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Abstract Purpose of Review:
To provide a summary of current literature and propose potential mechanistic models to help us
understand the role of HIV infection/antiretroviral therapy (ART), salt taste sensitivity (STS), and salt
sensitivity of blood pressure (SSBP) in hypertension development.
Recent Findings:
The epithelial sodium channel (ENaC) is the main protein/sodium channel for recognizing Na + in the
tongue and mediates preference to low-medium salt concentrations in animals and humans. Considering
the pressor response to oral salt in individuals with SSBP, poor STS may worsen blood pressure.
Specific genetic variants in ENaC are linked to salt taste perception and hypertension. HIV infection,
some ART, and specific antihypertensive drugs are associated with reduced STS and an increased liking
for salty foods.
Summary:
Persons with HIV (PWH) on ART may have a decreased STS and are at a higher risk of developing salt-
sensitive hypertension. Inflammation mediated by dietary salt is one of the drivers of poor STS and salt-
sensitive hypertension among PWH.
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Abstract
Purpose of Review  To provide a summary of current literature and propose potential mechanistic models to help us under-
stand the role of HIV infection/antiretroviral therapy (ART), salt taste sensitivity (STS), and salt sensitivity of blood pressure 
(SSBP) in hypertension development.
Recent Findings  The epithelial sodium channel (ENaC) is the main protein/sodium channel for recognizing Na + in the 
tongue and mediates preference to low-medium salt concentrations in animals and humans. Considering the pressor response 
to oral salt in individuals with SSBP, poor STS may worsen blood pressure. Specific genetic variants in ENaC are linked to 
salt taste perception and hypertension. HIV infection, some ART, and specific antihypertensive drugs are associated with 
reduced STS and an increased liking for salty foods.
Summary  Persons with HIV (PWH) on ART may have a decreased STS and are at a higher risk of developing salt-sensitive 
hypertension. Inflammation mediated by dietary salt is one of the drivers of poor STS and salt-sensitive hypertension among PWH.

Keywords  Salt taste sensitivity · Salt sensitivity of blood pressure · HIV · Hypertension · ENaC

Introduction

Hypogeusia related to salty taste is associated with increased 
salt intake and, consequentially, the development or exac-
erbation of hypertension [1]. In persons with HIV (PWH) 
where the prevalence of hypertension is high due to antiret-
roviral therapy (ART) and HIV infection [2–4], evidence of 
hypogeusia has been reported [5]. However, the underlying 
mechanisms and cross-talks between HIV status, taste per-
ception or salt taste sensitivity (STS), and salt sensitivity 
of blood pressure (SSBP) in contributing to hypertension 
are not well understood. This review presents the current 

understanding from literature linking HIV infection/ART, 
poor STS, and SSBP in hypertension development. We have 
also proposed mechanistic models and hypotheses underly-
ing the role of inflammation in PWH and antihypertensive 
drugs in mediating decreased salt taste sensitivity and salt-
sensitive hypertension.

Background

Hypertension is the leading cause of preventable deaths 
worldwide, as it serves as a primary contributor to myo-
cardial infarction, stroke, heart failure, and kidney disease 
[6]. Hypertension is more common among persons with 
HIV (PWH) compared with the HIV-negative population 
[2] especially in low- and middle-income countries. In 
sub-Saharan Africa, the prevalence of hypertension among 
PWH is over 50% [2]. HIV is a risk factor and exacerbator 
of poor salt taste sensitivity (STS) [5, 7], salt sensitivity of 
blood pressure (SSBP) [8••], cardiovascular disease, and 
early death [9, 10]. STS is the minimum concentration at 
which an individual is able to perceive a salty taste, and it 
affects dietary habits including the intake of salt [11, 12], 
and therefore, low STS indirectly increases the risk for the 
development of hypertension [13]. Decreased STS is asso-
ciated with high salt intake in normotensive and persons 
living with hypertension [12] and elevated blood pressure 
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in healthy adults, regardless of other risk factors for hyper-
tension [14••]. Previous studies have also shown that high 
dietary salt contributes to inflammation and vascular dys-
function and exacerbates SSBP [15] and is especially worse 
in PWH [8••]. SSBP is when changes in blood pressure (BP) 
mirror changes in dietary salt intake/depletion [16]. SSBP is 
more common in people of African descent at a rate of 75% 
[17] and is a risk factor for hypertension in the normotensive 
populations [18, 19]. Both STS and SSBP are independent 
predictors of hypertension, stroke, and cardiovascular death 
[20, 21]. However, the link between SSBP and STS in both 
HIV-negative and PWH is not clear.

There is a clear genetic predisposition for the percep-
tion of different tastes, determined by genes coding for the 
taste receptors expressed in the tongue [22]. The two main 
receptor/channel proteins determining STS are the epithe-
lial sodium channel (ENaC) formed by the gene products of 
SCNN1A, SCNN1B, SCNN1G, and SCNN1D and the tran-
sient receptor potential cation channel subfamily member 1 
(TRPV1) encoded by the TRPV1 gene [23••]. Prior studies, 
mostly from western countries, indicate that variations in 
genes coding for the above-mentioned taste receptors are 
associated with STS and also suggest that preference for 
salty taste may be a driver of salt intake [24, 25]. However, 
to date, there is scarcity of data exploring the link between 
these genetic variations, STS and SSBP, as well as the role 
that HIV infection plays in modulating salt taste and the 
pressor effects of dietary salt. Our central hypothesis, illus-
trated in Fig. 1, is that STS contributes to the pathogenesis of 
SSBP and cardiovascular disease driven by treated HIV and 
inflammation and that genetic variations in the taste recep-
tor genes including those coding for ENaC play a role. This 
paper aims to address multiple critical gaps in the literature 
including the lack of understanding of genetic predisposi-
tions to STS in relation to SSBP and the contribution of 
treated HIV in PWH. We have summarized the evidence and 

proposed mechanistic models linking salt taste, SSBP, and 
genetics to hypertension and the role of HIV in modifying 
the risk for the development or progression of hypertension.

Genetic Variations in Taste Receptor Genes and Salt 
Taste Sensitivity

Taste sensitivity is an important factor in dietary habit devel-
opment [11]. The five defined human tastes are sweet, sour, 
bitter, salty, and umami [26], with a potential sixth taste, fat 
taste (“oleogustus”) recognized recently [27]. Among these, 
salt taste which is a specific sensation elicited by sodium 
ions (Na+) was studied early and linked to hypertension [28]. 
ENaC has been proposed to be the main protein/sodium 
channel for recognizing Na+ in the tongue and therefore in 
mediating preference to low-medium salt concentrations in 
animals and humans [29•, 30•, 31]. ENaC is expressed in 
the cells of the kidney and other tissues such as endothelium, 
vascular smooth muscle, tongue, colon, and immune cells 
[32]. ENaC consists of three homologous subunits: α, β, and 
γ, and in humans, a fourth subunit, δ, which is functionally 
similar to the α-subunit, is present such that either αβγ or 
δβγ are expressed to attain full channel activity [32, 33]. 
ENaC maintains body salt and water homeostasis and regu-
lates blood pressure in the kidney. The human fungiform 
taste papillae of the tongue (Fig. 2) expresses α-, β-, and 
γ-ENaCs (also possibly expresses the δ-subunit missing in 
rodents [34]) with Na+ sensing mechanisms for influenc-
ing salty taste [35, 36]. In the tongue, ENaC is involved in 
transepithelial sodium transport [37]. ENaCs are reported to 
be located at the apical membrane and basolateral ends of 
fungiform taste cells with the δ-ENaC exclusively restricted 
to the taste pore region in both fungiform and circumvallate 
taste buds [29•, 36] (Fig. 2). The basolateral compartment 
of the taste cells is exposed to an extracellular solution con-
taining about 150 mM Na + suggesting that ENaC here could 

Fig. 1   Proposed model of salt 
taste sensitivity induced hyper-
tension in HIV
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be involved in sodium detection when salt concentration in 
the food or solution exceeds plasma tonicity [29•]. In mice 
studies, ENaC has been reported to be sensitive to amiloride 
blockade resulting in the inhibition of taste responses to salt 
[31]. Whether this sensitivity of ENaC to amiloride is simi-
lar in humans remains controversial [31, 38].

Regarding the amiloride-insensitive part of salt taste 
receptor, one of the candidates is TRPV1 (transient recep-
tor potential cation channel, subfamily V, member 1; for-
merly named vanilloid receptor subtype 1, or capsaicin 
receptor). This receptor transduces painful thermal stimuli 
and is also activated by capsaicin; therefore, it is considered 
to be mainly involved in nociception. However, a TRPV1 
variant was proposed to function as an amiloride-insensi-
tive salt taste receptor in rodents. It has been reported that 
TRPV1 knockout mice lack sodium chloride chorda tym-
pani nerve responses in the presence of amiloride, whereas 
control mice displayed normal levels of nerve innervations 
[39]. This indicates that by disrupting the function of ENaC 
and TRPV1 channels concurrently, one may eliminate 
chorda tympani-mediated salt taste [40]. However, TRPV1 
knockout mice do not have deficiencies in behavioral taste 
responses to salt [41, 42].

Genetic variants in the ENaC and TRPV1 contribute to 
STS through different pathways that are still unclear [43, 
44]. The determination of single nucleotide polymorphisms 
(SNPs) in the ENaC and TRPV1 genes revealed that SNPs 
found in SCNN1B and TRPV1 genes were associated with 
STS and a tendency for liking saltier food products [23••, 40, 
45••]. Moreover, rs4790522 polymorphism in the TRPV1 
was associated with a lower STS in people with hypertension 
while the risk for hypertension was increased in individu-
als with TRPV1 rs8065080 and SCNN1B rs239345 genetic 
variants [23••].

Pressor Response to Salt, Taste Sensitivity, 
and Hypertension

The disproportionate change in blood pressure (BP) follow-
ing changes in salt intake is termed SSBP [16]. In individu-
als living with hypertension, SSBP is termed salt-sensitive 
hypertension. The diagnosis of SSBP, which is laborious 
and not feasible in the clinic, is made by arbitrary cut-offs 
in the magnitude of the BP response to salt loading or salt 
depletion, which are achieved by days to weeks of dietary 
intervention [46, 47]. SSBP diagnosis in persons with hyper-
tension poses a risk for possible hypertensive crisis. Dietary 
salt intake can unmask a salt sensitivity blood pressure phe-
notype. While it is well established from clinical observa-
tions [48–50], and in some animal studies [51, 52] that high 
dietary salt (above 5 g/day) contributes to BP elevations and 
salt-sensitive hypertension, the effect of high dietary salt 
on BP is heterogeneous. While not directly elevating BP in 
some individuals, it raises BP in others. A major problem 
with excess salt consumption is that 50% of the hyperten-
sive population and 25% of normotensive individuals exhibit 
SSBP [19]. SSBP is an independent risk factor for cardio-
vascular disease and mortality. It is assumed that individuals 
with SSBP exhibit an immediate pressor response to oral 
salt (IPROS). Whether such response relates to convention-
ally defined SSBP is not known. However, there is evidence 
that consuming foods high in salt (≈1495 mg of sodium) 
suppresses brachial artery flow-mediated dilatation within 
30 min [53]. Hence, high salt intake may impair vasodilation 
for an unknown duration during the postprandial periods 
of the day, increasing the 24-h BP load in susceptible indi-
viduals [54••]. IPROS or BP perturbations in general are a 
risk factor for future development of hypertension and cor-
relate significantly with arterial stiffness indices including 

Fig. 2   Human tongue and taste 
bud cell. The human tongue (A) 
and taste cell (B) found in the 
tongue showing entry of sodium 
ions through the epithelial 
sodium channel (ENaC). Na+, 
sodium ions; K+, potassium 
ions
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cardio-ankle vascular index, carotid-femoral pulse wave 
velocity, brachial-ankle pulse wave velocity, arterial com-
pliance, elastic modulus, arterial distensibility, β-stiffness 
index, and Young’s modulus [55]. Studies on IPROS are 
scarce. However, we have demonstrated from a prior study 
the presence of an IPROS in a high proportion (62%) of 
otherwise normotensive participants [54••]. More studies 
are required to determine the relationship between IPROS 
and STS in relation to SSBP and hypertension risk.

Furthermore, we recently examined the link between 
variants within the genes encoding the 4 ENaC subunits, 
BP, and kidney function (eGFR). We noted a significant 
association between variants within the δ subunit and both 
blood pressure and eGFR, which was surprising as the δ 
subunit is not expressed in the human kidney [56••]. The 
δ subunit is expressed in human antigen-presenting cells, 
and we have shown that dendritic cells (DCs) respond to 
increases in extracellular [Na+] in an ENaC-dependent man-
ner, activating a signaling pathway leading to the activa-
tion of the NLRP3 inflammasome and release of inflamma-
tory cytokines that sensitize mice to angiotensin II (angII) 
dependent increases in BP [57]. Volume and sodium han-
dling between salt-resistant and salt-sensitive individuals 
are the same; therefore, investigating the role of extrare-
nal ENaC as a key player contributing to hypertension in 
persons with SSBP remains critical for future therapy and 
management [15].

Taste Sensitivity May Be Affected 
by Antihypertensive Drugs and ART​

Decreased STS is independently associated with a high 
intake of salt, corresponding increase in BP, and increased 
risk for the development of hypertension [1, 14••, 58]. This 
is compounded by the use of antihypertensive medication 
which can reduce food taste perception resulting in mild to 
severe hypogeusia and dysgeusia [1]. Persons with hyper-
tension taking antihypertensive drugs may have lower taste 
sensitivity and hence a liking for more salty foods com-
pared to healthy individuals [59]. Antihypertensive drugs 
have been identified to have potential effects on lowering 
taste sensitivity through mechanisms that are yet to be 
known [60, 61]. Antihypertensive drugs reported to have 
this effect include the calcium channel blocker amlodipine, 
angiotensin-converting enzyme (ACE) inhibitor captopril 
and angiotensin-II receptor blockers (ARBs) candesartan, 
losartan, and valsartan [62–65]. The possible mechanism of 
amlodipine-induced dysgeusia is the inhibition of calcium-
sensing receptors that enhance the taste sensation to salt, 
sour and sweet sensations [62]. Moreover, several other 
drugs used in the treatment of lifestyle-related diseases 
and cardiovascular diseases are linked to drug-induced 

taste disorders by forming zinc chelates [66]. Examples of 
common drugs with the ability to induce taste disorders 
include antianemic, antibacterial (ampicillin, ciprofloxacin, 
metronidazole), antidepressants, cardiac medications, anti-
inflammatory (dexamethasone), and central nervous system 
stimulants (amphetamine) [67].

STS is likely affected by HIV infection and ART usage 
[68] potentially resulting in increased intake of salt, BP, and 
hypertension. PWH may have impaired STS due to chronic 
inflammation or ART [5, 7, 68, 69]. This in turn may affect 
their dietary intake, which can raise the risk of hypertension 
and related complications [5, 7]. An example of HIV drugs 
that have been reported to have a deteriorating effect on taste 
sensitivity is protease inhibitors [70].

However, there is a dearth of literature on specific ART 
regimens associated with taste sensitivity, and the mecha-
nisms underlying the development of hyposmia and hypo-
geusia in PWH are unknown [7, 71]. There is a need for 
more studies in this area especially that PWH are at higher 
risk for developing hypertension compared to HIV-negative 
individuals [72].

The Role of HIV Infection/ART and Inflammation 
in Mediating Salt Sensitive Hypertension

HIV infection and the use of antiretroviral therapy (ART) 
are risk factors for the development of hypertension 
mediated by inflammatory mechanisms that exacerbate 
SSBP and STS. The inflammation seen in PWH results 
from HIV viremia and immune cell activation following 
infection with HIV [73–75]. Inflammation and adaptive 
immune activation persist despite viral suppression with 
antiretroviral therapy (ART) [72]. Immune activation and 
inflammation are drivers of vascular injury that contrib-
utes to the development or progression of salt-sensitive 
hypertension in PWH [72]. We have recently reported that 
PWH had a higher prevalence (95%) of SSBP than what 
has been reported (75%) in the general African population 
[8••]. There is now strong evidence indicating significant 
extrarenal involvement in the pathogenesis of SSBP and 
salt-sensitive hypertension [76]. More specifically, inflam-
mation and vascular remodeling resulting from dietary 
salt effects, infection, and other hypertensive stimuli are 
emerging key factors contributing to the genesis and prop-
agation of hypertension with an increased risk for develop-
ing hypertension-related complications [76, 77]. Based on 
studies from our laboratory and others [2, 8••, 76, 77, 78•] 
as summarized in Fig. 3, we propose that HIV infection 
and ART and/or dietary salt activate vascular endothe-
lial cells resulting in increased expression of vascular cell 
adhesion molecule‐1 (VCAM‐1) and intracellular adhesion 
molecule 1 (ICAM‐1). Thus, increasing the propensity of 
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activated monocytes, with increased production of soluble 
cluster of differentiation (sCD) 163, to diapedese into tis-
sues where they encounter dysfunctional adipose tissue 
and convert into activated macrophages and dendritic cells 
[78•]. The activated antigen‐presenting cells, including 
macrophages and dendritic cells, produce MCP1 (mono-
cyte chemoattractant protein 1), which further increases 
migration and infiltration of monocyte/macrophages into 
tissues. They also produce chemotactic cytokine MIP‐1α 
(macrophage inflammatory protein‐1α), which activates 
eosinophils and induces release of interleukin (IL)‐6 and 
tumor necrosis factor (TNF)‐α from macrophages and den-
dritic cells. These antigen‐presenting cells activate T cells 
to produce IL‐17A, which contributes to salt-sensitive 
hypertension. They also produce IL‐5, which induces the 
differentiation of eosinophils [78•].

It is clear from current evidence that HIV drugs, HIV 
infection, and drugs used to control BP in persons with 
hypertension have a significant impact on STS. It is also 
clear that there are specific genetic variations in the ENaC 
and TRPV1 genes associated with STS. However, the 
underlying mechanisms associated with these factors are 
still elusive.

Directions for Future Research

We propose that future experimental and clinical research 
should focus on the following gaps:

•	 Explore the expression and function of ENaC found on 
the tongue and the role of the αβγ or δβγ subunits in salt 
sensing mechanisms.

•	 Genetic variants in the genes encoding ENaC in the 
tongue found in populations of different ethnicity and 
their relationship with SSBP, taste sensitivity, and hyper-
tension.

•	 The significance of IPROS in relation with SSBP is a 
promising area especially since SSBP diagnosis is labori-
ous and unfeasible in the clinic. IPROS may emerge as a 
potential surrogate for the diagnosis of SSBP. IPROS is 
feasible in the clinical setup. Reports on IPROS are very 
scarce. Clinical trials and diagnostic studies are therefore 
warrantable.

•	 The role and mechanisms for taste disturbance associated 
with hypertensive and ART should be studied in detail to 
help in mitigating some of the complications associated 
with poor salt taste sensitivity.

Fig. 3   Proposed model of 
salt and HIV contribution to 
hypertension. Antiretroviral 
therapy, ART; vascular cell 
adhesion molecule‐1, VCAM‐1; 
intracellular adhesion mol-
ecule 1, ICAM‐1; monocyte 
chemoattractant protein 1, 
MCP1; macrophage inflamma-
tory protein‐1α, MIP‐1α; tumor 
necrosis factor, TNF‐α
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•	 Studies on the relationship between SSBP and salt taste 
sensitivity are warrantable as this is yet to be established.

Conclusion

There is strong evidence tying salt taste sensitivity to 
genetic variants. It is also clear that HIV infection and 
the use of ART and antihypertensive drugs interact with 
mechanisms involved in taste sensitivity. Whether this 
disturbance in taste sensitivity increases salt intake in 
PWH and hence increases the risk for hypertension is still 
unclear.

What is Known

•	 HIV infection and ART are associated with hypogeusia.
•	 Taste sensitivity has a genetic predisposition.

What is New

•	 ENaC drives salt taste sensitivity in humans.
•	 The δ subunit of ENaC may be expressed in the tongue 

and likely controls salt perception.
•	 TRPV1 genetic variants may be associated with salt 

taste sensitivity, salt intake, and SSBP.
•	 Specific ART and antihypertensive drugs may play a 

role in disturbing salt taste sensitivity and potentially 
potentiate a liking for salty food.
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