation.

50



2.6.3.4 Chapter 9: OpenTrack: An Open-Source Shiny Application for Calculating
and Databasing Training Load Variables Extracted from Wearable Inertial
Measurement Unit Data

This chapter presents an open-source software platform that healthcare practitioners work-
ing in ballet can use to analyse and database training load data. For most ballet companies
at present, it is unlikely that healthcare teams will have the financial power to invest in state-
of-the-art wearable technology systems. This app contains a user interface to the algorithms
detailed in chapters 7 and 8, functionality to input s-RPE data, and several dashboards to
visualize these internal and external training load variables.

2.6.4 General Discussion

This chapter concludes the thesis, bringing together the key findings from each chapter.
Initially, a high-level summary of each chapter is provided, following which the findings are
discussed in reference to the state of play regarding the use of training load management in
professional ballet companies. The chapter concludes with best practice recommendations
for healthcare practitioners, and recommendations for future research.
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CHAPTER 3

The Activity Demands and Physiological
Responses Observed in Professional Ballet: A

Systematic Review

3.1 Abstract

Aim: The aim of this study was to systematically review research into the activity demands
and physiological responses observed in professional ballet. Methods: PubMed, Web of
Science, SPORTDiscus, and ProQuest were searched for original research published prior
to January 2021 relating to 1) the session-specific activity demands of professional bal-
let, 2) the general activity demands of professional ballet, 3) the immediate physiological
responses to professional ballet, or 4) the delayed physiological responses to professional
ballet. From an initial 7672 studies, 22 met the inclusion criteria. Methodological quality
was assessed using the Mixed Methods Appraisal Tool and a modified Downs and Black
Index. Results: Professional ballet is intermittent; however, activity characteristics and
intensity vary by session type and company rank. Performances involve high volumes of
jumps (5.0 ± 4.9 jumps·min-1), pliés (11.7 ± 8.4 pliés·min-1), and lifts (men - 1.9 ± 3.3
lifts·min-1), which may result in near-maximal metabolic responses. Ballet classes are less
metabolically intense than performance during both barre and centre (< 50% maximal
oxygen uptake). Neither the activity demands nor the physiological responses encountered
during rehearsals have been investigated. Day-to-day activity demands are characterized
by high volumes of rehearsal and performance (> 5 h·day-1), but half is spent at intensities
below 3 METs. Evidence is mixed regarding the delayed physiological responses to pro-
fessional ballet, however, metabolic and musculoskeletal adaptations are unlikely to occur
from ballet alone. The mean Downs and Black score was 62%. Appraisal tools revealed
that a lack of clarity regarding sampling procedures, no power calculation, and a poor qual-
ity of statistical analysis were common limitations of the included studies. Conclusions:
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Given the large working durations and high rates of jumps, pliés, and lifts, managing train-
ing loads and recovery may be a focus for strategies seeking to optimize dancer health
and wellbeing. Ballet companies should provide dancers with opportunities and resources
to engage in supplementary physical training. Future research should explore the demands
of rehearsals and the longitudinal training loads experienced by professional ballet dancers.

3.2 Introduction

Historically, ballet dancers have been perceived solely as performing artists, for whom
principles such as artistry, musicality, and grace are paramount [?]. Increasingly, how-
ever, the importance of physical qualities such as strength, power, and endurance are being
recognised, and ballet professionals are considered artistic athletes [7], facing comparable
physical demands to elite sportspeople [6]. Ballet has been compared to aesthetic sports
such as gymnastics [6], with which it shares classically based movement sequences and
extreme ranges of motion. The activity profile of ballet performance, however, appears to
be similar to sports such as tennis [124] or basketball [44]; ballet is intermittent, involving
bouts of high intensity movement, as well as lower intensity periods during which dancers
may be acting or off-stage [125].

Injury incidence in professional ballet (4.4 time-loss injuries per 1000 h [15]) is compa-
rable to that observed in sports such as cricket match-play (1.9–3.9 injuries·1000 h-1 [126])
and association football training (4.1 injuries·1000 h-1 [127] ). As a result, there have been
calls for ballet companies to adopt more robust approaches to science and medical provision
[128]. The periodization of workload [108], implementation of screening protocols [129],
increase in strength and conditioning provision [6], and introduction of specialized health-
care services [130] have been proposed as potential methods of mitigating injury risk. The
development of science and medicine provision in professional ballet, however, requires a
thorough understanding of the physical demands of the activity. A systematic review is,
therefore, needed to synthesize research into the physical demands of professional ballet,
making the evidence accessible to those working in the field, and providing guidance for
future research.

The purpose of this systematic review was, therefore, to identify, evaluate, and summa-
rize research on the activity demands and physiological responses observed during profes-
sional ballet, and provide recommendations to direct future investigations.
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3.3 Methods

3.3.1 Design and Search Strategy

The systematic review was conducted in accordance with the Preferred Reporting Items
of Systematic Reviews and Meta-analyses statement [131]. A systematic search of the
electronic databases SPORTDiscus, Web of Science, ProQuest, and PubMed (MEDLINE)
was performed on 7th January 2021 for scientific literature published prior to that date. The
following Boolean phrase was used to search each database: (Ballet* OR Ballerin* OR
dancer OR dancing) AND (demand* OR response OR responses OR intensity OR volume
OR load OR physical OR cardiovascular OR metabolic OR workload OR physiologic* OR
schedule OR jump* OR lift* OR pointe OR flexib* OR mobility OR strength OR power OR
muscul* OR endurance) NOT Title (collegiate OR elderly OR older OR obesity OR cancer
OR disease OR “cerebral palsy” OR education). Results from Web of Science and ProQuest
were further filtered to include relevant subject areas only; a full list of excluded subject
areas can be found in Appendix D. Hand-searches of each included study’s reference list
and the reference list of a review paper pertinent to the topic [6] were completed to identify
further relevant articles.

3.3.2 Inclusion and Exclusion criteria

Searches and screening processes were independently conducted by two reviewers. Re-
viewers exported all article details into a Microsoft Office Excel spreadsheet, wherein du-
plicate results were automatically removed. The remaining articles were manually screened
in Excel; titles were first screened for relevance, followed by abstracts and full texts where
necessary. Four reviewers met, and discrepancies in included articles were resolved by
consensus.

Studies were included in the review if they met the following inclusion criteria: (1)
Participants were professional ballet dancers; (2) During the study, participants either com-
pleted a prescribed ballet session or followed their normal ballet schedule; (3) Data were
reported on the activity demands or physiological responses encountered; and (4) The study
was written in English. Activity demands were defined as any data pertaining to the vol-
ume and/or movement intensity of activity completed by the participant(s). Activity de-
mands were further divided into two subsections: (1) Session-specific activity demands -
the activity taking place within a specific session (e.g., the number of jumps completed
in a ballet class); or (2) General activity demands - activity characteristics not limited to
a single session (e.g., the number of jumps completed during a week). Physiological re-
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sponses were divided into two subsections: (1) Immediate physiological responses – those
recorded on the same day as the activity; and (2) Delayed physiological responses – those
recorded on a different day to the activity. To be included, delayed physiological responses
must have reported a physiological measurement both pre- and post-ballet activity; studies
which measured a physiological characteristic at a single time point were not included. All
relevant study designs were included in the review.

Studies were excluded if (1) data were reported on a mixed group of dancers (e.g., ballet
and contemporary dancers, professional and non-professional ballet dancers), and data for
a professional ballet subgroup could not be extracted, (2) no methodology was provided for
variables of interest, (3) data were only reported on injured dancers, or (4) only contractual
hours were used as a measure of dance exposure. Review articles, and data pertaining to
hormonal responses related to professional ballet were not included in this review. The
latter data were excluded to limit the scope of the review.

3.3.3 Data Extraction and Analysis

Data were extracted from each study by the lead reviewer. For each study, publication
details (author, year, journal) and demographic data (age, height, weight, sex) were ex-
tracted. Methodological details (sample size, participant characteristics, session type, study
duration, phase of season, equipment, protocol, measurements), and results (descriptive
data regarding activity demands and/or physiological responses, results of statistical analy-
ses) were recorded. Data displayed in figures were extracted using WebPlotDigitizer v.4.3
[132]. Where further details were required, authors of the study were contacted for clari-
fication. Given the heterogeneity in subject areas and variables reported, a meta-analysis
was not conducted.

3.3.4 Assessment of Methodological Quality

Due to the heterogeneity of study designs used, included studies were evaluated using the
Mixed Methods Appraisal Tool (version 2018; MMAT [133]). A modified version of the
Downs and Black checklist for the assessment of methodological quality [134] was used
to identify more specific strengths and weaknesses of included studies. For each of the
criteria, a single point was available (yes – 1, no – 0, unable to determine – 0), except
question five, for which two points were available. Question 27 was adjusted to read: “Was
a power analysis conducted, and if so, did the sample size provide sufficient statistical
power to detect an effect?”. Downs and Black scores were interpreted using the following
thresholds: ≤ 50% - Poor, 50–70% - Fair, 70–90% - Good, > 90% - Excellent [135]. Risk
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of bias was assessed at a study level (i.e., individual outcomes within a study were not
assessed seperately). No articles were excluded based on their methodological quality.

3.4 Results

3.4.1 Search Results

The hand-search and search of electronic databases yielded an initial 7672 results of which
1258 were duplicates. Following title and abstract review, 6293 articles were excluded. Full
texts of the remaining 121 articles were screened, of which 99 did not meet the inclusion
criteria. Twenty-two studies were, therefore, included in the review. A comprehensive
search and selection flow diagram is presented in Figure 3.1.

3.4.2 Study Characteristics

Detailed characteristics of each included study can be found in Table 3.1. Five studies
investigated session-specific activity characteristics of professional ballet (class: n = 2 [4,
136], performance: n = 3 [46, 125, 137]); ten studies investigated the general activity
characteristics involved in professional ballet [5, 14, 15, 138, 139, 140, 141, 142, 143,
144], four studies investigated the immediate physiological responses to professional ballet
(class: n = 2 [4, 136], rehearsal: n = 1 [4], performance: n = 3 [4, 125, 145]); eight studies
investigated the delayed physiological responses to professional ballet [7, 140, 143, 146,
147, 148, 149, 150]. Five studies used entirely female cohorts, and 17 studies used mixed
cohorts.

3.4.3 Quality Assessment

The mean Downs and Black score was 62%. Five studies were classified as poor [4, 125,
136, 137, 145], twelve studies were classified as fair [5, 7, 46, 138, 139, 142, 140, 146, 147,
148, 149, 150], five studies were classified as good [14, 15, 141, 143, 144], and no studies
were classified as excellent. Full results of the MMAT and the modified Downs and Black
assessments can be found in Tables 3.2 and 3.3, respectively. All studies presented a clear
research question, and collected data allowing them to address the question. Articles were
most commonly marked down due to a failure to sufficiently explain sampling procedures.
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Figure 3.1: Flow diagram of the systematic search process.
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Table 3.1: Characteristics of studies included in the systematic review.

Study Design
Participant Characteristics Activity Demands Phys. Responses Common

Datan Age (y) Height (m) Mass (kg) BMI (kg/m²) Session General Immediate Delayed

Wyon et al. [46] CS
24 M - - - -

• 1
24 F - - - -

Twitchett et al.
[137]

CS
24 M - - - -

• 1
24 F - - - -

Schantz &
Åstrand [4]

CS
6 M 28 ± 6 1.80 ± 0.04 70.0 ± 4.0 -

• •
7 F 25 ± 8 1.66 ± 0.55 52.0 ± 5.0 -

Cohen et al. [136] CS
7 M

24
1.78 68 -

• •
8 F 1.66 49.5 -

Cohen et al. [125] CS
6 M 25 ± 3 1.76 ± 0.03 63.9 ± 1.5 -

• •
7 F 24 ± 4 1.66 ± 0.03 48.9 ± 3.9 -

Seliger et al. [145] CS
3 M 31 ± 8 1.81 ± 0.06 72.3 ± 6.7 -

•
3 F 35 ± 12 1.64 ± 0.05 53.3 ± 4.1 -

Costa et al. [138] RD
22 M 34 ± 7 - - 23.6 ± 1.1

•
31 F 34 ± 6 - - 19.5 ± 1.1

Twitchett et al. [142] CS 51 F 28 ± 5 1.61 ± 0.03 46.1 ± 4.5 - •

Kozai et al. [141] CS
25 M 26 ± 5 1.78 ± 0.04 70.7 ± 5.6 22.3 ± 1.3

•
23 F 27 ± 5 1.63 ± 0.04 49.5 ± 4.9 18.5 ± 1.4

Allen et al. [15] Incidence
25 M 23 ± 5 1.80 ± 0.04 71.7 ± 4.7 22.2 ± 1.4

•
27 F 25 ± 6 1.62 ± 0.04 49.2 ± 4.0 18.9 ± 1.6

Allen et al. [14] Pre-post
27 MA 24 ± 4 1.79 ± 0.04 71.7 ± 5.5 -

•
28 FA 25 ± 5 1.63 ± 0.03 49.9 ± 4.6 -

Wyon et al. [143] CS
21 M - 1.81 ± 0.04 69.5 ± 5.6 21.3 ± 1.4

• 2
21 F - 1.66 ± 0.03 50.9 ± 4.5 18.5 ± 1.4
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Table 3.1 (cont.)

Study Design
Participant Characteristics Activity Demands Phys. Responses Common

Datan Age (y) Height (m) Mass (kg) BMI (kg/m²) Session General Immediate Delayed

Wyon et al. [144] CS
21 M - 1.81 ± 0.04 69.5 ± 5.6 21.3 ± 1.4

• 2
21 F - 1.66 ± 0.03 50.9 ± 4.5 18.5 ± 1.4

Cohen et al. [5] CS
15 M 24 ± 4 1.77 ± 0.05 66.5 ± 4.8 -

•
15 F 23 ± 4 1.65 ± 0.04 49.6 ± 3.9 -

Doyle-Lucas et
al. [139]

CS 15 F 24 ± 1
- -

18.9 ± 0.2 •
- -

Kim et al. [140] Pre-post 43 F 26 ± 3 1.64 ± 0.04 49.4 ± 4.4 18.4 ± 1.0 • •

Wyon et al. [150] NRCT
2 M 28 ± 0 1.79 ± 0.02 66.5 ± 0.4 -

•
5 F 27 ± 5 1.64 ± 0.02 50.7 ± 6.5 -

Koutedakis & Sharp
[7]

RCT 22 F 25 ± 1 - 45.0 ± 4.5 - •

Koutedakis et al.
[147]

Pre-post 17 F 27 ± 1 1.60 ± 0.06 - - •

Kirkendall et al. [146] Pre-post
14 M 25 ± 3 1.78 ± 0.06 67.2 ± 8.3 -

•
14 F 24 ± 4 1.67 ± 0.07 53.9 ± 6.1 -

Micheli et al.
[148]

Pre-post
29 M 24 ± 6 - 71.6 ± 6.4 -

•
39 F 22 ± 4 - 51.6 ± 4.6 -

Ramel et al. [149] RCT
6 M

24 (19-47)
- - -

•
4 F - - -

CS, Cross-sectional; RD, Retrospective descriptive; RCT, Randomised controlled trial; NRCT, Non-randomised controlled trial; BMI, Body mass index; M, Male;
F, Female. Common data indicates that the same data were used in multiple studies.
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Table 3.2: Results of the Mixed Methods Appraisal Tool assessment of methodological
quality.

Study
ScreeningA CriteriaB

1 2 1 2 3 4 5

Quantitative descriptive

Wyon et al. [46] Y Y ? ? Y N Y

Twitchett et al. [137] Y Y ? ? Y N Y

Schantz & Åstrand [4] Y Y ? ? Y Y N

Cohen et al. [136] Y Y ? ? Y N Y

Cohen et al. [125] Y Y ? ? Y N ?

Seliger et al. [145] Y Y ? ? Y N N

Costa et al. [138] Y Y Y ? N Y Y

Twitchett et al. [142] Y Y ? ? Y N Y

Kozai et al. [141] Y Y Y Y Y N N

Allen et al. [15] Y Y Y Y Y N Y

Wyon et al. [143] Y Y ? ? Y N Y

Wyon et al. [144] Y Y Y Y Y N Y

Cohen et al. [5] Y Y ? ? Y N Y

Doyle-Lucas et al. [139] Y Y ? ? Y N N

Non-randomized

Allen et al. [14] Y Y Y N Y N Y

Kim et al. [140] Y Y ? Y Y N Y

Wyon et al. [150] Y Y ? Y Y N Y

Koutedakis et al. [147] Y Y ? Y N Y Y

Kirkendall et al. [146] Y Y ? Y Y N Y

Micheli et al. [148] Y Y Y Y Y Y Y

Randomized controlled trials

Ramel et al. [149] Y Y Y ? Y N Y

Koutedakis & Sharp [151] Y Y Y Y ? N ?

Y, Yes; N, No; ?, Unable to determine.
A Screening questions: 1) Are there clear research questions?; 1) Do the data address the research
questions?
B Quantitative descriptive criteria: 1) Was the sampling strategy relevant?; 2) Is the sample repre-
sentative of the target population?; 3) Were measurements appropriate?; 4) Is the risk of nonresponse
bias low?; 5) Is the statistical analysis appropriate?
Non-randomized criteria: 1) Are participants representative of the target population?; 2) Are mea-
surements appropriate regarding both the outcome and intervention (or exposure)?; 3) Are there
complete outcome data?; 4) Are confounders accounted for in the design and analysis?; 5) Is the
intervention administered (or exposure occurred) as intended?
Randomized controlled trial criteria: 1) Is randomization appropriately performed?; 2) Are
groups comparable at baseline?; 3) Are there complete outcome data?; 4) Are outcome assessors
blinded?; 5) Did participants adhere to the intervention?
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Table 3.3: Results of the Downs and Black assessment of methodological quality.

Study
Reporting Ext. Validity Bias Confounding Power

Score Criteria Pct. Rating
1 2 3 4 5 6 7 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Costa et al.
[138]

1 1 1 1 1 1 0 - 1 1 0 1 - - 1 - 1 - 0 1 0 - - 0 - 0 12 19 63% Fair

Schantz &
Åstrand [4]

1 1 1 0 1 1 0 - 0 0 0 1 - - 1 - 0 - 1 - 0 - - 0 - 0 8 18 44% Poor

Cohen et al.
[136]

1 1 1 1 1 1 1 - 0 0 0 1 - - 0 - 0 - 1 - 0 - - 0 - 0 9 18 50% Poor

Kozai et al.
[141]

1 1 1 1 2 1 1 0 1 1 1 1 - - 1 - 0 - 1 - 0 - - 1 1 1 17 20 85% Good

Cohen et al.
[125]

1 1 1 1 1 0 0 - 0 0 0 1 - - - - 0 - 1 - 0 - - 0 - 0 7 17 41% Poor

Doyle-Lucas et
al. [139]

1 1 1 1 1 1 1 - 0 0 0 1 - - 1 - 0 - 0 - 0 - - 0 - 1 10 18 56% Fair

Twitchett et al.
[137]

1 1 0 0 1 1 0 - 0 0 0 1 - - 1 - 1 - 0 - 0 - - 1 - 0 8 18 44% Poor

Wyon et al.
[46]

1 1 0 0 1 1 1 - 0 0 0 1 - - 1 - 1 - 1 - 0 - - 1 - 0 10 18 56% Fair

Micheli et al.
[148]

1 1 0 1 1 1 1 0 1 1 0 1 - - 1 1 0 - 1 - 0 - - 0 1 0 13 21 62% Fair

Kirkendall et
al. [146]

1 1 0 1 1 1 1 0 0 0 0 1 - - 1 1 1 - 1 - 1 - - 0 0 0 12 21 57% Fair

Twitchett et al.
[142]

1 1 1 1 2 1 0 - 0 0 0 1 - - 1 - 1 - 1 - 1 - - 1 0 0 13 19 68% Fair

Wyon et al.
[144]

1 1 1 1 2 1 1 - 0 1 1 1 - - 1 - 1 - 1 - 1 - - 1 - 0 16 18 89% Good

Allen et al.
[14]

1 1 1 0 1 1 1 - 1 1 1 1 - - 1 1 1 0 1 - 1 - - 0 0 0 15 21 71% Good
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Table 3.3 cont.

Study
Reporting Ext. Validity Bias Confounding Power

Score Criteria Pct. Rating
1 2 3 4 5 6 7 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Seliger et al.
[145]

1 1 1 0 1 1 1 - 0 0 0 1 - - - - 0 - 1 - 0 - - 0 - 0 8 17 47% Poor

Allen et al.
[15]

1 1 1 1 2 1 1 0 0 1 1 1 - - 1 1 1 - 1 - 1 - - 1 1 0 18 21 86% Good

Kim et al.
[140]

1 1 1 0 1 1 1 0 1 0 0 1 - - 1 1 1 1 1 - 1 - - 0 1 0 15 22 68% Fair

Koutedakis et
al. [147]

1 1 0 1 1 1 1 0 0 0 0 1 - - 1 0 1 1 1 - 1 - - 0 0 0 12 22 55% Fair

Ramel et al.
[149]

1 1 0 1 1 1 0 0 1 1 1 1 0 0 1 1 0 0 1 1 1 1 0 0 0 0 15 27 56% Fair

Koutedakis &
Sharp [7]

1 1 0 1 1 1 1 1 0 0 0 1 0 0 1 1 1 0 1 1 1 1 0 0 1 0 16 27 59% Fair

Wyon et al.
[150]

1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 1 0 0 0 1 0 18 27 67% Fair

Wyon et al.
[143]

1 1 0 1 2 1 1 - 0 1 1 1 - - 1 - 1 - 1 - 1 - - 1 - 0 15 18 83% Good

Cohen et al. [5] 1 1 1 1 1 1 1 - 0 0 0 1 - - 1 - 1 - 1 0 0 - - 0 - 0 11 19 58% Fair
Mean 1 1 0.6 0.7 1.2 1 0.7 0.2 0.3 0.4 0.3 1 0 0 1 0.9 0.6 0.5 0.9 0.8 0.5 0.7 0 0.3 0.5 0.1 12.7 19.4 62%
Ext. Validity, External Validity.

Downs and Black criteria: 1) Clearly described hypothesis; 2) Main outcomes clearly described; 3) Participant characteristics described; 4) Interventions clearly described;
5) Distributions of principal confounders described; 6) Main findings clearly described; 7) Estimates of random variability given; 9) Characteristics of patients lost to follow-
up described; 10) Actual probability values reported; 11) Subjects asked to participate were representative of the entire population; 12) Subjects who participated were
representative of the entire population; 13) Facilities and equipment were representative of normal practice; 14) Subjects blinded; 15) Investigators blinded; 16) Any data
dredging was made clear; 17) Analyses adjusted for follow-up lengths; 18) Statistical tests were appropriate; 19) Compliance with the intervention was reliable; 20) Main
outcome measures were valid and reliable; 21) Intervention and control groups recruited from the same population; 22) Subjects were recruited over the same period of time;
23) Subjects randomized to intervention groups; 24) Randomization concealed from subjects and investigators; 25) Adequate adjustment for confounding factors; 26) Losses
of patients to follow-up taken into account; 27) A power analysis was conducted, and sufficient power was achieved.
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3.4.4 Session-Specific Activity Demands

3.4.4.1 Class

Two studies investigated the activity characteristics of ballet class [4, 136]. Schantz and
Åstrand [4] report class durations of 60 min (30 min effective exercise time), made up of
seven barre exercises (28 min, 10 s rest intervals), and five centre-floor exercises (32 min,
2-3 min rest intervals). Cohen et al. [136] report class durations of 75 minutes; movement
sequences during barre, centre-floor, and allegro phases were 65 s, 35 s, and 15 s, and rest
periods were 30 s, 85 s, and 75 s, respectively.

3.4.4.2 Rehearsal

No studies reported data on the activity characteristics of rehearsals.

3.4.4.3 Performance

Three studies investigated the activity characteristics of ballet performance [46, 125, 137].
During 5 roles from Swan Lake, Giselle, and Études, the acts/sections observed varied in
duration from 14–43 min, with actual dance times ranging from 2–12.5 min (14–30% of
performance) [125]. During successive variations, work-to-rest ratios of between 1:1.6 and
1:3.4 were observed [125]. Across 48 classical roles [46, 137], over half of the performance
time was found to be spent at resting intensities (i.e. still or off-stage), and around a quarter
at moderate or hard intensities. Male and female dancers performed jumps (5.0 ± 4.9
jumps·min-1) and pliés (11.7 ± 8.4 pliés·min-1) at similar rates, though males were involved
in lifting their partners (1.9 ± 3.3 lifts·min-1), whilst females were not [46, 137].

3.4.5 General Activity Characteristics

Ten studies reported data on the general activity demands undertaken by professional ballet
dancers [5, 14, 15, 138, 139, 140, 141, 142, 143, 144]; activity demands were the primary
outcome of only 2 of these studies [141, 142]. The results of studies reporting durations of
physical activity, dance exposure, and supplementary training are presented in Figure 3.2.

Two studies investigated rest periods throughout the working day, reporting mean great-
est rest breaks of 36 ± 31 min [142] and 35 ± 27 min [141]. One study describes daily
self-reported energy expenditure of female dancers, which in two separate 7-day periods,
was 3,571 ± 466 kcal and 3,154 ± 466 [140]. Two studies of the same company reported
data relating to workload beyond the demands of a single week [14, 15]. The company
performed between 142 and 145 shows per year, spanning between 15 and 20 productions
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per year [14]. The first of those seasons was 46 weeks long, consisting of 26 rehearsal
weeks and 20 performance weeks [15]. Performance periods were 2–6 weeks in length,
during which the company averaged 7 performances per week. The summer break was 5
weeks, and there was a 1-week break at mid-season.

3.4.6 Immediate Physiological Responses to Professional Ballet

3.4.6.1 Ballet Class

Two studies investigated the acute physiological responses to ballet class [4, 136]. Mean
heart rate (66 vs 76% maximum) [136], oxygen uptake (V̇O2; 38 vs 49% V̇O2max [136];
36% vs. 45% V̇O2max [4]), and energy expenditure (4.7 vs. 6.3 kcal·min-1) [136] were
greater during centre-floor exercises than barre exercises. Little change in blood lactate
concentration ([BLa]) was seen between barre, centre-floor, and allegro phases of class
(2.8 vs. 2.8 vs. 3.1 mmol·L-1, respectively) [4].

3.4.6.2 Rehearsal

One research group [4] investigated the acute physiological responses to (non-performance)
choreographed variations or pas de deux. Mean V̇O2 was 80 ± 7% of V̇O2max (69-92% of
V̇O2max), whilst mean post-activity [BLa] was 9.9 ± 3.1 mmol·L-1 (6.2-15.2 mmol·L-1).

3.4.6.3 Performance

Three studies investigated the physiological responses to professional ballet performances
[4, 125, 145]. Mean heart rates during performance were 134 [145] and 169 bpm (87%
maximum) [125], and mean peak heart rates were 177 [145] and 184 beats·min-1 (94%
maximum) [125]. One study [4] simply states that heart rates during performance were
frequently close to maximum, peak [BLa] were similar to those observed following maxi-
mal cycling (˜11 mmol·L-1), and mean post-performance V̇O2 for two dancers was 85% of
V̇O2max. One research group [145] reported an increase in both systolic (131 to 172 mmHg)
and diastolic (73 to 96 mmHg) blood pressure from pre- to post-performance.
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Table 3.4: Overviews of studies reporting data on the delayed physiological responses to professional ballet.

Measure Study Methods Timepoints Results

Body
composition

Koutedakis &
Sharp [151]

Body mass; skinfold
thickness (4 sites); thigh
circumference.

(1) Mid-January.
(2) + 12 weeks.

No significant differences.

Kirkendall et
al. [146]

Hydrostatic weighing. (1) Pre-season
(August).
(2) December.

No significant differences.

Micheli et al.
[148]

Body mass; skinfold
thickness (7 sites).

(1) Preseason
(August).
(2) Postseason
(May).

In females, body mass (51.6 ± 4.6 kg to 50.4 ± 4.5 kg, p <.001) and
BF% (12.8 ± 2.7% to 11.5 ± 2.1%, p <.001) decreased. No significant
differences seen in males.

Kim et al.
[140]

Body mass; bioelectrical
impedence.

(1) 7 days pre-, and
(2) 7 days post a
3-day performance
period.

Significant increases were seen in BMI (+ 0.12 kg·m2, p = .032), LBM
(+ 0.5 kg, p = .002), and TBW (+ 0.2 L, p = .021), but not in body mass
or BF%.

Koutedakis et
al. [147]

Skinfold thickness (4 sites). (1) Post-season.
(2) Pre-season.
(3) + 2-3 months.

No significant differences.

Lower-body
strength/power

Koutedakis &
Sharp [151]

Isokinetic knee flexion and
extension.

(1) Mid-January.
(2) + 12 weeks.

No significant differences.

Kirkendall et
al. [146]

Isokinetic knee flexion and
extension.

(1) August.
(2) December.

Significant differences in torque only observed at 180°·sec-1 (males +
12%, females + 16%). For males and females, respectively, relative
quadriceps torque increased by 3 and 6% for the right leg, and by 9 and
7% for the left leg.
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Table 3.4 (cont.)
Measure Study Methods Timepoints Results

Koutedakis et
al. [147]

Isokinetic knee flexion and
extension; Peak Wingate
power.

(1) Post-season.
(2) Pre-season.
(3) + 2-3 months

Knee extension and flexion torques, and peak Wingate power all in-
creased following the summer break.

Wyon et al.
[150]

Isometric knee extension;
vertical jump height.

(1) January.
(2) May.

No significant differences.

Aerobic
Capacity

Koutedakis et
al. [147]

Maximal incremental
treadmill test (gas analysis).

(1) Post-season.
(2) Pre-season.
(3) + 2-3 months.

V̇O2max (mL·kg·min-1) increased following the summer break (41.2 ±
8.5 to 45.2 ± 7.1), and again following preseason (48.4 ± 6.8).

Ramel et
al.[149]

Maximal incremental cycle
test (gas analysis, blood
lactate concentration).

(1) Preseason.
(2) + 10 weeks.

No significant differences in V̇O2max, [BLa], workload at 4 mmol·L-1,
or maximum workload.

Anaerobic
Capacity

Koutedakis et
al. [147]

Wingate mean power. (1) Post-season.
(2). Pre-season.
(3) + 2-3 months.

No significant differences.

Flexibility Koutedakis et
al. [147]

Hamstring, trunk, and
shoulder flexibility.

(1) Post-season.
(2) Pre-season.
(3) + 2-3 months.

Hamstring (208 to 226 deg), trunk (86 to 99 deg), and shoulder (40 to
61 deg) flexibility all increased following the summer break.

BF%, Body fat percentage; [BLa], Blood lactate concentration; V̇O2max, Maximum rate of oxygen consumption; TBW, Total body water.
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3.4.7 Delayed Physiological Responses to Professional Ballet

Delayed physiological responses to professional ballet have been reported in 7 studies [7,
140, 146, 147, 148, 149, 150], the results of these studies are presented in Table 3.4. In 4
studies [140, 146, 147, 148], the primary aim was to investigate a response to ballet, whilst
in 3 studies [7, 149, 150], the primary aim was to investigate the effect of an intervention
(vitamin D supplementation [150], strength training [7], and cardiovascular training [149]),
and consequently data for this review were taken from control groups.

3.5 Discussion

This is the first systematic review to synthesize research exploring the activity demands
and physiological responses observed in professional ballet. A total of 22 articles were
identified, spanning the subcategories of immediate and delayed physiological responses,
and session-specific and general activity demands. We aimed to provide a summary to
inform current practice in professional ballet companies, as well as identify gaps in the
current body of literature, providing direction to researchers working within this field.

3.5.1 Session-Specific Physical Demands of Professional Ballet

Ballet is an intermittent activity, though the intensity of that activity varies by session-type.
High intensity activity takes place during the latter phases of ballet class [136], however, the
short duration of these bouts and the large inter-exercise rest periods limit the metabolic in-
tensity of the session [4, 136]. Ballet performance is of a greater metabolic intensity; bouts
of dancing are longer in duration [125] and are higher in both average and peak intensity
[4, 125, 145]. However, studies investigating ballet performance have not randomly sam-
pled productions or roles, and one research group [4] explicitly states that only moderately
strenuous to very strenuous roles were analysed. Therefore, it appears that current research
on the immediate physiological responses to ballet performance is representative of more
physically demanding roles. In contrast, video analyses of 48 roles across classical reper-
toire [46, 137] suggest that most of a performance is spent at rest, particularly in the case of
non-principal dancers. Only two studies reported the physical demands of specific perfor-
mance roles [4, 125]; greater granularity in this regard may benefit science and medicine
staff when preparing dancers for a specific role.

During performance [46, 137], dancers jump at a greater rate than that observed dur-
ing volleyball [152] or basketball match-play [153]. Whilst average values (5.0 ± 4.9
jumps·min-1) alone are high [46], it is evident from the standard deviation that there is
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large variation between roles. Recent research in sport has emphasized the importance of
preparing athletes for the worst-case-scenarios they may encounter; neither study [46, 137],
however, reports the maximum rate of jumping observed. The most physically demanding
segments are likely to exceed the values reported [46]. A recent editorial highlighted jump
load as an important injury analytic [154]. To this end, almost a quarter of injuries in one
professional ballet company have been attributed to jumping movements [15]. The volume
and biomechanics of jumping in professional ballet may, therefore, be important directions
for future research, and are potential targets of injury prevention interventions.

No studies were identified investigating the activity demands taking place in rehearsals,
and only one study [4] reported data on the immediate physiological responses to re-
hearsals. Although near-maximal intensity responses were observed [4], the ‘rehearsals’
were sessions in which dancers completed solo variations or pas de deux from classical
repertoire, and not rehearsals as they might occur in situ. Subsequently, these responses
may not be directly comparable to rehearsals, during which dancers may be learning chore-
ography, practicing shorter segments, or stopping frequently to receive technical guidance.
The physical demands of rehearsals, therefore, remain almost entirely unexplored within
scientific literature, and no definitive conclusions can be made. This is particularly no-
table for two reasons; firstly, unlike classes—which follow a consistent structure—and
performances—which are strictly choreographed—rehearsals are inherently more variable
from day-to-day; secondly, rehearsal makes up most of a dancer’s activity [5]. Further re-
search is, therefore, required to elucidate the demands of ballet rehearsals, enabling science
and medicine practitioners to better prepare dancers for their day-to-day demands, and un-
derstand the training loads they undertake.

3.5.2 General Activity Demands of Professional Ballet

Overtraining syndrome and overuse injuries are common in professional ballet dancers—to
this end, ballet dancers themselves have suggested the imbalance between load and load-
capacity is the underlying cause of injury [12]. Durations of dance exposure reported in
included studies vary, though most studies support the notion that dancers complete over 5
h of dance activity per day [5, 14, 15, 138, 139, 141, 142]. To our knowledge, no published
research exists demonstrating comparable training and performance exposure times in any
other athletic population [152, 155, 156]. However, whilst scheduled dance time and self-
reported activity is high [5, 15, 138], accelerometry studies suggest that much of a dancer’s
day may be spent at intensities below 3 METs [141, 142]. Additionally, these studies re-
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vealed that activity profiles vary by company rank. Future research should, therefore, avoid
the use of company-wide exposure hours, and applied science and medicine practitioners
should adopt individualized approaches to load management [5, 14, 15, 139].

Despite the recent influx of studies publishing data on the longitudinal workloads of
athletes within sporting organizations, little research has explored longitudinal workloads
in professional ballet. Although two studies [141, 142] conducted longitudinal activity
monitoring, data are only reported pertaining to the demands of an average day. Further-
more, as data collection periods were only one [141] and three [142] weeks, reported values
may not account for changes in activity which may occur as the repertoire changes across
the course of a season. Although the count of shows performed by a professional tour-
ing company each season (142–145 shows, 15–20 productions) has been reported on two
occasions [14, 15], it is not stated in how many of these shows individual dancers were
involved. Further research is warranted exploring the longitudinal training load demands
faced by professional ballet dancers.

Longitudinal activity monitoring in professional ballet may be facilitated by the use of
wearable technology. Several studies have been published exploring and/or validating the
use of wearable technology in professional ballet [112, 113, 114]; however, the application
of these devices and algorithms is not yet evident. Ballet companies may face financial
barriers to the implementation of wearable technology, however, methods such as session
rating of perceived exertion [157] may provide a cost-effective alternative. Whilst cultural
barriers to the implementation of load monitoring in dance may also exist, research in other
dance genres [121], and at a non-professional level [158], suggests load monitoring may be
of value.

3.5.3 Delayed Physiological Responses to Professional Ballet

It has previously been suggested that participation in ballet alone is insufficient to elicit
meaningful physiological adaptation [7, 144]; included studies reported mixed results in
this regard. Increases in lower limb strength [146, 147] and aerobic capacity [147] have
been demonstrated following a ballet preseason, though the validity of the changes in one
study [147] are hard to determine, as only a subset of the participants were investigated
following the preseason. Furthermore, in both studies the initial performance level was
indicative of an untrained population and increases in performance were relatively small.
Several studies have observed no differences in lower-body strength [7, 150], lower-body
power [150], aerobic capacity [149], or anaerobic capacity [147] following a professional
ballet schedule. The identified studies, therefore, concur with several cross-sectional stud-
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ies of professional ballet dancers reporting aerobic capacities comparable to non-endurance
trained athletes [136, 144], and lower-limb strength values below those of other athletic
populations [146]. Therefore, it seems likely that supplementary physical training is needed
to elicit significant physiological adaptation.

Improvements in physical performance following the end of a ballet season have been
demonstrated in one study [147], in which lower-body strength, lower-body power, flexi-
bility, and aerobic capacity all improved following a six-week summer break. Detraining
effects might typically be expected following the cessation of the season [159]. Instead, an
improvement in physical performance may be indicative of recovery from non-functional
overreaching, or overtraining syndrome [160], which may relate the high volumes of physi-
cal work completed in ballet companies [5]. Future research involving concurrent measure-
ments of workload and physical performance across the course of a season may be helpful
in further elucidating this relationship.

Investigations into changes in body composition in response to professional ballet re-
ported mixed results. Three studies observed no changes in body composition [7, 146, 147],
one saw small increases in lean body mass over a 17-day period spanning a performance
period [140], and another saw decreases in body mass and body fat percentage over the
course of a season [148]. There was, however, some evidence suggesting female dancers
were not adequately meeting their nutritional requirements [140, 148], consistent with pre-
vious cross-sectional research in this population [161]. Two included studies also identified
the limited opportunity dancers are given to refuel throughout the working day [141, 142].
Dancers have previously been identified as an at-risk group for relative energy deficiency
in sport [162]. Given the potential consequences for multiple physiological systems, and
for both health and performance [162], ballet companies should ensure they are facilitating
screening and monitoring processes and promoting good day-to-day nutritional practices
or guidelines.

3.5.4 Methodological Quality

Only five of the 22 studies were classified as good, and no studies were classified as excel-

lent following the Downs and Black assessment. Similarly, only one study [148] received
a ‘yes’ across all of the five criteria outlined in the MMAT. The most common reason
that studies were marked down was the lack of description of the method used to sample
participants. Most studies appear to have used a convenience sample of dancers from a
single ballet company. When generalizing results to another company, the reader should,
therefore, consider the degree of similarity between the company on which the study was
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completed, and the company to which the results are being extrapolated. Ballet companies
are likely to differ widely in factors such as their size, repertoire, and touring schedule, all
of which may influence the physical demands faced by dancers. For studies which investi-
gated the demands of performance roles [125, 137, 46], it is difficult to ascertain the extent
to which the measured roles are representative of all roles. The potential researcher bias
stemming from a lack of random sampling should also be considered, as researchers may
have consciously or unconsciously chosen to analyze more physically demanding roles.

The quality of analysis across the included studies was inconsistent. Only two [139,
141] of the 22 included studies included a power calculation, and eight [4, 125, 136, 139,
141, 145, 148, 149] studies used inappropriate or no statistical analyses. Fifteen studies did
not include confounding factors in their analysis; this was most often a failure to account
for the dancers’ company ranks. Those authors who included company rank as a covariate
observed significant differences across levels [15, 46, 137, 141, 142].

Due to the mixed quality of included studies, the heterogeneity of subject areas, and
the lack of replicated studies, few findings are supported by strong levels of evidence.
Ballet staff and researchers should consider the number and quality of studies supporting
an outcome when implementing findings.

3.5.5 Limitations

Four databases, the reference lists of included studies, and the reference lists of relevant
review articles were searched to conduct a comprehensive literature search. However, it is
possible that studies from journals which are not indexed were not identified. Given the
artistic nature of the field, we also acknowledge that much of the knowledge regarding the
physical demands faced by professional ballet dancers may be published in non-scientific
literature. Furthermore, as only published research was included, this review may be lim-
ited by publication bias. We were also unable to include articles not written in English;
given the popularity of ballet around the globe this may have led to the exclusion of rel-
evant articles. Finally, whilst standardized templates were used, only one reviewer com-
pleted data extraction and critical appraisals.

3.5.6 Practical Applications and Further Research

The results of this review reinforce previous suggestions that professional ballet dancers
should be considered athletes. Most notably, dancers complete large durations of rehearsal
and performance, during which the are required to complete intermittent activity of mixed
intensities, characterized by frequent jumps, pliés and lifts. Science and medicine practi-
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tioners working in professional ballet companies should implement strategies to alleviate
the increases in injury risk that may be associated with these demands. For example, en-
couraging appropriate nutrition and rest following performance, managing dancer training
loads, and developing physical characteristics such as strength, power, and aerobic and
anaerobic capacity. Given that ballet activity alone does not appear to elicit meaningful
physiological adaptations, professional ballet companies should ensure they are provid-
ing both the opportunities and resources for dancers to engage in supplementary physical
training.

Several key areas of research have not yet been investigated. Research into the session-
specific demands of professional ballet has failed to address rehearsals and has not ad-
equately investigated the demands of performance. Understanding these demands more
thoroughly may aid in the periodization of repertoire and rehearsals, and provide direction
to the physical preparation of dancers. Despite the prominence of pointe work in the move-
ment of female dancers, and its implication in foot and ankle injury risk [163, 164]. no
studies were identified investigating pointe activity during any session type. Finally, whilst
several studies identified the large training loads undertaken by dancers as a key physical
demand, no studies have investigated how these training loads fluctuate based on the time
point in the season or the production being rehearsed or performed. Furthermore, only
global measures of activity (e.g., duration, physical activity level) have been used to quan-
tify training loads—several studies [112, 113, 114] have demonstrated the use of wearable
sensors to provide more detailed insight into the musculoskeletal demands of ballet, though
algorithms are not yet available open-source, and have yet to be used in professional ballet
research.

3.6 Conclusions

This study systematically reviewed research investigating the physical demands of profes-
sional ballet. Professional ballet activity is characterized by frequent jumps, pliés, and
lifting movements, as well as high rehearsal and performance exposure time. To ensure
dancers are physically prepared for these demands, ballet companies should provide oppor-
tunities and resources for supplementary physical training. Future research should focus on
the physical demands of rehearsals and the longitudinal training load characteristics of pro-
fessional ballet. There is a need for greater methodological rigour in this field of research,
particularly regarding analysis of data and sampling procedures.
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CHAPTER 4

Dance Exposure, Individual Characteristics, and
Injury Risk in Professional Ballet: A Five Season

Cohort Study

4.1 Abstract

Aim: To describe the relationships between dance exposure, dancer characteristics, and
injury risk across five seasons in a professional ballet company. Methods: Dance exposure
time and clinician-reported time-loss and medical attention injury data were prospectively
collected from 118 professional dancers of The Royal Ballet between 2015/16 and 2019/20.
Cox proportional hazards and shared frailty models were fitted to overuse and traumatic in-
juries; age, sex, company rank, injury history, and individualized robust Z-scores for 7-day
and 28-day accumulated exposure, and week-to-week change in exposure were included
as time-varying covariates. Results: Across 381,710 h of exposure, 1332 medical atten-
tion (427 time-loss) injuries were observed. Positive relationships were observed between
week-to-week change in exposure and overuse time-loss (+1 Z-score hazard ratio: 1.27,
95% confidence interval (CI): 1.06–1.53) and medical attention injury risk (+1 Z-score
hazard ratio: 1.17, 95% CI: 1.06–1.28). A negative relationship was observed between 7-
day exposure and overuse medical-attention injury risk (+1 Z-score hazard ratio: 0.74, 95%
CI: 0.66–0.84). Overuse time-loss injury risk was greater in soloists compared to the corps

de ballet (hazard ratio: 1.47, 95% CI: 1.01–2.15), and in dancers with a higher previous
injury rate (+1 injury·1000 h-1 hazard ratio: 1.06, 95% CI: 1.02–1.10). Only age was asso-
ciated with traumatic time-loss (+1-year hazard ratio: 1.05, 95% CI: 1.01–1.09) or medical
attention injury risk (+1-year hazard ratio: 1.04, 95% CI: 1.01–1.07). Conclusions: Pro-
fessional ballet companies should implement training principles such as periodization and
progression, particularly for dancers with multiple risk factors. These findings provide a
basis for future prospective investigations into specific causal injury pathways.
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4.2 Introduction

Sports science and medicine departments operate with the twin goals of maximising per-
formance and reducing the risk of athletic injury [19]. Understanding the load-injury re-
lationship is, therefore, fundamental when planning training programmes, such that tech-
nical and physical qualities can be developed without excessively increasing the risk of
injury [9]. The mismanagement of workload may lead to maladaptive responses such as
non-functional overreaching, overtraining syndrome, and injury [23, 17]. The International
Olympic Committee position stand on load and injury risk in sport identifies a need for
research into specific athletic populations [17]. Despite multiple studies suggesting work-
load may be a risk factor for injury in professional ballet [141, 165, 166], the load-injury
relationship has not yet been investigated in this population.

Professional ballet companies perform as many as 145 shows per season, comprised of
up to 18 productions [14]. To prepare for the physical, technical, and artistic demands of
these performances, professional ballet dancers rehearse for 3.5–9.0 h per day [5]. Weekly
dance exposures are, therefore, regularly above 30 h·wk-1 [167], exceeding training and
competition exposures reported in elite sporting environments [155, 156]. Furthermore,
whereas sportspeople typically taper their training before competition [168], a ballet com-
pany will instead increase rehearsal load in the build-up to the opening night of a produc-
tion [149]. This increase may reflect limited access to theatre stage space, and an effort to
improve the execution of the ballet prior to performance.

Several studies have investigated the load-injury relationship in the wider field of dance
[122, 123, 169], however, inappropriate statistical methods (e.g., Pearson’s correlation) or
underpowered study designs have been used. Conversely, Jeffries et al. [121] detailed
the workloads and injury events of 16 contemporary dancers across one year, to guide
future large-scale prospective studies. Whilst the prospective design used in this study
is favourable, the resulting small sample size meant that the authors could not determine
associations between load and injury risk. The shortcomings of study designs using existing
data in load-injury research have been well discussed [94]. Nonetheless, the use of existing
data can provide direction to prospective investigations, whilst overcoming the sample size
limitations faced by short-term prospective research.

The aim of this study was, therefore, to describe the relationships between dance ex-
posure, dancer characteristics, and injury risk across five seasons in a professional ballet
company.
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4.3 Methods

4.3.1 Study Design and Setting

The present study is secondary use of data [170] recorded as part of a five-year prospective
study which aimed to describe the incidence rate, severity, and burden of time-loss and
medical attention injury at The Royal Ballet between August 8th, 2015, and March 15th,
2020 [163]. All data were prospectively recorded, and all dance events took place at the
Royal Opera House, London. Where applicable, the STROBE-SIIS statement has been
used to guide the reporting of this study [171].

4.3.2 Participants

As part of normal working practices, data were collected from 119 eligible dancers across
the ranks of apprentice, artist, first artist, soloist, first soloist, and principal: 108 par-
ticipants gave written informed consent. The remaining 11 were contacted: 10 did not
respond and one declined to participate. A legitimate interest assessment was completed,
and written support from both the Data Controller and Clinical Director of the company
was provided to use anonymized data pertaining to the 10 participants who could not be
contacted. This was approved by the local ethics committee in accordance with the Dec-
laration of Helsinki. Demographics of the included 118 dancers (age 26.9 ± 7.3 y) are
provided in Table 4.1.

4.3.2.1 Company Rank

Ballet companies are hierarchical, with each dancer assigned a rank. The rank of apprentice
is given to dancers in their first year of professional employment. Apprentices, artists, and
first artists make up the corps de ballet, who typically perform as an ensemble. Dancers can
be promoted to the ranks of soloist and first soloist, where they will perform increasingly
featured roles. Finally, principal dancers are the most senior, performing leading roles.
Promotions typically take place at the conclusion of the season. Roles may be fluid across
ranks (e.g., some first soloists may perform Principal roles).

4.3.3 Injury

Injury data were recorded by in-house medical staff (Chartered Physiotherapists: five full-
time, one part-time, eleven covering staff leave, and two who were consulted to provide
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Table 4.1: Demographics of the sample for each season in the study. Brackets indicate the
ranks of participants who chose not to take part in the study.

Demographic 2015/16 2016/17 2017/18 2018/19 2019/20
All 83 87 82 90 91

Left the cohort - 6 13 3 5
Joined the cohort - 10 8 11 6

Female
Apprentice 2 4 3 4 4
Artist 11 11 10 13 12
First Artist 9 10 11 10 12
Soloist 11 9 8 4 5
First Soloist 7 7 6 9 9
Principal 6 8 8 8 8

Male
Apprentice 3 4 4 4 2
Artist 7 7 7 10 11
First Artist 5 6 6 7 7
Soloist 8 (1) 7 (1) 7 7 8
First Soloist 7 5 4 5 5
Principal 7 9 8 9 8
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historical data; medical doctors: 4 part-time) using the Orchard Sports Injury Classifica-
tion System [172]. In line with previous recommendations [173], both medical attention
and time-loss injuries were included in this study. Medical attention injuries were defined
as “any musculoskeletal complaint that required medical attention from a healthcare pro-
fessional” [173]. In line with previous research and consensus statements in professional
ballet [14, 15], association football [174], and rugby union [175], time-loss injuries were
defined as “any injury that prevented a dancer from taking a full part in all dance-related
activities that would normally be required of them for a period equal to or greater than 24
hours after the injury was sustained” [14, 15]. Injuries were classified as either overuse or
traumatic based on the nature of onset: overuse injuries were defined as “any medical inci-
dent that did not have a sudden onset from a discrete event” [176], whilst traumatic injuries
were defined as any medical incident that had a sudden onset from a specific identifiable
event.

4.3.4 Dance Exposure Time

An online athlete management system (Smartabase v.6.5.11, Fusion sport, Brisbane, Aus-
tralia) was used to record class and rehearsal exposure time [177]. During each week in
the study, the company’s Artistic Scheduling Manager entered an individualized schedule
for each dancer, detailing their class and rehearsal timetable for the following week. Per-
formance exposure time was estimated from electronic copies of casting sheets from each
of the five seasons. Hard copies of the casting sheet for each performance were exam-
ined to ensure any last-minute casting changes were amended. For each day in the study,
participants’ total ballet class, rehearsal, and performance exposure time was calculated.

For each participant, and each day in the study, accumulated dance exposure time over
the previous seven days (i.e. day -1 to day -7; 7-day exposure), accumulated dance exposure
time over the 28 days preceding those seven days (i.e. day -8 to day -35; 28-day exposure)
[106], and the week-to-week change in dance exposure time (i.e., day -1 to day -7 minus
day -8 to day -14) were estimated. These periods were chosen because they are the most
frequently used periods in this field of research [73, 78].

For each participant, individualized robust Z-scores [178] were calculated for each
dance exposure time variable using the equation:

robust Z score =
variable - individual median

individual median absolute deviation
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4.3.5 Age, Sex, Injury History, and Company Rank

Participant age, sex, and injury history were included as covariates in the analysis, having
been identified as injury risk factors in sport and dance [179, 180, 181]. Injury history was
included in the form of each dancer’s historical injury rate within the data set, per 1000 h of
dance exposure. For company rank, a categorical variable was included, where participants
were classed as corps de ballet members (apprentices, artists, and first artists), soloists
(soloists and first soloists), or principals.

4.3.6 Statistical Analysis

Associations between dance exposure variables and time-loss and medical attention injury
incidence were investigated by fitting Cox proportional hazards and shared frailty models to
the data using the R package survival [182]. The count of injury events per predictor param-
eter [183] was: time-loss overuse - 17.6 events, time-loss traumatic - 12.9 events, medical
attention overuse - 70.1 events, and medical attention traumatic injuries - 25.0 events. An
insufficient number of injury events were recorded to further subdivide injuries by tissue
type. Daily dance exposure time was entered as the timescale variable and participant iden-
tity was entered as the frailty term, accounting for repeated events within individuals and
heterogeneity in baseline risk with the shared frailty model. Separate cause-specific haz-
ard models were fitted for overuse and traumatic injuries. Exposure periods which ended
with either no injury or with a different injury classification were right-censored [184].
Week-to-week change in dance exposure, 7-day accumulated dance exposure, and 28-day
accumulated dance exposure were entered as time-varying covariates. In line with previ-
ous suggestions to investigate non-linear relationships between training load and injury,
quadratic and cubic terms were included in the model [65, 185]. Hazard ratios associated
with individual characteristics were investigated by including participant age, sex, company
rank, and injury history as variables in each model.

To compare the goodness of fit of the Cox proportional hazards models against the
shared frailty models, analysis of deviance tables were constructed using the R function
anova.coxph. Log-likelihoods, Akaike information criteria, and Bayesian information cri-
teria were calculated, with values closer to zero indicative of better model fits. The pro-
portional hazards assumption for each model was confirmed using the R functioncox.zph.
Individual predictor variables were determined to have reached statistical significance at
p < .050; given the exploratory nature of the present investigation, no multiplicity adjust-
ments were made for multiple outcomes [99]. Hazard ratios for significant dance exposure
variables were simulated and plotted with 50% and 95% shortest probability intervals using
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the R package simPH [186]. Hazard ratios reported are indicative of a one median absolute
deviation increase in the predictor variable, unless otherwise stated. All statistical analyses
took place in R (version 4.0.3, R Foundation for Statistical Computing, Vienna, Austria).

4.4 Results

A total of 1547 medical attention injuries, of which 516 were time-loss injuries, were
recorded across the five seasons; 135 medical attention injuries, including 59 time-loss
injuries, were excluded because they occurred when a dancer was not engaged in a normal
rehearsal schedule (e.g., during rehabilitation, sabbatical, maternity, etc.). Eighty medi-
cal attention injuries (two bone, one central/peripheral nervous system, 40 joint/ligament,
seven muscle/tendon, and 29 ‘other’), including 30 time-loss injuries (two bone, 17 join-
t/ligament, one muscle/tendon, and 10 ‘other’) were excluded because records indicated
that a physiotherapist had not classified the injury as either overuse or traumatic. The final
dataset, therefore, consisted of 1332 medical attention (overuse: 982; traumatic: 350) and
427 time-loss (overuse: 246; traumatic: 181) injuries across 381,710 h of dance exposure.

4.4.1 Overuse Injuries

A positive linear relationship was observed between overuse medical attention injury rate
and week-to-week change in accumulated exposure (hazard ratio: 1.17, 95% CI: 1.06–1.28,
p = .001; Figure 4.1), whilst a negative linear relationship was observed between overuse
medical attention injury rate and 7-day accumulated exposure (hazard ratio: 0.74, 95%
CI: 0.66–0.84, p < .001; Figure 4.1). Overuse medical attention injury rate was greater in
soloists (hazard ratio: 1.29, 95% CI: 1.02–1.62, p = .034) but not principals (hazard ratio:
1.34, 95% CI: 0.96–1.87, p = .081) compared to the corps de ballet, and lower in males
compared to females (hazard ratio: 0.79, 95% CI: 0.64–0.97, p = .026).

The shared frailty model revealed a positive linear association between week-to-week
change in accumulated exposure and overuse time-loss injury rate (hazard ratio: 1.27, 95%
CI: 1.06–1.53, p = .011; Figure 4.2). No significant linear or non-linear relationships were
observed between overuse time-loss injury and 7-day or 28-day accumulated exposure
time. Injury history was positively associated with overuse time-loss injury, with an in-
crease of one injury per 1000 h resulting in a hazard ratio of 1.06 (95% CI: 1.02–1.10, p

= .005). An increase in overuse time-loss injury rate was observed in the soloist group
compared to the corps de ballet (hazard ratio: 1.47, 95% CI: 1.01–2.15, p = .045), though
no significant difference in overuse time-loss injury rate was observed between the corps
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Figure 4.1: Significant linear associations between A) week-to-week change in dance
exposure time and overuse medical attention injury risk, and B) 7-day accumulated
exposure and overuse medical attention injury risk. The central line represents the median
of all simulations, whilst the darker and lighter areas represent the 50% and 95% shortest
probability intervals, respectively.

de ballet and principal dancers (hazard ratio: 1.40, 95% CI: 0.81–2.41, p = .230). No sig-
nificant associations were observed between overuse time-loss injury rate and either age
(hazard ratio: 1.00, 95% CI: 0.96–1.03, p = .840) or sex (male hazard ratio: 0.91, 95% CI:
0.66–1.26, p = .580).

4.4.2 Traumatic Injuries

For traumatic medical attention injuries, a significant association was only observed with
age (+1-year hazard ratio: 1.04, 95% CI: 1.01–1.07, p = .016). A large but non-significant
difference in traumatic medical attention injury rate was observed in principals compared
with the corps de ballet (hazard ratio: 1.51, 95% CI: 0.95–2.41, p = .083).

No dance exposure variables were associated with traumatic time-loss injury rate. A
cubic relationship between 28-day accumulated exposure and traumatic time-loss injury
rate demonstrated the best fit to the observed data of any dance exposure time variable but
was not statistically significant (p = .053; Figure 4.3). Hazard ratios for traumatic time-loss
injury were greater for soloists and principals compared with the corps de ballet, though
were not significant (principals hazard ratio: 1.57, 95% CI: 0.92–2.68, p = .096; soloists
hazard ratio: 1.36, 95% CI: 0.90–2.06, p = .140). A significant increase in traumatic time-
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Figure 4.2: Significant positive linear association between week-to-week change in dance
exposure time and overuse time-loss injury risk. The central line represents the median of
all simulations, whilst the darker and lighter areas represent the 50% and 95% shortest
probability intervals, respectively.

loss injury was observed with increasing age (+1-year hazard ratio: 1.05, 95% CI: 1.01–
1.09, p = .005), however, no association was observed between traumatic time-loss injury
rate and injury history (+1 injury·1000 h-1 hazard ratio: 1.02, 95% CI: 0.96–1.09, p = .500)
or sex (male hazard ratio: 0.95, 95% CI: 0.70–1.31, p = .772).

4.4.3 Model Fit

For both overuse and traumatic injuries, and for both medical attention and time-loss in-
juries, shared frailty models indicated better fits to the observed data than Cox proportional
hazard models (Table 4.2).

4.5 Discussion

This is the first study to investigate relationships between dance exposure and medical at-
tention and time-loss injury risk in professional ballet. In line with previous recommenda-
tions [76, 187], we fitted shared frailty models to a dataset of 381,710 exposure hours, 1332
clinician-reported medical attention injuries, and 427 clinician-reported time-loss injuries
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Table 4.2: Model selection criteria for the Cox proportional hazards and shared frailty
models.

Model Model Selection Criteria
LL BIC AIC

Overuse Time-loss
Cox PH -1046.6 2170.2 2121.1
Shared Frailty -1005.0B 2258.7 2100.3

Overuse Medical Attention
Cox PH -4205.7 8507.9 8439.5
Shared Frailty -4101.5B 8702.9 8348.1

Traumatic Time-loss
Cox PH -755.6 1584.1 1539.3
Shared Frailty -738.8A 1628.6 1533.2

Traumatic Medical Attention
Cox PH -1477.3 3036.7 2982.7
Shared Frailty -1416.7B 3157.9 2944.2

A Significant (p <.010) improvement compared with Cox PH model.
B Significant (p <.001) improvement compared with Cox PH model.
AIC, Akaike information criterion; BIC, Bayesian information crite-
rion; LL, log-likelihood; PH, proportional hazards.
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Figure 4.3: Non-significant quadratic association between 28-day accumulated dance
exposure time and traumatic time-loss injury risk. The central line represents the median
of all simulations, whilst the darker and lighter areas represent the 50% and 95% shortest
probability intervals, respectively.

to identify potential risk factors for injury. Overuse time-loss injury rate was associated
with week-to-week change in dance exposure, company rank, and injury history, whilst
traumatic time-loss and medical attention injury rates increased with age but were not as-
sociated with any other variables. Ballet companies can manage potential injury risk factors
by implementing training principles such as periodization and progressive overload.

In the present results, week-to-week increases in dance exposure were positively asso-
ciated with the rate of overuse injury. This finding agrees with several studies identifying
excessive increases in load as a potential risk factor for athletic injury [73, 90]. Further-
more, dancers have suggested that injury is related to a lack of consistency in workload, re-
sulting from factors such as a congested performance schedule, or an increase in stage calls
before an opening night [12, 149]. Although the aetiological role that a spike in workload
may play in injury has been speculated, causal mechanisms have not yet been established.
Several frameworks for overuse injury outline an interplay between structure-specific load
and structure-specific load capacity [72]. In the current results, dance exposure may be a
surrogate measure of the former, with large week-to-week increases in exposure represent-
ing an increase in load beyond the tolerance of any given tissue—at present, however, this
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is speculative. It is also important to note that given the non-linear relationship between
the magnitude of a loading stimulus and the resulting tissue damage [67], using dance ex-
posure as a proxy for tissue damage in any one specific dancer, at a single point in time,
is likely futile. Instead, when scheduling rehearsals and performances, professional ballet
companies should employ company-wide and season-long strategies that alleviate sharp
increases in dance exposure; for example, distributing workload uniformly across the com-
pany, periodizing the repertoire, or progressing loads gradually before congested periods
of performances.

No associations were observed between 28-day accumulated dance exposure and ei-
ther overuse or traumatic injury rate in the present results, consistent with recent research
in professional soccer [95]. Research in rugby union [76] and cricket [188], however,
has suggested that low chronic workloads are indicative of undeveloped physical quali-
ties, whilst high chronic workloads are indicative of well-developed physical qualities, and
subsequently robust athletes. Although the direction of the relationship between 28-day ac-
cumulated dance exposure and traumatic injury rates supports this hypothesis, the strength
of the relationship does not; ultimately, our results do not justify conclusive statements on
this topic. Future investigations into chronic workloads and injury risk should account for
confounders; for example, periods of low chronic exposure likely occur at the beginning of
the season (following reduced strength training, or concurrent with large increases in load),
or following rehabilitation from an injury (when affected tissues may still be remodelling).
Contrasting multiple studies that have identified high acute workloads as a potential injury
risk factor in sportspeople [9], we report no association between 7-day accumulated ex-
posure and either overuse or traumatic time-loss injury risk in professional ballet dancers.
These results support previous suggestions that high workloads alone are not problematic;
instead, the risk of injury is influenced by the manner in which an athlete progresses to
those high workloads [16]. When scheduling rehearsal and performances, however, ballet
companies should consider that whilst time-loss injury incidence rates may not increase
with high acute loads, the absolute number of time-loss injuries will likely increase pro-
portionally with exposure time. Surprisingly, the hazard ratio for overuse medical attention
injuries was greatest following lower seven-day accumulated exposures, contradicting an
established paradigm for athletic injury risk [16].

In agreement with previous investigations in pre-professional ballet [189], we observed
an increased rate of time-loss overuse injury in dancers with a higher prior injury inci-
dence [179, 190]; however, no evidence was observed for any relationship between injury
history and traumatic time-loss or medical attention injuries. In contrast, the rate of trau-
matic injury, but not overuse injury, increased with age. When interpreting this result, it
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is important to consider not only the physiological effects of aging but also the contextual
implications; for example, age is positively associated with company rank. Furthermore,
within company-ranks the casting of different roles, and subsequently a dancer’s activity,
may be influenced by age. Consistent with previous research in professional ballet and
modern dancers [191], we observed differences in injury risk across company ranks, as
soloists demonstrated significant increases in overuse injury compared to corps de ballet

dancers. This finding may reflect the fact that senior-ranking dancers are typically cast in
more physically demanding roles [46], and work at higher activity intensities [141, 192]
compared to their junior counterparts. Despite the differences in the activity and biome-
chanical demands of typical male and female roles [46], no differences in either overuse
or traumatic time-loss injury risk were observed between sexes; a lower hazard ratio for
overuse medical attention injuries, however, was observed in males compared with females.

4.5.1 Strengths, Limitations, and Considerations

This is the largest investigation to date into potential risk factors for injury in professional
ballet. Both the number of participants and injuries in the present study exceed sample sizes
often used in similar sporting research; nonetheless, the injury count was insufficient to
subcategorize injuries by tissue type. Several reviews have recommended the time-to-event
models used in the present analysis for sports injury research, allowing for time-varying
covariates, recurrent events, cause-specific hazards [187, 97].

Whilst the secondary use of data facilitates the large sample size, it has several impli-
cations for the findings. Firstly, the results are not evidence of a causal link between dance
exposure and injury risk [193]; the present design is unable to account for several poten-
tial confounding factors, for example, confounding via the schedule [100]. Retrospective
studies have been highlighted as being at-risk of researcher bias, in part due to the flawed
selection of multiple or seemingly arbitrary time windows [94]. Without being able to
pre-register analyses before data collection, we have, therefore, used the most commonly
investigated time windows from this research field in an attempt to alleviate this limitation.

Although exposure data were prospective, individualized, and recorded by a single in-
dividual, it was not possible to calculate each dancer’s exact time involvement in perfor-
mances. Furthermore, we could not include all possible exposure, for example as a result
of private rehearsal, or teaching. We must, therefore, accept that some level of error in the
calculation of exposure time. Although injury data were recorded by 23 different clinicians
over the five seasons, 98% of injuries were recorded by five primary physiotherapists and
all injuries were entered using a standardized form. We must acknowledge, however, that
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the recording of injury data may not have been entirely uniform. We also had to exclude
eighty medical attention injuries due to a lack of classification; no analysis was performed
to assess the impact of this exclusion.

Finally, it is important to highlight the shortcomings of time exposure as a measure of
athletic load compared to quantifications of volume and intensity. Whilst these measures
are regularly collected in sport, they are not yet commonplace in dance environments, par-
ticularly in a company of this size. We also acknowledge several contextual factors that may
contribute to injury risk which are not quantified, for example, variations in choreographic
genres, the differing demands of class, rehearsal, and performance, and the psychological
load associated with live performance.

4.5.2 Future Research and Practical Applications

This study provides a platform from which future prospective observational and experi-
mental studies in professional ballet may develop causal injury pathways. In line with
existing aetiological frameworks [72], measurements of both structure-specific load and
structure-specific load capacity should underpin research in dance [20]. To facilitate this
research, the development of more advanced measures of physiological tissue forces out-
side of a laboratory is required. Given that the development of physical qualities may be
more practical than manipulating rehearsal and performance load, understanding the role
of structure-specific load capacity may be particularly valuable.

Increases in injury rate were associated with larger week-to-week increases in dance
exposure, agreeing with several previous investigations in sport, though it should be noted
that research in this field has yielded mixed results. Whilst specific thresholds with which
to manipulate a dance schedule are not warranted based on the current results, they do sup-
port the use of established training principles. At present, it appears to be rare for a ballet
schedule to include meaningful recovery periods or facilitate progressions in load; instead,
training loads are highly variable because of factors such as studio, stage, or choreogra-
pher availability, changes in casting due to injury, and unequal distribution of work both
between and within company ranks. Artistic and medical staff working in professional
ballet companies should be mindful of excessive progressions in load, therefore, rehearsal
and performance schedules should be periodized when planning a repertoire. Practically,
this may entail strategies such as the gradual progression of load before congested periods
of performances; providing regular periods of offload to facilitate recovery; or organizing
the repertoire such that the most physically demanding productions are not performed con-
secutively, or by the same primary casts. This may be particularly relevant for higher-risk
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dancers, i.e., senior-ranking dancers, dancers with a higher rate of previous injury, or older
dancers. To manage risk factors associated with variations in training load, further research
is required to better understand the schedules undertaken by professional ballet dancers.

4.6 Conclusion

In a five-season cohort study in a professional ballet company, increases in overuse time-
loss injury rate were associated with week-to-week increases in dance exposure, injury his-
tory, and the company ranks of soloist and first soloist. Traumatic injury rate was associated
with age, but no dance exposure variables or dancer characteristics. These results provide
a basis for the development of causal pathways in future prospective studies. Science and
medicine practitioners and artistic staff working in professional ballet should consider the
training principles of progression, periodization, and recovery when planning rehearsal and
performance schedules.
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CHAPTER 5

Rehearsal and Performance Volume in
Professional Ballet: A Five-Season Cohort Study

5.1 Abstract

Introduction: Few studies have published data concerning the longitudinal rehearsal and
performance demands experienced by professional ballet dancers. The aim was to describe
the rehearsal and performance volumes undertaken across five professional ballet seasons,
and identify factors associated with inter-dancer and inter-production variation in dance
hours. Methods: Scheduling data were collected from 123 dancers over five seasons at The
Royal Ballet. Linear mixed effects models were used to evaluate differences in: i) weekly
dance hours and seasonal performance counts across sexes, company ranks, and months,
and ii) factors associated with the variation in rehearsal hours required to stage different
productions. Results: On average across the five seasons, a peak in performance volume
was observed in December, whereas rehearsal hours peaked in October and November, and
between January and April. Differences in weekly dance hours were observed between
company ranks (p < .001, range in means: 19.1–27.5 h·week-1). Seasonal performance
counts varied across company ranks (p < .001), ranging from 28, 95% CI [22, 35] in
principals, to 113, 95% CI [108, 118] in the rank of artist. Accumulated rehearsal durations
were considerably greater in preparation for newly created ballets compared with existing
ballets (77.8 vs 37.5 h). Rehearsal durations were also greater in preparation for longer
ballets, with each additional minute of running time associated with a 0.43 h increase in
rehearsal duration (p < .001). Full-length ballets, however, were consistently the most
time-efficient to stage due to their long performance runs compared with shorter ballets
(16.2 vs 7.4 performances). Conclusions: Training principles such as progressive overload
and periodization should be implemented in professional ballet companies to manage the
high and variable rehearsal and performance loads.
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5.2 Introduction

To provide effective support services to dancers, science and medicine practitioners must
understand the physical demands undertaken by those dancers [194]. The acute activity de-
mands of ballet have been relatively well described; ballet is intermittent [125], with an ac-
tivity profile comparable to basketball [153] and tennis [195]. Performances are comprised
of short durations of high-intensity movement interspersed with periods of low-intensity
activity, during which a dancer may be in character or off-stage [46]. Within a perfor-
mance, dancers are required to execute highly technical jumps, lifts, and balances, requir-
ing strength, power, flexibility, and motor control [6]. The demands of a ballet schedule
over months, and years, however, have not yet been explored.

To date, no study has investigated the rehearsal or performance schedules of a profes-
sional ballet company beyond a three-week period. Several studies report superficial de-
scriptive data regarding the structure of a ballet schedule: companies perform ˜145 shows
per season, comprised of ˜15 different productions, and weekly dance hours are between
30–40 h [15]. It is unclear, however, in how many of these shows individual dancers per-
form, in how many of the productions individual dancers are cast, and how much intra-
individual, inter-individual, and seasonal variation in dance hours exists. Furthermore, no
study has investigated the rehearsal periods required to stage specific productions, nor the
factors which may influence these rehearsal periods.

Several position stands and consensus statements have been published relating to lon-
gitudinal workload in sport, and its relationships with performance, overtraining, injury,
and illness [196, 17]. Despite suggestions that ballet, like sport, should embrace estab-
lished training principles [147, 108], the absence of published longitudinal data relating
to the structure of a ballet season makes it challenging to implement periodization strate-
gies. In the present study a five-season data set of the ballet class, rehearsal, and perfor-
mance exposure scheduled by an elite professional ballet company is explored. Measures
of exposure—although not accounting for exercise intensity—have been shown to be im-
portant variables to monitor in sport [76, 197, 198], whilst the previous chapter revealed
excessive week-to-week changes in dance exposure to be associated with injury risk in
professional ballet [199].

The first aim was to describe the structural characteristics of a professional ballet sea-
son; namely, rehearsal hours and performance counts, intra-season variation, and repertoire
make-up. The second aim was to identify factors related to the variation in rehearsal hours
across different productions.
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5.3 Methods

5.3.1 Participants

The initial sample were 124 dancers of The Royal Ballet; 108 gave written informed con-
sent, one declined, and 15 did not respond. To use anonymized data pertaining to the 15
participants who could not be contacted, a legitimate interest assessment was completed to
ensure data protection regulations were met, following which written support from both the
Data Controller and Clinical Director of the company was provided. This was approved by
the local ethics committee in accordance with the Declaration of Helsinki. A total of 123
dancers (women: n = 66, 28.0 ± 8.3 y; men: n = 57, 27.9 ± 8.5 y) were, therefore, included
in this study. A breakdown of the distribution of company ranks across each of the five
seasons is presented in Table 5.1.

Table 5.1: Demographics of the sample for each of the five seasons.

Demographic 2015/16 2016/17 2017/18 2018/19 2019/20
All 88 91 90 99 99
Female

Apprentice 2 4 3 4 4
Artist 11 11 10 14 12
First Artist 9 10 11 10 12
Soloist 11 9 8 4 5
First Soloist 7 7 6 9 9
Principal 6 8 8 8 8
Principal Character Artist 2 1 3 3 3

Male
Apprentice 3 4 4 4 2
Artist 7 7 7 10 11
First Artist 5 6 6 7 7
Soloist 8 (1) 7 (1) 7 7 8
First Soloist 7 5 4 5 5
Principal 7 9 8 9 8
Principal Character Artist 3 3 5 5 5

5.3.2 Design

A descriptive cohort design was used to explore the structure of a professional ballet season,
using data collected for a larger prospective study [163]. Ballet classes, rehearsals and
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performances taking place at the Royal Opera House, London, were prospectively recorded
as part of normal working practices between the 2015–16 and 2019–20 seasons.

5.3.3 Data Collection

Three session types were included in this study: Class – typically the first session of a
dancer’s day, focusing on ballet technique; Rehearsal – a session during which dancers
will be learning or practicing choreography for a specific ballet; and Performance – a sin-
gle show on the main stage for which a public audience is present. Throughout this study
the term Production is also used, referring to the ballet being performed (e.g., Romeo and
Juliet, The Nutcracker, etc.). Class and rehearsal data were recorded by the company’s
Artistic Scheduling Manager. Data were entered once a week using a bespoke athlete man-
agement system (Smartabase, Fusion Sport, Brisbane, Australia). Performance data were
recorded using casting sheets; both electronic and hard copies were filed following each
performance. It was beyond the scope of the available data to determine the exact duration
for which each role was involved in a performance; as a result, dancers were assigned 3
h of exposure time for a performance—the duration for which they are scheduled to be
in attendance. Scheduling data for touring periods were incomplete, and were, therefore,
excluded from this study. Touring periods were typically 4 weeks in duration during June
and July, immediately following the conclusion of the 2015–16 to 2018–19 seasons.

Throughout the data collection period, time-loss injury data were recorded to the ath-
lete management system by in-house Chartered Physiotherapists. For analyses of weekly
dance hours and week-to-week changes in dance hours, data points were removed from the
analysis when the dancer was designated as injured for more than two days in a week. For
seasonal performance counts data points were removed from the analysis when the dancer
was designated as injured for more than 10% of days during the season. These decisions
were made such that data reflected the demands of an uninjured dancer’s schedule.

5.3.4 Data Processing

Following the conclusion of the 2019–20 season, all scheduled class and rehearsal data
between 4th August 2015 and 15th March 2020 were exported from the athlete management
system. Performance involvements were determined by manual inspection of hard copies
of casting sheets, ensuring all last-minute casting changes were accounted for. Neither
electronic nor hard copies of casting sheets were available for 8 performances (1.2% of all
performances). No action was taken to impute data. Scheduling data were subsequently
used to calculate the summary variables, defined in Table 5.2. For seasonal performance
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Table 5.2: Definitions of calculated variables.

Variable Definition
Weekly dance hours The sum of scheduled dance hours in a dancer-week.
Seasonal performance count The count of performances in a dancer-season.
Week-to-week change The difference in a dancer’s weekly dance hours compared

to the previous week.
Individual rehearsal hours The rehearsal hours completed by a dancer in preparation

for a specific production.
Company rehearsal hours The total rehearsal hours completed by all dancers in prepa-

ration for a specific production (i.e., the sum of individual
rehearsal hours for a given production).

Production time-efficiency The ratio of company rehearsal hours to the total on-stage
performance time resulting from the production (i.e., com-
pany rehearsal hours / [number of performances × perfor-
mance duration]).

counts, data from the 2019–20 season were excluded from the analysis due to being cut
short because of the COVID-19 global pandemic.

5.3.5 Statistical Analysis

To investigate differences in weekly dance hours across sexes, company ranks, and months,
and differences in seasonal performance counts across sexes and company ranks, linear
mixed effects models were implemented using the lme4 R package [200]. Sex, company
rank, and month were entered as fixed effects, whilst within-individual grouping and season
were entered as random effects. Bonferroni adjusted pairwise comparisons of estimated
marginal means were used to compare differences across sex, rank, and month. Signifi-
cance was accepted at p < .025, accounting for two primary outcomes.

To investigate factors associated with the individual rehearsal hours required to stage
a production, a linear mixed effects model was used. Dancer (company rank, sex, perfor-
mance count) and performance characteristics (production running time, years since last
staged, existing ballet or newly created choreography) were entered as fixed effects, whilst
within-individual grouping and production were entered as random effects. Where signifi-
cant effects were observed, estimated marginal mean rehearsal hours were extracted from
the model and compared graphically. For each model, the assumptions of normality, linear-
ity, and homoscedasticity were confirmed. Data are reported as mean ± SD. Data process-
ing and analyses were conducted using R v.4.0.3 (R Foundation for Statistical Computing,
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Vienna, Austria).

5.4 Results

All seasons ran from August to June, except for 2019–20 which concluded prematurely
in March due to the COVID-19 global pandemic. Touring periods immediately followed
the final week of each season (mean duration 28 ± 4 days). A representative timeline of
a season is shown in Figure 5.1. The company staged 10.5 ± 0.8 (range: 9–11) produc-
tions per season, comprised of 18.3 ± 1.6 (range: 16–20) separate ballets. The company
performed totals of 133, 135, 138, 132, and 94 (+43 cancelled) shows in the 2015–16 to
2019–20 seasons, respectively. Ninety-eight out of 365 dancer-seasons and 1,767 out of
15,837 dancer-weeks were removed from the analysis due to injury.

The mixed effects model investigating weekly dance hours revealed significant main
effects of company rank (p < .001; Figure 5.2-A), month (Figure 5.3; p < .001), and com-
pany rank × month interaction (p < .001), but no effect of sex (female 22.8 h, 95% CI [22.0,
23.6]; male 23.9 h, 95% CI [23.1, 24.7]; p = .049) or sex × company rank interaction (p
= .348). The mixed effects model investigating seasonal show count revealed a significant
main effect of company rank (p < .001; Figure 5.2-B), but no effect of sex (female 73.5
shows, 95% CI [69.5, 77.4]; male 76.2 shows, 95% CI [72.3, 80.1]; p = .338), or sex ×
company rank interaction (p = .689). The distribution of increases in week-to-week change
in weekly dance hours across all recorded dancer-weeks is presented in Figure 5.4.

The individual rehearsal hours, company rehearsal hours, and production time-efficiency
for all productions staged across the five seasons are presented in a supplementary file
(Appendix E). The mixed effects model investigating factors associated with individual re-
hearsal hours revealed significant main effects of: years since the production was last staged
(p < .001); production duration (p < .001); and an interaction effect of company rank ×
new or existing ballet (p < .001), but no association was observed with sex (p = .119), or
the number of performances of the production completed by the dancer (p = .960). The
mean number of individual rehearsal hours associated with each significant independent
variable is presented in Figure 5.5.

5.5 Discussion

This study explored five seasons of rehearsal and performance scheduling data at a pro-
fessional ballet company; this is the first study investigating the longitudinal working de-
mands of a professional ballet company for a period beyond three weeks. Mean weekly
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dance hours were between 19.1 and 27.5 h, though weeks involving > 40 h of scheduled
dance were common; large variations in weekly dance hours were evident both between and
within company ranks and months of the season. Alongside this study we provide company
rehearsal durations for specific productions, and the time-efficiency of those productions.
Dancers involved in newly created ballets appear to complete considerably more rehearsal
than they might in an existing work, warranting offload from other productions. These re-
sults are the first to investigate the structure of a ballet season, and may be useful for staff
when periodizing repertoire, casting productions, or planning late-stage rehabilitation for
dancers following injury.

Mean weekly dance hours were between 19.1 and 27.5 h, exceeding training and com-
petition durations reported in elite rowing [201], rugby union [155], and track and field
[202]. Whilst it is important to acknowledge that the present data lacks a measure of inten-
sity, and is, therefore, not a comprehensive measure of training load, the extent to which
these values exceed those in sporting contexts is notable. Even the highest daily durations
reported in sport [155, 201, 202] fall at the lower end of those observed in the present study.
These dance volumes likely underpin the reduction in physical performance observed at
the conclusion of a ballet season [147], and the high rate of burnout in classical dance
[203]. Large variation in weekly dance hours was evident across the cohort; the ‘worst-
case-scenario’ [204] for a dancer may, therefore, be ˜50 h of scheduled dance in a week.
In a rehabilitation context, medical staff should consider whether a dancer is prepared to
tolerate this volume of work before returning to full rehearsal. In the previous chapter,
greater hazard ratios for injury risk were observed with greater progressions in training
volume. The frequency of large week-to-week increases in dance hours should, therefore,
be a cause for concern [89, 90]; this is particularly the case as it would be unlikely for
intensity to be adjusted in response to increases in exposure in this environment. In keep-
ing with well-established principles of training, ballet companies should avoid scheduling
large spikes in rehearsal and performance volume where possible.
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Figure 5.2: A) Weekly dance hours and B) seasonal performance counts, by company
rank. Diamonds and bars indicate the estimated marginal mean and 95% confidence
intervals extracted from mixed effects models. Ap., apprentice; Ar., artist; F.A., first artist;
So., soloist; F.S., first soloist; Pr., principal; P.C., principal character artist.

Figure 5.3: A) Mean weekly rehearsal hours and B) total number of performances staged
by the company for each month in the season.

Large variations in weekly dance hours were observed both within, and between com-
pany ranks. As dancers are promoted from apprentice through the ranks of artist and first
artist, greater weekly dance durations and seasonal show counts are evident. As dancers
are promoted beyond the corps de ballet, however, dance volume is incrementally reduced.
Junior company members have previously been shown to spend less time active across the
day compared with soloists and principals [142]. Thus, it seems probable that as a dancer’s
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Figure 5.4: Week-to-week increases in dance hours across the company. Each square
represents 1% of dancer-weeks in the dataset.

rank progresses, their volume of work decreases whilst the intensity of their work increases
[46]. The transition from pre-professional to professional ballet has been identified as a
potential period of heightened injury risk due to increased ballet exposure [165]. However,
similar weekly dance hours were observed in apprentices as those previously reported in
pre-professional dancers [205], suggesting this transition is not accompanied by an increase
in dance exposure. No difference in dance hours was observed between sexes. Scheduled
dance time, therefore, appears to be broadly comparable between male and female dancers,
though in specific companies, and at specific timepoints, these values are likely to fluctuate
based on the repertoire, casting, and company demographic.

Ballet exposure and performance frequency fluctuated across the course of each season.
The relatively low dance exposure recorded in September reflects the absence of perfor-
mances, as well as efforts to incrementally increase load in response to research identifying
this period as one of heightened injury risk [206]. Despite the increase in show count, De-
cember sees a reduction in dance hours across all company ranks. This reflects the staging
of The Nutcracker in four of the five seasons, a production which is highly time-efficient.
Thus, a regular and well-established ballet requiring relatively little rehearsal, in combi-
nation with a long performance run, may be a useful tool by which to de-load rehearsal
volume. Dance volume was highest in October and November, and from January to April.
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Figure 5.5: Associations between A) company rank, B) the number of years since a
production was last staged, or C) the running time of a performance, and the mean
rehearsal duration completed by a dancer in preparation for a production. In panel A,
squares represent new ballets, whilst circles represent existing ballets. Ap., apprentice;
Ar., artist; F.A., first artist; So., soloist; F.S., first soloist; Pr., principal; P.C., principal
character artist.

These months likely reflect ‘normal’ in-season volumes, compared with the ‘low’ months
discussed above.

For the first time, this study investigated the duration of rehearsal completed in prepara-
tion for individual productions, and explored factors associated with the variation in these
durations. Whilst it is unsurprising that greater rehearsal hours were observed in prepara-
tion for longer productions, full length productions were in fact time-efficient to stage, pri-
marily due to the large number of performances which took place during runs of those pro-
ductions compared with shorter ballets (16.2 vs 7.4 performances per production). Newly
created ballets were typically the least time-efficient to stage, reflecting the additional time
required to choreograph and subsequently learn the production. It is evident from the indi-
vidual rehearsal hours completed in preparation for a newly created ballet that individuals
involved in the creation of a ballet complete greater volumes of rehearsal. Consideration
should be given to the concurrent roles in which these dancers are cast; where possible,
companies should consider offloading other roles to ensure their work is manageable. Fi-
nally, despite their lower weekly dance hours, senior-ranking dancers typically complete
greater rehearsal hours than junior-ranking dancers for individual productions (Figure 5.5);
their lower weekly ballet exposure is, therefore, a result of being cast in fewer productions.
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5.5.1 Practical Applications and Future Research

In line with previous recommendations, the present results provide a basis for the periodiza-
tion of rehearsal and performance volume throughout a professional ballet season [108].
For example, specific applications of these results include: providing periods of volume
offload by scheduling time-efficient productions amongst inefficient ones; forecasting the
required rehearsal hours of a production to facilitate a gradual progression in ballet volume
in advance of the start of rehearsals; planning an incremental return-to-dance during reha-
bilitation; and periodization of the repertoire to avoid periods of rehearsal and performance
congestion.

Several specific ballets warrant discussion. Firstly, full-length classical ballets such
as The Nutcracker, Romeo and Juliet, Manon and The Sleeping Beauty were highly time-
efficient to stage due to their long performance runs, and frequent appearances season-to-
season. To this end, even full-length new creations such as Swan Lake and Frankenstein,
which incurred by far the largest company rehearsal hours, were relatively time-efficient
to stage because of their long performance runs. Mixed bills comprised of several shorter
ballets typically required the most rehearsal hours relative to the resulting performance
time. In the instance that one of those shorter ballets is a new creation, an effort should
be made to account for the resulting increase in rehearsal volume by pairing it with more
time-efficient productions.

Further research into the scheduling demands—or better still, the training loads—
experienced by professional ballet dancers at other dance companies or schools may be
beneficial for science and medicine practitioners seeking to optimize rehearsal and perfor-
mance schedules. In particular, this may be useful for touring companies which operate
under separate rehearsal and performance periods [15], or for ballet schools, in which the
demands experienced by a student may change year-on-year. For high quality research to
take place in this area, valid measures of training load in dance must be developed.

5.5.2 Strengths and Limitations

Strengths of this study include the five-year dataset; the entry of all class and rehearsal
sessions by a single individual; the use of a standardized entry form to record class and
rehearsal data; and the high availability of casting sheets. Several limitations of the data
should be acknowledged. Firstly, the study is limited by a lack of an intensity measure,
therefore, workload cannot be fully understood across this period. Although data describing
both the volume and intensity of activity are commonplace in sporting research, this level of
data is not yet routinely collected in professional ballet companies due to the large number
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of dancer, limited resources, cultural challenges, and individualized schedules. The present
data, therefore, represents a considerable progression in the quality of longitudinal data in
this field. There was no register of attendance taken at rehearsals—it is unlikely though, that
dancers would not have attended rehearsals for which they were scheduled. It was beyond
the scope of the available data to break down every individual performance role across the
study period. A dancer’s level of involvement within a show, or within specific productions
in a mixed bill, could, therefore, not be ascertained. Finally, the lack of scheduling data
during touring periods is a limitation, as this represents a considerable volume of rehearsal
and performance.

It is important to note that differences exist between companies in the rehearsal and per-
formance schedule structure, and the casting of productions. Science and medicine prac-
titioners working in professional ballet should, therefore, consider the degree of similarity
between companies when applying these results.

5.6 Conclusion

Over a five-season period in a professional ballet company, large and variable rehearsal and
performance volumes were observed. Artistic staff and science and medicine practitioners
should be mindful of large week-to-week variability in dance hours, the high volumes
of work associated with new productions, and congested periods of dance exposure in
the latter stages of the season. Training principles such as periodization and progression
should be implemented to manage these demands. Absolute and relative rehearsal and
performance volumes should be considered when planning repertoire, casting ballets, and
scheduling rehearsals and performances.
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CHAPTER 6

The Validity of the Session Rating of Perceived
Exertion Method for Measuring Internal

Training Load in Professional Ballet Dancers

6.1 Abstract

Aim: The aim of this study was to investigate the convergent validity of s-RPE with objec-
tive measures of internal training load in professional classical ballet dancers. Methods:
Heart rate and s-RPE data were collected in 22 professional classical ballet dancers across
a total of 218 ballet class or rehearsal sessions. Eleven participants completed at least 9
sessions, and were, therefore, included in analyses of individual relationships between s-
RPE and objective measures. To calculate s-RPE, the session duration was multiplied by
the rating of perceived exertion, measured using the modified Borg CR-10 scale. The e-
TRIMP and b-TRIMP methods were used as criterion measures of internal training load.
Pearson product-moment correlation coefficients were used to determine intra-individual
relationships between s-RPE and objective measures. Repeated measures correlations (rrm)
were used to identify intra-individual relationships common across the cohort. Results:
Positive linear relationships were observed between s-RPE and objective measures across
all session types (e-TRIMP: rrm (195) = 0.81, p < .001; b-TRIMP: rrm (195) = 0.79, p < .001),
in ballet class (e-TRIMP: rrm (58) = 0.64, p < .001; b-TRIMP: rrm (58) = 0.59, p < .001), and
in rehearsals (e-TRIMP: rrm (119) = 0.82, p < .001; b-TRIMP: rrm (119) = 0.80, p < .001), as
well as across both males (Edwards TRIMP: rrm (136) = 0.82, p < .001; b-TRIMP: rrm (136) =
0.80, p < .001) and females (e-TRIMP: rrm (57) = 0.80, p < .001; b-TRIMP: rrm (57) = 0.78,
p < .001). Intra-individual correlation coefficients ranged from 0.46 – 0.96 (e-TRIMP:
mean r = 0.81 ± 0.11, p = .051 – < .001; b-TRIMP: mean r = 0.78 ± 0.14, p = .130 – <

.001). Conclusions: These results demonstrate that s-RPE is a valid and practical method
for measuring internal training load in professional classical ballet dancers.
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6.2 Introduction

Classical ballet is an intermittent activity, consisting of high intensity explosive actions in-
terspersed with periods of lower intensity technical movements or inactivity [46]. Each
season, a professional ballet company may perform as many as 145 shows of 15 different
productions [15]. To prepare for the performance schedule, professional dancers will typ-
ically complete 1.5 h of ballet class, and between 2 and 7 h of rehearsals each working
day [5]. The resulting training volume is greater than values previously reported in elite
team sport [207] and endurance athletes [208], and has been linked with overtraining and
injury [108]. The periodization of training load has been proposed as a strategy to optimize
performance and reduce the risk of overuse injury within dance populations [108].

Training load can be described in terms of the physical work performed during exercise,
or the psychophysiological responses to that work, i.e., the external and internal training
load, respectively [18]. It is the internal training load, however, which provides the stim-
ulus for physiological adaptation. A valid measure of internal training load in ballet is,
therefore, essential for understanding the training stimulus experienced by a dancer, and
manipulating rehearsal and performances schedule appropriately. Dance intensity during
ballet rehearsal and performance has previously been measured using V̇O2, HR, and [BLa]
[4]. Given the number of dancers employed by professional companies and the aesthetic
demands of ballet performance, these solutions are impractical for daily monitoring. The
s-RPE method, derived from the product of session duration and RPE, has, therefore, been
used as a time-sensitive and cost-effective method of quantifying internal training load
in dance populations [158]. Simple derivatives such as monotony and strain may subse-
quently provide practitioners with insights into maladaptive responses to training such as
overtraining and illness. The s-RPE method is, therefore, commonly used in both research
and applied practice, and has been validated across a range of modalities including team
[36], combat [209], and endurance sports [156]. Although the validity of s-RPE has been
demonstrated in populations of contemporary [109, 110] and step dancers [210], to our
knowledge it has not been investigated within ballet dancers.

Jeffries et al. [109] investigated relationships between s-RPE and objective measures
of internal training load in contemporary dancers during contemporary class, contempo-
rary rehearsal, and ballet class. Group correlations ranging from 0.44–0.73 and 0.52–0.72
were observed for contemporary class and rehearsal, respectively, while relationships were
weaker in ballet class (r = 0.32–0.58). Similarly, in a cohort of pre-professional contempo-
rary dancers, Surgenor and Wyon [110] saw a strong group correlation (r = 0.72) between
contemporary class and rehearsals, but a moderate relationship (r = 0.46) in ballet class
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alone. The weaker relationships observed in ballet class compared with rehearsals could
have been because ballet was not the dancers’ primary genre, or because of a difference
in the genres themselves. These distinctions between dance/genre specific sessions (i.e.,
ballet class versus rehearsal) are consistent with research in sporting contexts [211, 212].
Furthermore, factors such as the athlete’s sex, age, and fitness level have all been suggested
to influence the relationship between s-RPE and objective measures of training load [39].

Investigations into the influence of sex on the perception of exercise have demonstrated
mixed results. While no difference in RPE was observed between male and female college
students during a graded exercise test [213], male and female champion cross country run-
ners registered differing perceptions of ‘hard’ sessions [214]. Within classical ballet, the
roles and technical choreographies performed differ across sex. Male dancers are required
to lift their partners, demanding significant full body strength and control [46]. Conversely,
female dancers are required to dance en pointe, placing stress on the foot and ankle [215].
In this regard, male and female roles are comprised of sufficiently different demands to be
considered separate modalities. It is, therefore, important to understand the extent to which
s-RPE is a valid measure of internal training load in both male and female dancers.

The primary aim of this study was to investigate the construct validity of s-RPE as a
measure of internal training load in professional classical ballet dancers, by examining its
convergence with two validated training load measures derived from HR. The secondary
aim was to understand the effect of session type and sex on this relationship.

6.3 Methods

6.3.1 Participants

A sample of 13 male (25.5 ± 5.3 years, 179.7 ± 4.0 cm, 73.2 ± 5.2 kg, 7.8 ± 5.6 years
professional) and 9 female (25.2 ± 4.4 years, 164.0 ± 3.3 cm, 52.9 ± 4.1 kg, 7.4 ± 4.2
years professional) dancers from a professional ballet company volunteered to take part
in the study. The sample consisted of dancers of the following ranks within the company
hierarchy: one apprentice (1F), seven artists (4M 3F), five first artists (2M 3F), three soloists
(3M), four first soloists (2M 2F), and two principal dancers (2M). Prior to the onset of data
collection, participants were given a full written explanation of the study aims and protocol
and gave written informed consent. The protocol was approved by the local board of ethics
in accordance with the Declaration of Helsinki.
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6.3.2 Experimental Design

A correlational study design was employed between April and October, 2019. Participants
were given the freedom to select the days during which data collection would take place.
Heart rate and s-RPE data were collected following the final session of each day. Edwards
summated HR zones (e-TRIMP) [31] and Banister training impulse (b-TRIMP) [216] were
calculated as criterion measures of internal training load, consistent with previous valida-
tions of s-RPE. It should, therefore, be noted that the criterion measures were primarily
measures of aerobic demand, and not of other physiological demands (e.g., anaerobic, neu-
romuscular). Throughout the data collection period participants completed their normal
rehearsal schedules as prescribed by the company’s artistic staff. For analyses of intra-
individual relationships between measures, in order to achieve sufficient power to identify
any convergence greater than r = 0.50, a sample of 23 sessions per participant was required
(α = 0.05, β = 0.80, r = 0.50). Collecting this volume of data was impractical in the present
cohort; therefore, we present intra-individual correlations where participants exceeded the
required sample size for the expected correlation coefficient (α = 0.05, β = 0.80, r = 0.80, n
= 9), based on similar investigations [217].

6.3.3 Objective Measures of Internal Training Load

Heart rate data were collected during each session using a Polar H1 sensor (Polar Electro,
Kempele, Finland) secured to the chest via an elastic strap and recorded by a wearable activ-
ity monitoring unit (ClearSky T6, Catapult Sports, Australia). Polar heart rate sensors have
demonstrated correlations of 0.98 with electrocardiography. Following the final session
of each day, data were downloaded using Openfield Cloud Analytics software (Catapult
Sports, Australia). Individual session data were then exported for external analysis. Peak
HR was calculated as the highest of either the age predicted maximum [218] or the peak
value recorded during the data collection period. The e-TRIMP was calculated by multi-
plying the time spent in five HR zones by a corresponding coefficient (50–60% HRpeak = 1;
60–70% HRpeak = 2; 70–80% HRpeak = 3; 80–90% HRpeak = 4; and 90–100% HRpeak = 5),
the results of which were then summed. The b-TRIMP was calculated using the equation:

b-TRIMP = D × HRR × A × eB ×HRR

where D = the session duration, A = 0.64 for men and 0.86 for women, B = 1.92 for men
and 1.67 for women, and HRR was calculated using the equation:
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HRR =
HRex − HRrest

HRmax − HRrest

where HRex = mean HR during exercise, HRrest = resting HR, and HRpeak = peak HR.

6.3.4 Measurement of Session-RPE

For the measurement of s-RPE, the modified Borg CR-10 scale was used to quantify session
intensity [34]. Approximately 15 minutes following the final session of each day, the lead
investigator met with each participant individually to record a rating of perceived exertion
for each session that day. The use of retrospective RPEs was important to ensure the results
were ecologically valid; within large ballet companies, dancers have multiple sessions per
day, and may each be on a unique schedule, making it impractical to collect data after each
session. Within sporting environments, the use of retrospective s-RPEs has been shown to
be methodologically robust [219, 220]. The participant was shown the Borg CR-10 scale
and asked about each session in the form of the question: “What was the intensity of your 1
pm rehearsal?”. This differs from the original phrasing (”How was your workout?”), with
the aim of directing the participant toward giving solely an intensity rating, and not a rating
that takes session duration into account [21]. Prior to the onset of the study, participants
were educated on the use of the Borg CR-10 and the reporting of session-RPE. Participants
were directed to first focus on a descriptive anchor, and then select a corresponding nu-
merical value. If appropriate, participants were given the option to divide the session into
multiple sections and give a separate RPE for each. The RPE was multiplied by the session
duration (mins) to calculate s-RPE.

6.3.5 Statistical Analysis

Intra-individual relationships were analysed using Pearson’s product-moment correlation
coefficient. This decision was made despite both s-RPE and objective measures of training
load being non-normally distributed, as the rate type 1 error is relatively robust to non-
normality when sample sizes are not especially small [221]. This allowed for comparisons
to be made with previous investigations into the validity of s-RPE in athletic populations,
which have almost exclusively used Pearson’s r [39]. To investigate the common intra-
individual relationships across the entire cohort, a repeated measures correlation (rrm) [222]
was conducted using the R package rmcorr [223]. Data were subsequently stratified, and
repeated measures correlations were conducted on sub-groups to investigate relationships
across sexes (i.e., male and female sub-groups), and across session types (i.e., ballet class
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and rehearsal sub-groups). Statistical significance was set at p < 0.05. In line with previous
research [109], the magnitude of the correlation coefficient was interpreted as follows: <
0.10 trivial, 0.10–0.29 small, 0.30–0.49 moderate, 0.50–0.69 large, 0.70–0.89 very large

and 0.90–1.0 almost perfect. All analyses were completed using R version 3.5.3 (R Foun-
dation for Statistical Computing, Vienna, Austria).

6.4 Results

Data were collected across of 79 ballet classes and 139 rehearsals. Participants completed
a mean of 9.9 ± 7.7 sessions each. Of the initial cohort of 22, 11 participants completed
at least 9 sessions, and were, therefore, included in intra-individual analyses. One partici-
pant completed only one session, and, therefore, did not qualify for either intra-individual
correlation, nor repeated measures correlation. The mean session duration (hh:mm:ss) was
01:12:10 ± 00:09:11, 00:52:31 ± 00:22:19, and 00:59:38 ± 00:20:53 for ballet class, re-
hearsals, and all sessions, respectively. Descriptive statistics for s-RPE, e-TRIMP, and
b-TRIMP are shown in Figure 6.1.

Repeated measures correlations revealed very large positive relationships between s-
RPE and objective measures across all sessions (e-TRIMP: rrm (195) = 0.81, p < 0.001,
95% CI [0.76–0.86]; b-TRIMP: rrm (195) = 0.79, p < 0.001, 95% CI [0.73–0.84]. Large

(e-TRIMP: rrm (58) = 0.64, p < 0.001, 95% CI [0.45–0.77]; b-TRIMP: rrm (58) = 0.59, p <

0.001, 95% CI [0.39–0.74]) and very large (e-TRIMP: rrm (119) = 0.82, p < 0.001, 95% CI
[0.75–0.87]; b-TRIMP: rrm (119) = 0.80, p < 0.001, 95% CI [0.72–0.85]) repeated measures
correlations were observed between s-RPE and e-TRIMP in ballet class and rehearsals,
respectively. Very large repeated measures correlations between s-RPE and objective mea-
sures were observed for both male (e-TRIMP: rrm (136) = 0.82, p < 0.001, 95% CI [0.76–
0.87]; b-TRIMP: rrm (136) = 0.80, p < 0.001, 95% CI [0.73–0.85]) and female (e-TRIMP:
rrm (57) = 0.80, p < 0.001, 95% CI [0.68–0.88]; b-TRIMP: rrm (57) = 0.78, p < 0.001, 95%
CI [0.66–0.87]) participants. Results of intra-individual correlations between s-RPE and
objective measures are reported in Table 6.1. A comparison of the repeated measures and
Pearson’s correlation results for each participant are shown in Figures 6.2 and 6.3.

6.5 Discussion

To our knowledge, this is the first study to investigate the validity of s-RPE for the quantifi-
cation of internal training load within a cohort of professional ballet dancers. The present
results demonstrate large repeated measures correlations between s-RPE and objective
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Figure 6.1: The distribution of (A) session rating of perceived exertion (Session RPE);
(B) Edwards summated heart rate zones; and (C) Banister training impulse measures
during all sessions (red bars), ballet class (solid line), and rehearsals (dashed line).
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Table 6.1: Correlation coefficients, p values, and 95% confidence intervals for
intra-individual relationships between session rating of perceived exertion, and Edwards
(e-TRIMP) and Banister (b-TRIMP) training impulse values. Raw data for each
participant can be found in Figure 2.

Sex n e-TRIMP b-TRIMP
r p 95% CI r p 95% CI

P1 F 13 0.88 < .001 0.64–0.96 0.88 < .001 0.64–0.96
P2 F 20 0.88 < .001 0.72–0.95 0.88 < .001 0.72–0.95
P3 F 11 0.84 < .001 0.48–0.96 0.81 < .001 0.41–0.95
P4 F 9 0.68 .045 0.03–0.93 0.56 .113 -0.17–0.89
P5 M 21 0.85 < .001 0.66–0.94 0.83 < .001 0.62–0.93
P6 M 20 0.70 < .001 0.37–0.87 0.73 < .001 0.42–0.89
P7 M 12 0.57 .051 -0.01–0.86 0.46 .132 -0.15–0.82
P8 M 16 0.87 < .001 0.66–0.95 0.80 < .001 0.50–0.93
P9 M 20 0.83 < .001 0.61–0.93 0.83 < .001 0.61–0.93
P10 M 20 0.96 < .001 0.90–0.98 0.95 < .001 0.88–0.98
P11 M 22 0.86 < .001 0.69–0.94 0.87 < .001 0.71–0.94
Mean - 17 0.81 - - 0.78 - -
SD - 5 0.11 0.14
Range - 9–22 0.57–0.96 - - 0.46–0.95 - -

measures of training load, as well as intra-individual relationships ranging from moder-

ate to almost perfect. Based on these results, the s-RPE method can be considered a valid
measure of internal training load in professional classical ballet dancers.

Both the repeated measures and individual correlations observed between s-RPE and
objective measures in the present study are slightly larger than both group (r = 0.71) [110]
and individual (r = 0.72 ± 0.13) [109] correlation coefficients reported in pre-professional
contemporary dancers. Classical ballet and contemporary dance differ in their frequency
of jumps (4.99 ± 4.93 vs. 1.71 ± 2.21 jumps per min), lifts (0.97 ± 2.53 vs. 0.12 ± 0.23
lifts per min), and changes of direction (3.34 ± 1.89 vs. 0.58 ± 0.58 changes of direction
per min) [46]. Additionally, classical ballet is more intermittent, consisting of periods of
higher intensity activity and longer durations of rest, subsequently incurring a significant
anaerobic stress [46]. The perception of effort has previously been shown to be elevated
during intermittent exercise compared with steady-state exercise of an equivalent internal
load [224, 225]. The stronger relationships observed in the present study compared with
previous research in contemporary dancers would, therefore, not appear to be a result of the
difference in genre. An alternative explanation would be that the very large relationships
we report could be explained, in part, by the difference in training history between cohorts.
In support of this, research in swimmers [226] and athletes of mixed experience [227]
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revealed that the validity of s-RPE is proportional to athletic experience.
Consistent with both Jeffries et al. [109] and Surgenor and Wyon [110], we report

weaker relationships between s-RPE and objective measures in ballet class compared with
rehearsals. While each of these studies attributed this finding to the difference in dance
genre (i.e., ballet class vs contemporary rehearsals), and ballet not being the participants’
primary discipline, neither of these explanations explain the current results. One explana-
tion may be that the cohort’s familiarity with the structure, environment, and teachers of
ballet class, compared with the more changeable nature of rehearsals, may have mediated
this relationship. Factors such as the psychological demands, the individuals present, and
the external environment of a session, for example, have all been proposed as influences
on the relationship between physiological and perceptual stress [39]. We suggest, however,
that this finding is most likely be a result of little inter-session variation; class follows a
consistent structure each day, progressing in both physical and technical complexity from
barre, to center, and finally allegro. Differences in perceived exertion are, therefore, finer
and harder to distinguish. Additionally, this structure results in little variation in training
load, as the duration and content of ballet class do not allow the dancer to reach partic-
ularly small or large training loads, to which Pearson correlation is sensitive (i.e., range
restriction) [228]. The lack of change in repeated measures correlations when analysing
rehearsals alone vs. rehearsals and ballet class (where the range restriction is not present),
supports this idea. Practically speaking, s-RPE is, therefore, only less valid when attempt-
ing to distinguish between a set of relatively homogeneous ballet sessions.

While male and female classical ballet dancers jump, plié, and change direction at
similar rates, they differ in their requirement to lift [46] and dance en pointe, respectively.
During lifts of their partners, male dancers undertake L5/S1 compression forces in excess
of 4000 N, and shear forces in excess of 500 N [229]. In this regard, elements of male roles
bear a resemblance to resistance exercise, and could, therefore, be expected to result in
differing perceptions of effort [230]. Pointe work, on the other hand, is incomparable to any
other exercise modality; given the large pressures on the first and second toes, the perceived
effort may be inconsistent with the dancer’s HR [231]. Additionally, male and female
intensity profiles differ, with females spending a larger duration performing at moderate
and hard exercise intensities, and males performing very high intensity multi-jump routines
closer resembling intermittent exercise [46]. Despite these differences, we report similar
relationships between s-RPE and objective measures in both males and females. The s-RPE
method is, therefore, a valid tool for monitoring internal training load, regardless of sex.
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6.5.1 Limitations

Given the professional level of the current cohort, it was not possible to formally measure
each participant’s maximum HR. It is important to note that this will have resulted in less
accurate measurements of objective measures of internal training load. Additionally, as
the current cohort are considered elite ballet dancers, practitioners should consider that
s-RPE may not demonstrate the same degree of validity in non-elite populations. Due
to the novelty of this type of testing within the cohort, participants were given a large
degree of control over the sessions in which data were collected. While we report measures
of intensity and duration for the sessions completed within the current study, these data
should, therefore, not be considered normative values for ballet class and rehearsal. The
relatively small total number of sessions completed by female dancers, as well as the total
number of female dancers involved must be considered when interpreting results regarding
differences in sex. Finally, although s-RPE data are ordinal in nature, in the present analysis
we use parametric tests which treat them as continuous data.

6.5.2 Practical Applications and Further Research

Unlike traditional measures used to assess internal training load (e.g., HR, V̇O2, [BLa]),
the s-RPE method is a cost-effective and non-invasive means of monitoring internal train-
ing load. The high volumes of rehearsal undertaken by classical ballet dancers are well
documented [5, 15], and have been linked with maladaptive responses leading to increased
risk of injury and overtraining. The current results provide a means by which the daily and
weekly training loads of dancers may be used to implement periodization models with the
aim of optimizing health and performance. Differential s-RPEs have been used in sporting
environments to understand multiple types of physical exertion, and the training stress im-
posed on multiple body parts [41]. Given the large number of different physical stressors
involved in classical ballet (e.g., pointe work, jumping, lifting, etc.), the use of d-RPEs
may provide additional insight into the training loads undertaken by dancers. Finally, un-
derstanding the validity of s-RPE is important for non-professional institutions (e.g., ballet
schools) who may not have access to alternative measures of training load; further research
is, therefore, warranted into the validity of s-RPE in these populations.

6.6 Conclusion

This study investigates the convergent validity of s-RPE with two objective measures of
internal training load in professional classical ballet dancers. We demonstrate very large
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repeated measures correlations between s-RPE and the e-TRIMP and b-TRIMP methods,
as well as intra-individual relationships ranging from moderate to almost perfect. Sub-
analyses revealed that correlation coefficients were similar between male and female par-
ticipants, however, relationships were stronger in rehearsals compared with ballet class.
These results are similar to findings previously reported in both sport and dance research,
and support the use of the s-RPE method as a valid and practical tool for measuring internal
training load in professional classical ballet dancers.
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CHAPTER 7

The Validity of an Open-Source Rule-Based
Algorithm for Measuring Jump Frequency and
Height in Ballet using Wearable Accelerometer

Data

7.1 Abstract

Aim: To determine the validity of an open-source algorithm for measuring jump height
and frequency in professional ballet using a wearable accelerometer. Methods: To deter-
mine the validity of the measurement of jump frequency, nine professional ballet dancers
completed a routine ballet class whilst wearing an accelerometer positioned at the ante-
rior lower abdomen. Two investigators independently conducted time-motion analysis to
identify time points at which jumps occurred. Accelerometer data were cross-referenced
with time-motion data to determine classification accuracy. To determine the validity of the
measurement of jump height, a further five participants completed nine jetés, nine sautés,
and three double tour en l’air from a force plate. Jump height predicted by the accelerom-
eter algorithm was compared to the force plate measurement of jump height to determine
agreement. Results: Across 1440 jumps observed in time-motion analysis, 1371 true posi-
tives, 34 false positives, and 69 false negatives were identified by the algorithm, resulting in
a sensitivity of 0.98, a precision of 0.95, and a miss rate of 0.05. For all jump types, mean
absolute error was 2.6 cm and the repeated measures correlation coefficient was 0.97. Bias
was 1.2 cm and 95% limits of agreement were -4.9 to 7.2 cm. Conclusions: This study
provides ballet companies and schools with a valid and cost-effective method of measuring
jump load, which does not require data science expertise to implement. Jump load may be
used to manage training loads, implement periodization strategies, or plan return-to-dance
pathways for rehabilitating dancers.
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7.2 Introduction

In professional ballet, jumping and landing movements are the most common mechanism
of time-loss injury (27% and 38% of time-loss injuries in women and men, respectively)
[163]. During a professional ballet performance, dancers jump at a rate of 4.99 ± 4.93
jumps·min-1, [46] exceeding rates observed in sports such as volleyball (1.04 jumps·min-1)
[232] and basketball (41–56 jumps·match-1) [233]. In these sports, jump load has been
associated with changes in injury risk and performance [232, 234, 235]. As a result, jump
load has been suggested to be ‘the next great injury analytic’ in sports medicine research
[154]. In ballet, however, whilst jump load is increasingly recognised as an important
variable, it is not yet routinely collected. The monitoring and management of jump load
may, therefore, be a method by which maladaptive responses to ballet training may be
attenuated [154].

The measurement of jump load has been facilitated by the development of algorithms
which can identify jumping actions from wearable accelerometer signals. Several com-
mercial wearable devices have been validated for the measurement of jump volume and
intensity in athletic settings [234, 236, 237, 238]. However, financial and cultural barriers
make investment in high-end wearable technology unrealistic for many ballet healthcare
departments, and rarely are the details of these algorithms shared publicly. Furthermore,
the majority of studies validating jump algorithms have been conducted in volleyball play-
ers [204, 238] or in non-sport-specific individuals [239]; the extent to which these results
can be extrapolated to ballet is unknown.

Only one study has investigated the use of wearable sensor algorithms for activity
recognition in ballet, using convolutional neural networks, and between 1–6 wearable
IMUs, to identify jumps and leg lifts [114]. Though activity recognition was high with
multiple sensors, and when the movements were analysed in isolation (98.0–98.5%), ac-
curacy decreased when transition movements were introduced, and only a single sensor
was used (78.0–81.6%). Furthermore, implementation of this method is impractical, given
that considerable data science expertise is required, and the data and algorithms are not
published open-source.

The aim of the current study was to investigate the validity of an algorithm for mea-
suring the height and frequency of jumps in professional ballet. To maximise the ease
of implementation, we used a simple rule-based algorithm requiring only one sensor, and
share the algorithm in several formats.
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7.3 Methods

7.3.1 Design

A cross-sectional study design was employed to investigate the validity of measuring jump
frequency and height using an accelerometer and a rule-based algorithm. The investigation
was comprised of two sub-studies. Firstly, the accelerometer measurement of jump fre-
quency was validated against time-motion analysis during ballet class. Participants were
nine professional ballet dancers (four men: age 25.6 ± 3.1 y; height 177.0 ± 6.0 cm; mass
70.4 ± 6.3 kg; five women: age 30.4 ± 5.4 y, height 164.4 ± 4.2 cm; mass 52.0 ± 3.2 kg).
Secondly, the accelerometer measurement of jump height was validated against a force
plate measurement. Participants were five male professional ballet dancers (age 24.7 ± 1.2
y; height 180.8 ± 2.5 cm; mass 73.0 ± 5.1 kg). Following a full explanation of the study
protocol, participants gave written informed consent. Ethical approval was granted by the
local board of ethics in accordance with the Declaration of Helsinki.

7.3.2 Materials and Measures

A nine-degrees-of-freedom (DOF) IMU (LSM9DS1, STMicroelectronics, Geneva, Switzer-
land), housing a three-DOF 100 Hz accelerometer was used. Participants wore a tightly fit-
ting elasticated strap housing the device in a pouch situated at the anterior lower abdomen,
such that the accelerometer axes were roughly aligned with the anatomical axes of the par-
ticipant. Data were recorded to a secure digital card and uploaded following completion of
each protocol.

For the reference measurement of jump height, force plates (ForceDecks FDLite, Vald
Performance, Newstead, Queensland, Australia; or Kistler type 9268A, Kistler AG, Win-
terthur, Switzerland) placed on a concrete floor, sampling at 1000 Hz were used. For
the time-motion analysis, ballet classes were filmed using a Sonycam DCR-SX33E (Sony
Group Corporation, Tokyo, Japan; 640 x 480 pixels, 25 frames per second).

7.3.3 Protocol

7.3.3.1 Jump Frequency

Participants each completed one of three unaltered ballet classes, delivered as part of a
normal working day at the Royal Opera House. Each participant wore an accelerometer
for the full duration of class. The video camera was placed in an elevated position in a
front corner of the studio. Two investigators reviewed the footage to identify timestamps at
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which dancers performed a jump. In line with previous research of this nature [237, 137,
46], jumping events were determined subjectively by the reviewers. To ensure accuracy,
any discrepancies in time-motion analysis were settled by a third investigator. Where the
view of the movement was obscured (e.g., by another dancer), the movement was excluded
from the analysis. Timestamps identified through time-motion analysis were then cross-
referenced with timestamps identified by the accelerometer algorithm.

7.3.3.2 Jump Height

Participants completed three sets of jumps on a force platform. Set one consisted of nine
sautés (a two-to-two foot vertical jump), set two consisted of nine unilateral jetés (an an-
terior leap from one leg to the other), and set three consisted of three double tour en l’air

(a two-to-two foot vertical jump with 720°). To ensure a range of jump heights were mea-
sured, sautés and jetés were manipulated through the participants’ effort levels (3 × 30%,
3 × 60%, and 3 × 90% of maximum effort). Participants began each trial with a three sec-
ond stationary period during which a body mass was recorded. For the sautés and double
tour en l’air, participants jumped from, and landed in the same location. For the jetés,
participants jumped anteriorly from the force plate and landed at a self-determined dis-
tance. Reference jump height was calculated from raw force-time data using the take-off
velocity method detailed elsewhere [240], whereby jump height is calculated as: take-off
velocity2/2g.

7.3.4 Data Analysis

Following the completion of each protocol, data were uploaded from the accelerometer.
Tri-axial acceleration data were filtered using a fourth order zero-lag low-pass Butterworth
filter with a cut-off frequency of 12 Hz, and processed using a rule-based algorithm. The
algorithm was hand-crafted, and created prior to this study based on data collected as part
of routine monitoring at a professional ballet company between April 2019 and December
2020. A simplified overview of the steps undertaken by the algorithm can be found in
Figure 7.1. Raw R code used to run the algorithm can be found in Appendix E; an R Shiny
web application housing an interactive user interface is presented in Chapter 9; a Microsoft
Excel spreadsheet containing the algorithm can be found in Appendix E.



Figure 7.1: Schematic illustrating the simplified steps involved in the algorithm to
identify jumps and calculate jump height.
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7.3.5 Statistical Analysis

Mean absolute error (MAE), repeated-measures Bland-Altman plots, Pearson’s correla-
tions, and repeated measures correlations were used to measure the agreement and correla-
tion between accelerometer-derived jump height and the criterion measure of jump height.
For the validation of jump frequency during ballet class, the count of true positives (TP),
false positives (FP), and false negatives (FN), and subsequently the sensitivity (TP / [TP +
FN]), precision (TP / [TP + FP]), miss rate (FN / [FN + TP]), and critical success index (TP
/ [TP + FN + FP]), were calculated. Accuracy and specificity were not calculated based on
the absence of a true negative measure. All analysis took place in R v.4.0.4 (R Foundation
for Statistical Computing, Vienna, Austria).

7.4 Results

For the validation of jump height, a total of 105 jumps were observed (45 sautés, 45 jetés,
15 double tour en l’air). The MAE, Pearson’s correlation, repeated measures correlation,
bias, and 95% limits of agreement for the comparison of predicted jump height and refer-
ence jump height can be found in Figure 2.

For the validation of jump frequency, a total of 1440 jumps were observed. Eleven
observations were removed from the study as both reviewers, or one reviewer and the third
reviewer, agreed that a jump could not be reliably determined due to an obstructed view.
Agreement between the two primary reviewers was 93.6%. Results and summary statistics
of the IMU and video analysis are presented in Table 1.

7.5 Discussion

This study demonstrated the validity of a hand-crafted rule-based algorithm for measuring
jump height and frequency in professional ballet. Unlike previous studies validating the use
of wearable technology to measure jump-load, the present algorithm is open-source, does
not require data science expertise, and is shared alongside R code, an R Shiny application,
and an Excel spreadsheet, which can be used to facilitate implementation. This study,
therefore, provides healthcare practitioners working in ballet companies and schools with
a practical open-source tool for monitoring the jump load experienced by dancers.
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Figure 7.2: A) Correlation and B) Bland-Altman plots illustrating the relationship and agreement between accelerometer-derived and
force platform-derived measurements of jump height. Grey areas represent 95% CIs for the mean bias, and upper and lower confidence
intervals. MAE = Mean absolute error; rrm = repeated measures correlation.
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Table 7.1: Results of the cross-validation of jump frequency.

Participant Sex Rank Video
Count

Acc.
Count

TP FP FN Sensitivity Precision Miss Rate CSI

1 M A 191 196 187 7 4 0.98 0.96 0.02 0.94
2 M FA 200 201 188 11 12 0.94 0.94 0.06 0.89
3 M FS 211 207 204 3 7 0.97 0.99 0.03 0.95
4 M P 242 243 232 7 10 0.96 0.97 0.04 0.93
5 F A 103 102 101 1 2 0.98 0.99 0.02 0.97
6 F FA 154 148 144 3 10 0.94 0.98 0.06 0.92
7 F S 131 124 124 0 7 0.95 1.00 0.05 0.95
8 F P 118 110 108 1 10 0.92 0.99 0.08 0.91
9 F P 90 85 83 1 7 0.92 0.99 0.08 0.91
Combined - - 1440 1416 1371 34 69 0.95 0.98 0.05 0.93
Mean - - 169 166 161 4 8 0.95 0.98 0.05 0.93
SD - - 53 56 52 4 3 0.02 0.02 0.02 0.03
Acc. Count. – Accelerometer Jump Count; CSI – Critical success index; FP – False positives; FN – False negatives;
TP – True positives; SD – Standard deviation; F – Female; M – Male; A – Artist; FA – First Artist;
S – Soloist; FS – First Soloist; P – Principal.

The present validation of jump count revealed sensitivity, precision, and miss rate val-
ues of 0.95, 0.95, and 0.05, respectively. These values are comparable to similar stud-
ies investigating the validity of commercial wearable devices in sports such as volleyball
[237, 238] and snowboarding [241], and justify the use of this algorithm in practice. Sim-
ilarly, a high level of agreement was observed between the estimated jump height and the
reference measure (rrm = 0.97, bias = +1.2 cm, 95% LoA: -4.9 to 7.2 cm, MAE: 2.6 cm).
These values are more accurate than those that have been reported in validation studies of
commercial accelerometers (r = 0.91, bias = 2.5 cm, 95% LoA -6.1 to 9.8 cm [237]; bias
= 9.1 cm, intra-class correlation = 0.93 [238]). Readers should note that the present algo-
rithm appears to slightly overestimate large jumps; though this small bias is unlikely to be
clinically relevant for load management, practitioners should note that the algorithm is not
appropriate for the measurement of maximal jump height in isolation.

The present algorithm has several advantages over previous approaches, making its
implementation into day-to-day rehearsal more practical. Firstly, only a single sensor
is required to calculate jump load, which is likely to be better received by dancers than
multi-sensor approaches. Additionally, a waist-worn device is easily hidden, and does not
obstruct the dancer’s movement. A three-DOF accelerometer—rather than a nine-DOF
IMU—is used; this is advantageous both in terms of cost and signal processing require-
ments. The algorithm used is simpler than machine learning approaches that have been
used previously [114]. This is beneficial for several reasons. Firstly, the user is not re-
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quired to have data science expertise; users with only basic data handling experience can
implement the algorithm using the spreadsheet contained in Appendix E. Similarly, this
method is, therefore, more interpretable, and does not come in a black box, as would many
machine learning models. Finally, the rule-based approach does not have the same demand
for training data [114]; as a result, the data collection, training, and processing durations
are considerably less.

Jump load has previously been demonstrated to be a useful metric for understanding
injury risk in basketball [234] and volleyball [242]. However, whilst the present algorithm
provides a valid means of measuring jump height and frequency during ballet, it is im-
portant that healthcare practitioners understand that jump load is not a direct measure of
physiological tissue damage [20, 67]. Jump load may provide a means through which load
can be managed (e.g., ensuring gradual progression following injury, identifying rapid in-
creases in load), but users should be cautious not to over-rely on jump load as an injury
metric, and instead consider it only one part of a larger puzzle. The ability to measure
jump load provides benefits beyond injury risk management. Understanding the jumping
demands experienced during rehearsals and performances may be beneficial for strength
and conditioning coaches designing supplementary training programs [137] Similarly, for
physiotherapists and strength and conditioning coaches involved in the rehabilitation of a
dancer, understanding the demands of a given ballet may aid in the planning and man-
agement of a return-to-jumping pathway [243]. Finally, the measurement of jump load
may facilitate discussions with artistic staff around load and season periodisation through
objective data [108].

Whilst this algorithm was designed and tested on balletic jumps, we suggest that given
the methodological steps taken by the algorithm, the results would be comparable for non-
balletic jumps. There may, therefore, be considerable use for this algorithm in other sport-
ing populations; for example, in jumping sports such as basketball or volleyball, or for
managing plyometric load during more general training [244].

7.5.1 Strengths and Limitations

The key strength of this work is its accessibility: unlike previous research, the present
algorithm is open-source and does not require data science expertise. Another strength is
that unlike some studies of this nature [237], we have validated the measurement of jump
frequency in an unaltered ballet class in situ (as opposed to creating an arbitrary set of
movements) adding to the ecological validity of the present algorithm. A limitation of the
current study is that the algorithm used does not differentiate between one-legged and two-
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legged take-offs and landings. Whilst this is possible using wearable technology, the aim
of the present study was to provide a method requiring limited equipment (i.e., a single
accelerometer) and only a basic level of data handling.

7.6 Conclusion

The present study found a rule-based algorithm to be valid for the measurement of jump
height and count in professional ballet. This algorithm has been designed to increase ac-
cessibility: open-source software is provided; the algorithm does not require data science
expertise to use; and only a single sensor is required. The algorithm, therefore, provides a
practical method of monitoring an important external load variable in ballet. The ease of
use and low-cost of applying this method provides a solution to the management of jump
load in ballet companies and schools.
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CHAPTER 8

Lower Limb Tissue-specific Force Prediction
During Jumping and Landing Using Inertial
Measurement Units and Recurrent Neural

Networks

8.1 Abstract

Background: Current measures of external training load have been criticised for their fail-
ure to quantify forces at a tissue-specific level. The aim of the current study was to develop
models for predicting lower-limb tissue forces from wearable IMU data during jumping
and landing. Methods: Six male participants completed 14 sets of jumping and landing
movements in a laboratory whilst wearing five six-DOF IMUs. Musculoskeletal modelling
was used to calculate reference measures of Achilles tendon force, patellar tendon force,
tibial force, and ground reaction force. Each force variable acted as the target for a recurrent
neural network developed using IMU signals. Models were trained and evaluated using a
leave-one-subject-out cross validation approach, and compared with results derived from
simple shank and waist resultant acceleration linear regression approaches. Results: Two-
IMU (waist and shank) neural networks outperformed shank and waist linear regression
approaches across all tissue forces, both for continuous time series prediction (mean root-
mean-square-error = 0.93 BWs, mean r2 = 0.80) and for the prediction of peak force during
each ground contact (mean root-mean-square-error = 1.48 BWs, mean r2 = 0.58). The
shank IMU linear regression approach had the worst prediction accuracy, demonstrating
weak continuous time series prediction (mean root-mean-square-error = 1.56 BWs, mean
r2 = 0.26) and no peak force prediction (mean root-mean-square-error = 2.34 BWs, mean r2

= 0.03). Conclusions: The current algorithms demonstrate considerable improvement over
approaches using only segmental resultant acceleration. These results are promising given
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the potential areas for further refinements, including modelling, hardware, and protocol.
All data and code are provided, and an R application accompanies this study, providing a
graphical user interface to the algorithms.

8.2 Introduction

Etiological frameworks for overuse injury risk in sport have described a balance between
tissue load and tissue capacity, whereby injury occurs when tissue load exceeds tissue ca-
pacity [71, 72]. In this respect, overuse injuries can be considered a result of mechanical
fatigue [67]: biomechanical load applied to a musculoskeletal tissue results in microdam-
age, reducing the tissue’s material strength, such that failure occurs at loading magnitudes
below the capacity of the tissue at full health [20, 67]. The conceptual relationship between
training load and injury risk is, therefore, predicated on the biomechanical load-response
pathway [20]. Recently, however, the inability of common external training load variables
to accurately measure internal tissue forces has been highlighted [20, 245]. As a result, the
conceptual basis of common load monitoring strategies—i.e., that wearable measures of
external load are indicative of internal tissue forces, and subsequently tissue damage—is
flawed until valid measurements are developed.

Jumping is the most common mechanism of injury in ballet [163], associated with
30.7% and 21.6% of all injuries in men and women, respectively. Science and medicine
practitioners working in ballet—and those in sports in which jump-related injuries are com-
mon [246, 247]—have quantified external training load using wearable IMUs, measuring
variables such as jump load (i.e., jump count and height [152, 232]) or peak shank acceler-
ation (or impact load) [248, 249]. Whilst these variables are relatively simplistic, and are,
therefore, easily interpretable and manipulatable, the extent to which they meaningfully
reflect biomechanical load has been questioned [70]. Previous research in ballet has used
IMUs in conjunction with more complex algorithms to quantify ground reaction forces
during jumping and landing [114]. Whilst accurate estimates have been demonstrated—
and ground reaction forces mark an improvement over variables such as jump load or im-
pact load—ultimatey, ground reaction forces are not indicative of internal tissue forces
[117, 250].

Recently, machine learning algorithms have been used to predict tissue-specific forces
from wearable signals during treadmill running [70]. Matijevich et al. [70]. used theoretical
wearable signals (i.e., laboratory measurements that could theoretically be measured using
wearables) processed using LASSO regression to estimate tibial force, observing a high
level of estimation accuracy (root mean square error [RMSE]: 0.25 ± 0.07 BWs). However,
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the extent to which the accuracy of a model developed on theoretical signals would translate
into practice is unknown. Furthermore, whilst treadmill running is relatively homogeneous,
during jumping activities, a greater variation of movement is evident. Therefore, there is a
need to develop tissue force prediction models applicable to movements beyond running,
and investigate the validity of such an approach in practice.

The aim of this study was to develop recurrent neural networks harnessing inertial mea-
surement unit signals to estimate Achilles tendon, tibia, and patellar tendon forces— three
primary sites of injury in professional ballet dancers [163]—during jumping and landing
movements. These algorithms were evaluated and compared to the use of current impact
loading variables used in high-performance sport: shank acceleration and waist accelera-
tion [112, 248].

8.3 Methods

8.3.1 Participants

Participants were 6 males (25.5 ± 2.5 y, 178.6 ± 4.5 cm, 69.4 ± 5.0 kg). Prior to the onset
of data collection, the full study protocol was explained to the participants and written
informed consent was given. Ethical approval was given by the institutional ethics board
in accordance with the Declaration of Helsinki.

8.3.2 Design

Participants completed a series of jumping trials in a biomechanics laboratory whilst wear-
ing retroreflective markers and five IMUs. Musculoskeletal modelling was used to calculate
reference measures of Achilles tendon force, patellar tendon force, tibial force, and ground
reaction force. For each tissue force variable, deep learning models were developed using
IMU signals. Models were trained and evaluated using a leave-one-subject-out cross vali-
dation approach, and compared with results derived from single variable shank and waist
acceleration linear regression models.

8.3.3 Measures

8.3.3.1 Motion Capture

Motion capture data were collected using a 7-camera motion capture system (Vicon MX,
Vicon, Oxford Metrics Group, Oxford, UK) sampling at 200 Hz. Twelve retroreflective 25
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mm markers were attached directly to the skin of the participants’ right legs using double-
sided tape, whilst two further cluster sets, each holding three markers, were attached to
the right thigh and shank using self-adhesive tape. The exact placement of each marker is
detailed elsewhere [251]. Force and centre of pressure data were collected using a tri-axial
force platform (Kistler 9268A) sampling at 1000 Hz.

8.3.3.2 Inertial Measurement Units

Five six-DOF IMUs sampling at 100 Hz (LSM9DS1, STMicroelectronics, Geneva, Switzer-
land), each housing a tri-axial accelerometer and gyroscope, were used in this study. The
IMUs were secured to the superior aspect of the right midfoot (‘foot’); the right shank, me-
dial to the tibial tuberosity (‘shank’); the lateral aspect of the right thigh, mid-way between
the greater trochanter and lateral femoral epicondyle (‘thigh’); the anterior abdomen, level
with the anterior superior iliac spine (‘waist’); and between the scapulae, approximately
level with the fifth thoracic vertebra (‘upper-back’). The foot, shank, and thigh IMUs were
secured to the segment using adhesive tape; the waist IMU was secured using a tightly
fitting elasticated strap; the upper-back IMU was housed in a tightly fitting vest. The posi-
tioning and orientation of each IMU is detailed in Figure 8.1.

Figure 8.1: Inertial measurement unit locations and orientations.
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8.3.4 Protocol

Following the completion of a standardised warm-up, participants completed 18 jumping
trials, detailed in Table 8.1. To ensure a range of movement intensities, participants were
directed to complete sets at either 30, 60, or 100% of maximal intensity. The full protocol
included a total of 174 ground contacts for each participant.

8.3.5 Data Processing

Following the completion of data collection, motion capture data were reconstructed and
labelled using Vicon Nexus software (Vicon Motion Systems Ltd, Oxford, United King-
dom), with gaps of ten frames or less interpolated using cubic splines. Motion capture data
were filtered using a zero-phase 4th order low-pass Butterworth filter with a 12 Hz cut-off
frequency, determined via a residual analysis. Force data were downsampled to 200 Hz
prior to musculoskeletal modelling. Internal tissue forces were then calculated using the
FreeBody model (v.2.1) [251]. FreeBody is a segment-based lower-limb musculoskeletal
model of 5 segments, 163 muscles, and 14 ligaments, and has been validated for use in
jumping movements [251]. Target variables extracted from the model were Achilles ten-
don force, patellar tendon force, and resultant ankle joint reaction force (as a surrogate
measure of tibial force [70]). Resultant ground reaction force was extracted directly from
Vicon Nexus and included as a fourth target variable [252, 253].

IMU data were uploaded, and raw linear acceleration data were filtered using a zero-
phase 4th order low-pass Butterworth filter with a 22 Hz cut-off frequency. Pilot research
showed that a 22 Hz cut-off frequency resulted in the greatest agreement between IMU-
measured acceleration and Vicon-measured acceleration. Variables extracted from the IMU
data were: tri-axial linear acceleration, tri-axial angular velocity and tri-axial angular accel-
eration (calculated as the 1st derivative of angular velocity with respect to time) measured
in the local frame, and resultant linear acceleration, resultant angular velocity and resultant
angular acceleration. Internal tissue force and IMU data were synchronised against a single
‘master’ IMU. All wearable IMUs were synchronised with the master IMU at the onset of
each data collection session using a series of common movements, prior to attachment to
the participant. The master IMU was secured to the force platform, and at the onset of
each trial was tapped by the participant three times, providing time series landmarks in the
ground reaction force and master IMU time series, through which musculoskeletal mod-
elling and wearable IMU data could be synchronized. Each trial was manually inspected to
ensure accurate synchronisation. Training data were scaled, normalised, and to ensure the
model did not bias specific jump types or intensities, resampled with replacement to attain
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Table 8.1: Descriptions of jumping and landing movements completed in each set.

Trial Reference Jump Type Effort Repetitions Ground
Contacts

Description

1 01-01
Repeated squat
jump

30% 10 11 Repeated jumps performed with
self-determined flexion at the hip, knee, and
ankle.

2 01-02 60% 10 11

3 01-03 100% 5 6

4 02-01
Repeated stiff-ankle
pogo jump

30% 10 11 Repeated jumps performed with a stiff ankle
position and minimal flexion at the knee and
hip. The participant aims to minimise ground
contact time.

5 02-02 60% 10 11

6 02-03 100% 5 6

7 03-01
Isolated counter
movement jump

30% 10 20 Individual countermovement jumps, between
each of which the participant pauses and resets
to their original static position.

8 03-02 60% 10 20

9 03-03 100% 5 10

10 04-01
Two-footed broad
jump (takeoff)

30% 3 3
Two footed jumps with anterior displacement,
taking off from the force plate.11 04-01 60% 3 3

12 04-01 100% 3 3

13 04-02
Two-footed broad
jump (landing)

30% 3 3
Two footed jumps with anterior displacement,
landing on the force plate.14 04-02 60% 3 3

15 04-02 100% 3 3

16 05-01
One-to-two leg
vertical leap

30% 10 20
A single step into a vertical leap, following
which the participant lands on two legs.17 05-02 60% 10 20

18 05-03 100% 5 10
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an even distribution of force magnitudes, and an even number of unilateral and bilateral
jumps. All tissue force and IMU data collected in the study are provided in Appendix E.

8.3.6 Model Training and Evaluation

A leave-one-subject-out cross validation approach was used to train and evaluate a two-
IMU (waist and shank IMUs) and a five-IMU (foot, shank, thigh, waist, and upper-back
IMUs) prediction model, and a shank IMU and waist IMU linear regression model for each
of the four targets (Achilles tendon force, patellar tendon force, tibial force, and ground
reaction force). This approach involved training each model on five participants’ data, and
testing the model on the sixth. This process was then iterated until each participant’s data
had acted as the testing set. Five percent of the data set was excluded from training and
testing prior to this process, and used to tune the model. Parameters tuned were the number
of layers, the number of neurons in each layer, the learning rate, dropout, window size, and
the window delay. For each leave-one-subject-out iteration, 25% of the data was used as a
validation set.

Recurrent neural networks were built, allowing the network to access historical data
points in addition to the frame being predicted. Initial model architecture was based on
approaches to similar problems [254], though less complex models were used following
tuning. Models consisted of a 64 neuron long short-term memory layer with 40% recurrent
dropout, and two dense layers comprised of 32 and 16 neurons. Models were trained using
the Adam optimization algorithm [255], a mean square error loss function, and learning
rates of 1×10-5 or 1×10-6. Training continued until the mean square error failed to decrease
by 0.0001 × body mass after 15 consecutive epoch, up to a maximum of 400 epochs. Mod-
els were constructed and evaluated in R (v.4.0.4, R Foundation for Statistical Computing,
Vienna, Austria) using Keras, an interface for the Tensorflow (v.2.6.0) Python library. The
complete data set passed to prediction models can be found in Appendix 2. Code to recreate
the models can be found in Appendix 3.

For comparison to current wearable technology approaches to load quantification, a
single variable linear regression method was used [117, 70]. Linear regression models
were built to calculate coefficients with which to scale the resultant acceleration measured
by either the shank or waist IMU to the target variable. The resulting regression equation
was then applied to the testing data to make tissue force predictions.

Models were evaluated in two ways: i) continuous time series prediction, (i.e., based
on every data point recorded) and ii) peak force prediction (i.e., based on the peak forces
measured during each ground contact). For each model, intra-individual root-mean-square-
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errors (RMSE) and Pearson’s correlations were calculated for continuous time series and
peak forces, to determine relationships between predicted and actual values. All model
building and evaluation procedures were conducted using R.

8.4 Results

A total of 110 trials were recorded (18 trials for five participants, and 20 trials in one partic-
ipants, as two trials were divided into two sections). Five trials (4.5%) were removed due
to excessive marker dropout or processing errors. A total of 1042 unique ground contacts
and 74096 individual data points were, therefore, included in the final analysis.

Across all tissue targets, and for both continuous time-series and peak force predictions,
the leave-one-subject-out cross validation revealed that neural networks demonstrated lower
RMSEs (Tables 8.2 & 8.3) and higher coefficients of determination (Figure 8.2) than waist
or shank linear regression approaches. Scatter plots presenting the relationships between
laboratory force measures and IMU force measures for each participant are presented in
Figures 8.3–8.8.
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Table 8.2: Root-mean-square-errors (RMSE) for continuous time series predicted by each
algorithm compared to the laboratory measurement for each participant.

Target Participant
RMSE for Continuous Time Series

Predictions (x body mass)
NN-5 NN-2 Waist Shank

Achilles Tendon 1 1.11 1.19 1.30 1.68
2 0.88 0.85 1.07 1.46
3 0.84 0.88 0.80 1.61
4 1.15 0.88 0.92 1.33
5 0.80 0.95 0.78 1.17
6 0.85 0.85 1.08 1.41
Mean 0.95 0.95 0.97 1.45
SD 0.15 0.13 0.20 0.18

Patellar Tendon 1 1.04 0.97 1.09 1.58
2 0.72 0.80 1.00 1.32
3 0.90 0.83 0.91 1.38
4 0.83 0.60 1.10 1.69
5 0.93 0.96 1.10 1.54
6 0.61 0.70 1.11 1.40
Mean 0.84 0.81 1.05 1.49
SD 0.15 0.14 0.08 0.14

Tibia 1 1.13 1.21 1.49 1.91
2 0.84 0.99 1.26 1.73
3 0.85 1.00 1.15 1.95
4 1.15 0.92 1.12 1.64
5 0.84 1.07 1.02 1.45
6 0.81 0.97 1.37 1.78
Mean 0.94 1.03 1.24 1.74
SD 0.16 0.10 0.17 0.18

GRF 1 0.32 0.35 0.38 0.47
2 0.23 0.19 0.32 0.41
3 0.21 0.24 0.34 0.49
4 0.27 0.20 0.32 0.45
5 0.23 0.20 0.29 0.41
6 0.21 0.23 0.36 0.44
Mean 0.24 0.23 0.33 0.44
SD 0.04 0.06 0.03 0.03

NN-5 – Five IMU neural network; NN-2 – Two IMU neural network.

133



Table 8.3: Root-mean-square-errors (RMSE) for the peak force predicted by each
algorithm compared to the laboratory measurement for each participant.

Target Participant
RMSE for Peak Force Predictions

(x body mass)
NN-5 NN-2 Waist Shank

Achilles Tendon 1 1.51 1.67 2.21 2.35
2 1.24 1.17 1.90 2.47
3 1.31 1.40 1.09 2.06
4 2.21 1.28 1.84 2.27
5 1.34 2.10 1.57 2.27
6 1.64 1.37 2.21 2.40
Mean 1.52 1.53 1.72 2.29
SD 0.36 0.34 0.43 0.14

Patellar Tendon 1 1.06 0.94 2.23 2.35
2 1.36 1.80 2.10 1.36
3 1.54 1.66 1.59 1.33
4 1.66 1.12 2.03 2.27
5 1.65 1.27 2.19 2.10
6 1.02 1.15 2.61 1.77
Mean 1.38 1.32 2.12 1.87
SD 0.29 0.33 0.33 0.45

Tibia 1 1.29 1.21 2.49 2.62
2 1.52 1.57 2.31 3.05
3 1.54 1.24 1.69 2.44
4 2.28 1.23 2.19 2.73
5 1.58 2.51 2.15 3.01
6 1.49 1.73 2.77 3.30
Mean 1.62 1.58 2.27 2.86
SD 0.34 0.50 0.36 0.32

GRF 1 0.51 0.55 0.57 0.62
2 0.34 0.34 0.55 0.57
3 0.29 0.31 0.52 0.63
4 0.39 0.32 0.57 0.62
5 0.31 0.29 0.55 0.66
6 0.30 0.35 0.70 0.74
Mean 0.36 0.36 0.58 0.64
SD 0.09 0.10 0.06 0.06

NN-5 – Five IMU neural network; NN-2 – Two IMU neural network.
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Figure 8.2: Comparisons of r2 values for the relationships between predicted and actual
force values. The upper row presents the results of continuous time series prediction,
whilst the lower row presents the results of peak force prediction. Filled squares show the
result of each participant, whilst diamonds show the group mean. GRF – Ground reaction
force; NN-5 – Five IMU neural network; NN-2 – Two IMU neural network.
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Figure 8.3: Laboratory-measurements vs. two-IMU neural network (NN-2) predictions of continuous time-series. Columns present the
data of a single participant, whilst rows present each target variable.

136



Figure 8.4: Laboratory-measurements vs. two-IMU neural network (NN-2) predictions of the peak force occurring in each ground
contact. Columns present the data of a single participant, whilst rows present each target variable.
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Figure 8.5: Laboratory-measurements vs. shank linear regression predictions of continuous time-series. Columns present the data of a
single participant, whilst rows present each target variable.
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Figure 8.6: Laboratory-measurements vs. shank linear regression predictions of the peak force occurring in each ground contact.
Columns present the data of a single participant, whilst rows present each target variable.
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Figure 8.7: Laboratory-measurements vs. waist linear regression predictions of continuous time-series. Columns present the data of a
single participant, whilst rows present each target variable.

140



Figure 8.8: Laboratory-measurements vs. waist linear regression predictions of the peak force occurring in each ground contact.
Columns present the data of a single participant, whilst rows present each target variable.
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8.5 Discussion

This study presents a series of algorithms for estimating lower limb tissue forces from
wearable IMU data during jumping movements, providing an improvement in field-based
biomechanical load monitoring technology compared to current alternatives. These algo-
rithms outperformed shank and waist mounted IMU measurements of lower limb tissue
force considerably; indeed, simple segmental acceleration measures demonstrated such
poor relationships with lower limb tissue forces that their use in future practice and research
should be questioned. An open-source R Shiny application housing these algorithms, as
well as the data and code used to produce them, are provided in Chapter 9. The improved
accuracy observed using these novel methods may facilitate improved training load man-
agement in ballet—particularly during rehabilitation—and may extend to jumping sports
such as volleyball and basketball.

In the present study, two-IMU neural network estimates of tissue-specific forces demon-
strated strong relationships with musculoskeletal model measurements, for both the con-
tinuous time series (r2 = 0.77–0.83; RMSE = 0.81–1.03 BWs) and the peak force measured
during each ground contact (r2 = 0.45–0.72; RMSE = 1.32–1.58 BWs). Estimates of peak
tibial force (RMSE = 1.58 BWs) were less accurate than those observed in similar research
(0.25 BWs) [70], though this is unsurprising for several reasons, namely: the use of actual
vs. idealised signals, the lack of pressure sensing insoles, the use of six-DOF rather than
nine-DOF IMUs, and the inclusion of more varied movements. Additionally, the current
method predicted a continuous time series, before extracting the peak value. Conversely,
the model of Matijevich et al. [70] targeted only peak values. A similar continuous time
series prediction method has been used for the estimation of GRF during running, during
which mean RMSEs of 0.16 ± 0.04 BW were observed [254] (compared to 0.23 BW in
the present study). Unlike the present study, however, IMU summary statistics, participant
characteristics, and movement characteristics (running speed and slope) were passed as
features to the neural network. Given the differences in movements, models, sensors, and
signals, it is challenging to directly compare results against these studies. It would seem
pertinent, however, for future models to target the specific variable of interest (i.e., either a
continuous time series or the peak value, and not both concurrently).

The neural network approach outperformed both the waist and the shank linear regres-
sion methods across all target variables. In the case of the shank IMU linear regression
approach, the peak resultant acceleration measured during a ground contact explained less
than five percent of the variation in the laboratory measurements of any target tissue force.
This result may be surprising, given that lower-limb mounted IMUs are often suggested to
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be indicative of lower-limb biomechanical load [256], and are widely used during routine
monitoring or rehabilitation in high-performance sport [248, 249]. However, this finding
is consistent with several previous suggestions regarding the theoretical relationship—or
lack thereof—between segmental acceleration and tissue force [117]. Based on the present
findings, and previous findings in runners [70], shank acceleration appears to be an invalid
measure of lower-limb biomechanical load during athletic movements. Importantly, these
results are promising for the future of wearable technology as a means of measuring lower-
limb load—however, researchers and organisations developing the technology must look
beyond simple segmental acceleration.

8.5.1 Areas for Further Research and Development

Potential avenues for improvements in prediction accuracy can be broadly divided into
three areas: hardware, modelling, and methodology. Firstly, additional or alternative hard-
ware may facilitate the measurement of the measurement of further useful signals, namely
IMU orientation (and by extension, limb orientation) through nine-DOF IMUs, and ground
reaction force through pressure sensing insoles [257]. Although the IMU situated near the
participant’s centre of mass gives a reasonable proxy measure of ground reaction force,
pressure sensing insoles would provide this signal unilaterally. With the addition of these
more complex signals, however, comes a reduction in the ease of application of any wear-
able system in practice. Secondly, alternative approaches to model selection, architecture,
and development may benefit prediction accuracy. Potential examples of where further im-
provements could be made are model type (e.g., RNNs [254], LASSO regression [70]);
ensemble methods (i.e., combining several models) [258, 259]; target-specific models (i.e.,
models targeting peak force, rather than extracting the peak force identified from a con-
tinuous time series prediction) [70]; feature selection [260]; and additional parameter and
hyperparameter tuning. Finally, methodological changes may yield improvements in an
algorithm. The most notable of these would be the development of participant-specific
models (i.e., models which are trained and tested on two data sets from the same partici-
pant) [261].

8.5.2 Limitations

Despite the improvement in tissue-specific force measurements observed in the present
study, several limitations exist. Methodologically, future protocols should include an even
number of unilateral and bilateral jumps. Whilst training data were resampled to ensure an
even distribution of unilateral and bilateral jumps, the same was not the case for testing data.
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As such, an algorithm which does not distinguish between the two would not have been pe-
nalized as heavily as perhaps it should. A greater sample size would be desirable, however,
given the time-intensive nature of motion capture collection, musculoskeletal modelling,
and algorithm development and training, large teams of researchers with state-of-the-art
equipment are required for optimal outcomes. Finally, readers should consider that the cri-
terion measures were derived from musculoskeletal modelling, and are not direct measures
of tissue load. Whilst the model used has been validated for use in jumping, it makes as-
sumptions regarding factors such as anatomical scaling and muscle dynamics [251], though
these limitations are common across modelling approaches.

8.5.3 Practical Applications

Whilst it is natural to consider the application of the current findings to injury predic-
tion/prevention, further refinement is necessary before such algorithms are sufficient to
provide accurate insight into internal tissue damage in practice. This primarily stems from
the non-linear relationship between load magnitude and tissue damage, whereby an in-
crease in load magnitude results in a disproportionately large increase in tissue damage
[67]. As a result, small errors in the estimation of load magnitude translate to large errors
in the estimation of tissue damage. Although healthcare practitioners should be cautious
about overstating the value of these algorithms of providing insight into injury risk, they
mark a great improvement over simple linear regression approaches for quantifying lower
limb loads. In this respect, the results demonstrate promising implications for future devel-
opment of external training load measures; with only two six-DOF IMUs, a high proportion
of variation in laboratory-measured tissue forces could be explained. Finally, the present
algorithms are the first which are readily available for ballet companies to implement in
practice, and may assist in the management of return-to-dance pathways following lower-
limb injury. Alongside this paper we provide all data used (Appendix E), complete R code
(Appendix E), and an open-source R Shiny application (Chapter 9) housing a graphical
user interface for the algorithms.

8.6 Conclusion

Recurrent neural networks were developed using IMU data to estimate internal tissue forces
during jumping and landing. This marks the first study detailing the development of a field
measure of tissue-specific force in practice. These algorithms outperformed simple linear
regression approaches using shank or waist acceleration, which are commonly used in high
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performance sport. An accompanying app is provided enabling healthcare practitioners
to implement these algorithms in field settings. The results agree with similar previous
studies suggesting the development of wearable algorithms is a promising area of research
for those attempting to measure tissue loads in the field.
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CHAPTER 9

OpenTrack: An Open-Source Shiny Application
for Calculating and Databasing Training Load

Variables Extracted from Wearable Inertial
Measurement Unit Data

9.1 Abstract

In elite sport, it is common for science and medicine practitioners to monitor and manipu-
late an athlete’s training load, with the intention of minimizing injury risk and maximizing
physical performance. A popular method of quantifying training load is the use of wear-
able inertial measurement units, from which counts of events such as accelerations, decel-
erations or jumps, or global movement variables such as PlayerLoad or impact load, can
be calculated. The large financial cost of buying or renting these wearable systems means
that many organisations outside the world of elite sport may be unable to afford them. This
is particularly true in ballet companies and schools, which do not see the same investment
as professional sports teams and may face cultural barriers that limit the funding desig-
nated for sports science. OpenTrack is an open-source R Shiny application, providing a
graphical user interface through which users can upload, process, visualize, and database
wearable training load data. OpenTrack is built to interact with either a structured query
language (SQL) or a .csv database, allowing users to integrate the platform into existing
athlete management software.

9.2 Installation

Opentrack is available via the following url:
https://github.com/joseph-shaw/OpenTrack
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9.3 User Interface

The user can interact with OpenTrack across six tabs:

9.3.1 Data Upload

The user may upload data from a central IMU (e.g., at the anterior lower abdomen) and/or
data from two IMUs positioned on opposing limbs (e.g., at the left and right thigh). This
tab also provides widgets for the user to provide details of the uploaded data (e.g., sampling
rate, device orientation).

9.3.2 Data Analysis

Following data upload, the user navigates to this tab to analyse the file. The user can switch
between two plots showing a line graph of i) the central IMU data, or ii) the left and right
IMU data. These plots are interactive, allowing the user to clip a specific drill, session, or
time-period to analyse. At the bottom of this page is a data dashboard which will visualize
a summary of the selected time frame. Underneath the main plots is a box allowing the
user to enter details of the session which has been clipped (e.g., athlete ID, session type,
RPE, comments). If this is the first session entered for an athlete, a secondary tab allows
the user to create a new athlete. A screen capture of this tab can be seen in Figure 9.1.

9.3.3 Database

Once a session has been clipped and saved, it is written to the database. The database
is stored via either Microsoft SQL Server or a .csv file, depending on the user’s settings.
From the Database tab, the user can interact with (i.e., view, edit, download) the database.
A screen capture of this tab can be seen in Figure 9.2.

9.3.4 Individual Dashboard

The fourth, fifth, and sixth tabs provide dashboards for the user to visualise and analyse
the database. The first of these tabs provides detailed plots and tables regarding a single
athlete’s historical training load. At the top of the page the user simply selects the athlete,
the date range, and the time grouping (i.e., into days or weeks), and the dashboard will
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Figure 9.1: Data analysis tab.

Figure 9.2: Athlete database tab.
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populate. The first two plots show the athlete’s longitudinal internal and external training
load, the latter of which can be interacted with to alter the variable of interest. Underneath
these plots, the user can open a dropdown to explore the longitudinal symmetry between
left and right IMUs. Finally, another dropdown is available displaying summary data from
each individual session saved in the database. A screen capture of this tab can be seen in
Figure 9.3.

Figure 9.3: Longitudinal dashboard tab.
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9.3.5 Squad Dashboard

Here the user can view a snapshot of the historical training loads experienced by multiple
athletes. The user simply selects the athletes of interest, date range, and time grouping, and
the table will populate. The user can then select a training load variable of their choice to
view. A screen capture of this tab can be seen in Figure 9.4.

Figure 9.4: Squad dashboard tab.

9.3.6 Session Dashboard

The final tab is designed to visualize a single historical session saved in the database. The
user selects the athlete, session date, and session name, and the dashboard will populate.
The dashboard is a replica of that shown at the end of the ‘Data Analysis’ tab. A screen
capture of this tab can be seen in Figure 9.5

9.4 Server

The back end of OpenTrack serves three primary functions:

1) Read and analyse wearable data.

2) Database the processed data.

3) Read and process historical sessions.
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Figure 9.5: Session dashboard tab.

9.5 Training Load Variables

Variables calculated by OpenTrack, and details regarding their calculation, are listed below.
Users should note that the evidence for relationships between these variables and outcomes
of interest (i.e., performance and injury) is equivocal.

9.5.1 Jump Frequency and Height

To calculate jump frequency and height, OpenTrack uses the algorithm detailed in Chapter
7.

9.5.2 Session Rating of Perceived Exertion

When entering session details in the ‘Analyse Session’ tab, an RPE entry box is provided.
This value is multiplied by the duration of the session (or the ‘duration override’ value, if
entered) to calculate the s-RPE. For use of s-RPE with professional ballet dancers, readers
are directed towards Chapter 6.

9.5.3 PlayerLoad

OpenTrack calculates PlayerLoad™ in line with that described by Catapult [262]. Play-
erLoad™ is calculated following data filtering. Readers are directed elsewhere for further
discussion on PlayerLoad™ [263, 57].
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∑√
(fwdt=i+1 − fwdt=i) + (sidet=i+1 − sidet=i) + (upt=i+1 − upt=i)

100

9.5.4 Impact load

OpenTrack calculates impact load in line with the description from IMeasureU [264]: “the
sum of the intensities created from every impact measured” during a session. For example,
if a player recorded five impacts, the peak intensities of which were 1, 2, 3, 4, and 5 g, the
impact load would be calculated as (1 + 2 + 3 + 4 + 5 = 15 AU).

9.5.5 Ground Reaction Force

To estimate ground reaction force, OpenTrack uses the algorithm detailed in Chapter 8.

9.5.6 Achilles Tendon, Patellar Tendon, and Tibial Bone Force

To estimate Achilles tendon, patellar tendon, and tibial bone force, OpenTrack uses the
algorithm detailed in Chapter 8.

152



CHAPTER 10

General Discussion

10.1 Context

Research in sports medicine has demonstrated the importance of understanding and man-
aging athletic training load. Despite the high dance exposure durations reportedly under-
taken by professional ballet dancers, relatively little research has been conducted, and load
management is not yet the norm in ballet companies. This thesis, therefore, had three pri-
mary aims: i) to understand the training load demands experienced by professional ballet
dancers; ii) to explore the relationship between balletic training load and musculoskeletal
injury; and iii) to provide professional ballet companies with practical methods and recom-
mendations for the management of training load. This discussion will address each aim in
turn, followed by their practical applications, and potential avenues for further research.

10.2 Training Loads in Professional Ballet

The systematic review presented in Chapter 3 explored existing research into the activity
demands and physiological responses observed in professional ballet. At the level of a
single class, rehearsal, or performance, ballet is intermittent, featuring sequences of high
intensity movements interspersed with periods of rest. The demands of ballet vary between
session types: the metabolic intensity of ballet class is limited due to the long rest breaks
between exercises [4, 136], however, in featured performance roles, dancers frequently
reach close to maximal intensities [125]. In the case of corps de ballet dancers, on the other
hand, much of a performance may be spent at rest [46]. The jumping demands of ballet
have only been investigated in performances [46, 137], during which dancers jump at a
rate of ˜5 jumps·min-1, exceeding the rates of jumping in sports such as volleyball [152]
and basketball [153]. Given the high frequency of jumping and the high rate of injuries
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resulting from jumping and landing movements in professional ballet dancers [163], the
management of jump load was identified as a primary focus for research.

Seven studies were identified as having reported some measure of more general train-
ing load demands (i.e., beyond the demands of a single session); Four of these, however,
only provide superficial data regarding ‘normal’ dance exposure durations. Though these
studies are limited in their methodological approaches, they are consistent in their results,
typically reporting values greater than 30 h of dance per week. These values are much
higher than comparable training and performance exposure durations reported in sporting
research [152, 155, 156], however, without greater detail around the make-up or variation
of these values, they provide little practical value. Similarly, one study reported a com-
pany’s seasonal show count—ranging from 142-145—however, the proportion of shows
performed by each company dancer was not stated. Studies using wearable technology
[141, 142] revealed that whilst total activity levels are high (> 7.5 h·day-1), much of this
time is spent at relatively low intensities. Unlike recent training load research in sport,
these studies report metabolic equivalents, but not variables related to musculoskeletal load
(e.g., jumps, accelerations, decelerations, etc.).

A primary finding of Chapter 3 was the scarcity of longitudinal research into the de-
mands of a ballet schedule. This finding echoes qualitative research in which dancers
identified a lack of understanding around the structure of the training season, and the im-
balance in load across the season, as major factors contributing to injury [12]. Chapter 5,
therefore, sought to provide a more comprehensive analysis of longitudinal rehearsal and
performance volume in a professional ballet company. Rank-dependent, dancers completed
between 20 and 30 h of dance per week on average, though large variation in these figures
was evident from week-to-week, and across the season. In fact, weeks in which dancers
exceeded 40 h of dance per week were frequent, particularly in the ranks of soloist, first
artist, and artist. Rapid increases in dance volume were also common, with week-to-week
increases in dance hours of > 50% taking place in a quarter of weeks. Much of this vari-
ation likely reflects the overlapping nature of the repertoire; throughout the season at least
three productions are typically in rehearsal or performance concurrently, whilst at the bus-
iest times there were five separate productions underway. Training loads in professional
ballet, therefore, appear to be irregular and volatile; it is important to understand the load-
injury relationship in ballet such that artistic and healthcare teams can address load-related
health problems through appropriate periodisation.
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10.3 The Load-Injury Relationship in Professional Ballet

The load-injury relationship in dance has previously been investigated on three occasions,
though methodological limitations undermine or restrict the conclusions which can be
drawn. Chapter 4 presented a five-season cohort study exploring the relationships between
individual risk factors, accumulated dance volume, and injury in professional ballet. Shared
frailty models were fitted to 1332 medical attention injuries (427 of which were time-loss
injuries), with age, sex, company rank, injury history, and the accumulated dance volume
variables: 7-day accumulated dance hours, 28-day accumulated dance hours, and week-to-
week change in dance hours, included as independent variables. In line with similar re-
search in sport, rapid increases in volume were associated with both medical attention and
time-loss overuse injuries. Unusually, however, hazard ratios for overuse medical attention
injuries were lower in following 7-day periods of greater accumulated dance hours; a result
in opposition to previous findings [73]. Several individual risk factors also demonstrated
relationships with injury rates. Consistent with many research studies in sport, prior injury
rate was positively associated with the hazard ratio for overuse injury. No relationship was
observed between sex and injury rates; however, a relationship was observed between com-
pany rank and injury rates, with greater hazard ratios in soloists compared with the corps
de ballet. Only age was associated with traumatic injury rates, with older dancers incurring
a higher rate of traumatic injury.

From a methodological standpoint, Chapter 4 builds on previous load-injury research
in dance. Most notably previous studies have been limited by an underpowered sample
of injury events, exclusion of medical attention injuries, a lack of exposure measure, and
overly simplistic modelling approaches. The present investigation addresses these prob-
lems, though is nonetheless imperfect. For example, whilst the shared frailty model ac-
counted for recurrent events and time-varying covariates, it may be inferior to a multi-state
approach, whereby non-time-loss injuries operate as a middle ground between uninjured
and time-loss injury states. Moreover, whilst the number of injuries observed exceeds those
observed in previous research in dance, this number was insufficient to target specific tissue
types and anatomical locations of injury. Finally, Chapter 4 is only one of many studies in-
vestigating the load-injury relationship across athletic populations; whilst it provides novel
insight into healthcare in dance, it should not be interpreted in isolation, but in the context
of a wider body of research. As such, the resulting recommendations for load management
in professional ballet (discussed in section 10.5) are based on both the present research and
prior research in sport.

Whilst aspects of the load-injury relationship in professional ballet remain unclear, re-
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searchers should be cautious when planning training load research in this population. Given
the multidimensional nature of athletic injury, and the multitude of methodological and sta-
tistical pitfalls encountered in load-injury research, these studies should be undertaken only
when such factors can be overcome. To achieve sufficient statistical power to investigate
injury at either a tissue level, anatomical location level, or at the level of a specific diagno-
sis, it is likely that multi-centre studies will be required. Researchers should consider that
where such sample sizes are not feasible, research quality is likely to be higher by target-
ing alternative response-to-load variables, for example, physical performance or perceived
wellbeing.

10.4 Methods for Measuring Training Load in Ballet

Prior to this thesis, ballet healthcare practitioners seeking to measure the training loads
experienced by ballet dancers had a limited selection of methodological approaches from
which to choose. This limited selection results from a lack of research into the method-
ological validity of potential measures, or a lack of accessibility to those measures which
have been validated, for example, due to the need for data science expertise, because data
and algorithms have not been shared openly, or because of the need for high-end equip-
ment. This thesis provides science and medicine practitioners with three viable methods
for quantifying load which do not require high-end equipment; this section will explore
each of those, in reference to what was previously available, and areas for further research
and development.

10.4.1 Session-Rating of Perceived Exertion

The study contained in Chapter 6 of this thesis is the first to investigate the validity of
s-RPE in professional ballet dancers, within which very large positive relationships were
observed between s-RPE and TRIMP scores across all sessions. These relationships were
stronger than those demonstrated in non-professional ballet or contemporary dancers, and
suggest that s-RPE provides a valid measure of the metabolic intensity of a session without
the need for equipment. This overcomes two practical issues faced by ballet companies: i)
training load can be measured for performances, in which alternative measures of internal
training load (e.g., HR straps) may not be an option; and ii) large numbers of dancers can
be monitored without needing to purchase large quantities of equipment, or process large
volumes of data.

Healthcare practitioners should note that whilst s-RPE may facilitate valid measurement
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of metabolic training load, at present, its use as a measure of other loading constructs is
inadvisable. This is important to state given that many of the health issues faced by dancers
are overuse musculoskeletal complaints, and often associated with specific movements.
Whilst metabolic training load may correlate with mechanical load, healthcare practitioners
should be cautious of manipulating the former in expectation of a corresponding change
in the latter. Put simply, optimal periodisation of metabolic training load variables will
not necessarily mitigate the risk of common musculoskeletal ballet injuries. Given this
stipulation, research into the use of differential RPEs in ballet is a potential avenue through
which the most common load-related injuries may be better understood. For example, the
question ‘what was the intensity of your rehearsal?” may be redirected towards a specific
body part (‘what was the lower-limb muscular intensity of your rehearsal”) or movement
(‘what was the intensity of pointe work in your rehearsal?”). This may be a particularly
beneficial strategy for quantifying the loads associated with the primary mechanisms of
injury in ballet: pointe load, where no alternative strategy currently exists; or jump load,
for which barriers to the use of wearable IMUs may exist, for example, a lack of equipment,
or a lack of staff with appropriate expertise. Similarly, even where staff and equipment are
available, differential RPEs may be more scalable to a large company of dancers compared
with wearable systems.

10.4.2 Jump Load

The importance of quantifying jump load has previously been outlined in the literature
[154]. In ballet, jumping and landing actions are implicated in 27% (women) and 38%
(men) of all time-loss injuries [163]. As such, ensuring jump load is appropriately prescribed—
or at least not inadvertently mismanaged—is paramount. The algorithm presented in Chap-
ter 7 demonstrates a high level of validity in both the detection of jumping events (sensitiv-
ity = 0.95, precision = 0.95, miss rate = 0.05) and the measurement of jump height (rrm =
0.97, bias = +1.2 cm, 95% LoA: -4.9 to 7.2 cm, MAE: 2.6 cm).

The relationship between jump load and injury risk is likely weaker than that between
tissue-specific forces and injury risk. The value in jump load, however, is in its simplicity
and relevance to the ballet world. Conversations around training load with a choreogra-
pher or ballet coach are likely to be more productive, and result in the desired change,
when the load variable in question is context specific. In this respect, jump load is a met-
ric which can be understood, manipulated, and even directly observed by a non-specialist.
An accelerometer worn at the waist is relatively discreet in comparison to other common
wearables which may require larger devices, inconvenient clothing (e.g., vests), or mul-
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tiple sensors. As such, the approach outlined in Chapter 6 is likely to result in greater
dancer compliance with regular monitoring, enable data collection on stage, and facilitate
discussions with artistic staff.

The quantification of jump load in professional ballet may be further developed through
more detailed classification of jump types. For example, identification of the take-off or
landing limb(s) during a jump may be useful during late-stage rehabilitation pathways from
unilateral injuries. Similarly, identification of ballet-specific jumps may be useful in iden-
tifying the mechanism of an injury, or managing a return-to-dance pathway following a
traumatic injury associated with a specific movement. To this end, previous research has
demonstrated more specific movement detection during ballet using complex algorithms
and a greater number of sensors [114]. Importantly, however, end-user implementation
must be considered; unless these algorithms are embedded into easy-to-use applications,
and require only discreet sensors, they are unlikely to be adopted into practice.

10.4.3 Tissue-specific Force

Chapter 8 detailed the development and evaluation of deep learning algorithms for the es-
timation of lower limb physiological tissue forces during jumping and landing movements.
This approach has been demonstrated conceptually (i.e., using lab-based signals that could
theoretically be derived from wearables) across different running speeds, though this is the
first study to implement this method in practice, and the first time this approach has been
used for jumping and landing movements. For tibial, patellar tendon, Achilles tendon, and
ground reaction force, the algorithms considerably outperformed single variable linear re-
gression using waist or shank resultant acceleration, particularly for the estimation of peak
forces. This finding is consistent with previous suggestions that there is little biomechani-
cal rationale supporting the notion that tibial acceleration is indicative of lower limb tissue
forces [117]. Whilst the present research did not investigate the relationship between shank
acceleration and lower-limb tissue forces during more general athletic movements (e.g.,
running, cutting, shuffling, etc.), some speculation is justified. By extrapolating the present
results, and considering the lack of biomechanical rationale, it seems counterintuitive to
continue using shank accelerations as a measure of lower limb load in athletic activities.

The greater performance of the machine learning approach, compared with common
methods used in the field (i.e., shank and waist acceleration) suggests there are consider-
able improvements to be made in the measurement of tissue-specific biomechanical load.
Methodological improvements over the current approach (inclusion of orientation, greater
sample size, more diverse movements, etc.) provide immediate avenues for improvements
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in algorithm performance, whilst a host of other factors may facilitate further refinement.
These may include additional or alternative sensor types (e.g., pressure sensing insoles),
different sensor locations, different model types, ensemble learning, and alternative model
architecture, to name a few. Academics and healthcare practitioners, however, should be
cautious in pursuing this research area in the hope of achieving accurate injury prediction.
Given the high degree of accuracy needed to reach this goal, combined with the stochastic
nature of tissue failure, and the multifactorial and changeable nature of tissue capacity, it
seems likely that individualised models, and vast improvements in algorithm performance
would be needed before this becomes a reality. Such goals are unlikely to be reached in the
short term and should not be the focus of applied sports science support.

10.5 Recommendations for the Management of Training
Load in Ballet

Chapter 4 demonstrated that in a professional ballet company, linear increases in both med-
ical attention and time-loss injury rates are observed with increasing week-to-week changes
in dance exposure time. This finding aligns with a large body of research in sport, suggest-
ing that rapid increases in training load are associated with injury. Furthermore, Chapter 5
illustrated that without company-wide load management strategies, dancers are frequently
subject to common risk factors for injury, namely extremely high and rapidly changing
rehearsal and performance volume. Appropriate management of balletic training load is,
therefore, advisable to mitigate the risk of injury in professional ballet companies.

Current guidelines for the management of training load in ballet should be consistent
with those applying to the field of sports medicine:

• Avoid rapid changes in training load.

• Avoid periods of very-high training load.

• Maintain moderate-to-high training loads over the long term.

More specific recommendations, at this point, are not justified based on current re-
search. Importantly, unique barriers to meeting these recommendations exist in dance.
Artistic and healthcare practitioners working in ballet should apply their contextual un-
derstanding of the environment when considering these guidelines. For example, rapid
changes in load may be unavoidable following a last-minute cast change; situations such as
this should be adapted to through manipulation of other rehearsals and performances, and
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through the provision of appropriate management and recovery strategies. Less obvious
spikes in training load may be observed at the onset of a new ballet because of the differ-
ences in choreography. If dancers are required to rehearse and perform classical repertoire
immediately following the completion of a contemporary ballet, for example, dancers may
experience a sudden increase in jump or pointe load, despite no changes in the metabolic
demands or the volume of rehearsals. Therefore, it is imperative that load management is
proactive where possible (i.e., takes place at the repertoire planning and casting stages),
and is not merely reactive to an unforeseen event.

10.5.1 Intensive Longitudinal Training Load Monitoring

The use of intensive longitudinal training load monitoring—i.e., daily collection of athlete-
specific training loads—is the norm in many elite level sports. It is, therefore, likely to be
seen as the goal for many healthcare departments in professional ballet companies. Whilst
this goal is understandable, a plethora of challenges and obstacles stand between the current
reality and that target.

For many ballet companies, the logistical challenges of collecting and managing daily
training load data—and particularly wearable data—will be insurmountable in the short
term. Where this level of data is collected in professional sports teams, there is often a
sports scientist or data scientist employed whose sole job is to record and manage the train-
ing load data of a single squad of 20–30 athletes. In contrast, not only are ballet companies
often comprised of larger ‘squads’ (in some cases ˜100 dancers), but few employ full-time
sports scientists. For those which do, these individuals are typically responsible for the de-
livery of a holistic sports science approach (e.g., strength and conditioning, biomechanics,
physical testing, nutrition, etc.), and not solely training load management. Furthermore,
acquiring a wearable monitoring device for an entire company of dancers would come at
a considerable expense. Therefore, it would require a drastic increase in funding for ballet
healthcare teams to be able to afford the technology and personnel to overcome the practical
barriers to daily load monitoring.

Given the logistical challenges of daily load monitoring, and the current level of sports
science support provided by professional ballet companies, investing in intensive longitu-
dinal load monitoring is simply not an effective use of time nor resources. This is not to say
that load management in ballet is not important; but instead that such detailed quantifica-
tion of load is unnecessary when alternative approaches are likely to be easier to implement
and provide a greater benefit. Chapter 5 demonstrated both the extreme volumes of dance
involved in day-to-day ballet rehearsal and performance schedules, as well as the incon-
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sistency in these working volumes from week-to-week; Chapter 4 identified an association
between larger week-to-week changes in exposure and the risk of musculoskeletal injury.
To this end, it is unlikely that an individualised monitoring approach is needed to address
these problems; instead, simple company-wide approaches to load management should be
employed until these gross inefficiencies are improved upon. For example, educating artis-
tic staff on training principles such as progressive overload, periodisation, and recovery;
including medical voices in discussions around repertoire planning; and adjusting whole-
company loads based on scheduled dance volume. Furthermore, small modifications to
a dancer’s training based on wearable data should be secondary to ensuring dancers are
following good nutritional practices, recovering effectively between rehearsals and shows,
being given the opportunity to get optimal sleep each night, and engaging in consistent
and well-directed strength and conditioning sessions. This sentiment is expressed in Figure
10.1, which presents a proposed hierarchy for the implementation of sports science services
within ballet companies. This thesis outlines a strategy in which company-wide intensive
longitudinal load monitoring is only implemented once more fundamental building blocks
are in place. At present, few professional ballet companies, if any, have these foundations
in place.

10.5.2 Where Does Intensive Load Management Fit Within Sports
Science and Medicine Provision in Ballet?

Given the preceding critical evaluation of intensive longitudinal load monitoring in pro-
fessional ballet, it is important to identify several areas in which intensive longitudinal
load monitoring may be beneficial. Firstly, regular monitoring may provide value in cases
where a dancer’s case becomes medicalised, i.e., during injury rehabilitation or follow-
ing the initial presentation of musculoskeletal injury symptoms. In these situations, i) the
risk of mismanaging dancer training load is greater, and is accompanied by more severe
consequences; and ii) healthcare practitioners have greater scope to influence the activ-
ity undertaken by the dancer in upcoming sessions, and thus the data is more likely to be
actioned. Secondly, daily load monitoring may contribute to applied research questions,
and thus the benefits extend beyond simply the impact that monitoring has on a single
dancer’s health and performance. For example, understanding the jump load associated
with a specific performance or role may facilitate improvements in the physical prepara-
tion of multiple dancers across multiple seasons, or may contribute to the decision-making
process surrounding repertoire selection.
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Figure 10.1: A proposed model for implementing sports science support in professional ballet companies. The priority of various
degrees of training load monitoring is presented relative to strength and conditioning, nutrition [265], recovery [266, 267], and status
monitoring [268] strategies.
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10.5.3 Conclusion

This thesis investigated training load in professional ballet and the validity of methods for
its quantification. A more comprehensive understanding of the training demands under-
taken by professional ballet dancers was attained through two literature reviews and an
analysis of five seasons of rehearsal and performance scheduling data at an elite profes-
sional ballet company. Dancers were found to undertake large volumes of dance, however,
dance hours fluctuated widely from week-to-week. Individual risk factors and patterns of
dance volume associated with injury rates were identified, and used to inform best prac-
tice recommendations for the management of training load. Three methods for quantifying
training load were found to be valid. For the quantification of internal training load, s-
RPE demonstrated very large linear relationships with HR-derived measures of internal
training load. For the measurement of external training load, two novel IMU algorithms
were developed. Firstly, a rule-based classifier for measuring jump frequency and height
demonstrated a high degree of accuracy, providing a simple means of managing jump load.
Secondly, a series of recurrent neural networks were developed to facilitate the measure-
ment of tissue-specific forces outside of a laboratory, outperforming single variable linear
regression approaches for the measurement of Achilles tendon, patellar tendon, and tibial
force. Open-source software was developed and presented to house these algorithms, and
database and visualize longitudinal training load data. The volume of training load in pro-
fessional ballet is high, however, with specific efforts to periodise a company’s rehearsal
and performance schedule, key risk factors can be minimised. Valid methods for monitor-
ing dancer load have been presented, which may facilitate research and rehabilitation.
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APPENDIX D

Included and excluded subject areas in the
searches of Web of Science and ProQuest

D.1 Web of Science

D.1.1 Included
Sport Sciences, Nutrition Dietetics, Dance, Rehabilitation, Neurosciences, Music, Public
Environmental Occupational Health, Engineering Biomedical, Medicine General Internal,
Physics Applied, Hospitality Leisure Sport Tourism, Psychology, Social Sciences
Biomedical, Multidisciplinary Sciences, Surgery, Theater, Biochemistry Molecular
Biology, Physiology, Psychology Biological, Medicine Research Experimental, Physics
Multidisciplinary, Biology, Biophysics, Endocrinology Metabolism, Health Care Sciences
Services, Primary Health Care, Orthopedics.

D.1.2 Excluded
Communication, Psychology Social, Computer Science, Software Engineering, Cultural
Studies, Computer Science Theory Methods, Literature, Criminology Penology, Area
Studies, Economics, Education Scientific Disciplines, Education Educational Research,
Environmental Sciences, Environmental Studies, , Geography, Evolutionary Biology,
Management, Women’s Studies, Astronomy Astrophysics, Psychology Experimental,
Radiology Nuclear Medicine Medical Imaging, Cell Biology, Psychology
Multidisciplinary, Religion, Law, Asian Studies, Business, Family Studies, Humanities
Multidisciplinary, Engineering Electrical Electronic, Physics Nuclear, Anthropology,
Entomology, Art, Chemistry Physical, Sociology, Computer Science Artificial
Intelligence, Film Radio Television, Behavioral Sciences, Oncology, Genetics Heredity,
Geriatrics Gerontology, Psychology Developmental, Computer Science Cybernetics,
Social Sciences Interdisciplinary, Substance Abuse, Linguistics, Zoology, Political
Science, Psychology Clinical, Computer Science Information Systems, Social Issues,
Ecology, Integrative Complementary Medicine, Urban Studies, History, Obstetrics
Gynecology, Biotechnology Applied Microbiology, Gerontology, Health Policy Services,
Materials Science Multidisciplinary, Psychology Applied, Philosophy, Pharmacology

192



Pharmacy, Rheumatology, Engineering Mechanical, Pediatrics, Computer Science
Interdisciplinary Applications, Instruments Instrumentation, Psychiatry, Clinical
Neurology, Language Linguistics, Robotics.

D.2 ProQuest

D.2.1 Included
Theater, Studies, Dance, Humans, Research, Dancers & Choreographers, Experiments,
Hypotheses, Researchers

D.2.2 Excluded
Politics, Poetry, Literary Criticism, Art, Motion Pictures, Music, Books, Novels, Culture,
Women, Drama, Writers, Philosophy, Musicians & Conductors, Actors, Musical
Performances, Motion Picture Directors & Producers, Audience, History, Religion,
Aesthetics, Essays, Feminism, Animals, Narratives, Reading, Poets, Linguistics, Writing,
Creativity, African Americans, Cultural Identity, Male, Female, Literature, Audiences,
Fiction, Ideology, Gender, Theory, Language, Society, Opera, Sexuality, Children,
Females, Traditions, Collaboration, Films, Animal Behavior, Behavior, Ethics, Semantics,
Brain, Consciousness, Composers, 20th Century, Violence, Christianity, Cognition &
Reasoning, Algorithms, Adult, 19th Century, Metaphor, Motion Picture Criticism, War,
Archives & Records, Modernism, Historical Text Analysis, Memory, Neurosciences,
Proteins, Bees, Emotions, English, Sound, Artists, Painting, Computer Simulation, French
Language, Popular Music, Self Concept, Spirituality, Postmodernism, Race,
Communication, Psychology, Television, Semiotics, 18th Century, Social Networks.
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APPENDIX E

Supplementary Files

These files can be accessed via the following url:
https://github.com/joseph-shaw/PhD/tree/main/Supplementary%20Files

Rehearsal Characteriststics.xlsx
Rehearsal characteristics for Royal Ballet productions discussed in Chapter 5.

Jump Load Function.R
Code for creating a function to calculate jump frequency and height from accelerometer
data, detailed in Chapter 7.

Jump Load Spreadsheeet.xlsm
A spreadsheet containing the algorithm to calculate jump frequency and height from
accelerometer data, detailed in Chapter 7.

Neural Network - LOSOCV.R
Code to reproduce the leave-one-subject-out cross validation detailed in Chapter 8.

Neural Network - All Data.R
Code to build the neural networks detailed in Chapter 8 from all participant data.

p01 data.csv – p06 data.csv
Data collected in Chapter 8, processed by ’Neural Network - LOSOCV.R’ and ’Neural
Network - All Data.R’

OpenTrack Installation.R
A script that installs OpenTrack.
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