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Abstract
Background The effects of Anabolic Androgenic Steroids (AAS) are largely illustrated through Androgen 
Receptor induced gene transcription, yet RNA-Seq has yet to be conducted on human whole blood and skeletal 
muscle. Investigating the transcriptional signature of AAS in blood may aid AAS detection and in muscle further 
understanding of AAS induced hypertrophy.

Methods Males aged 20–42 were recruited and sampled once: sedentary controls (C), resistance trained lifters (RT) 
and resistance trained current AAS users (RT-AS) who ceased exposure ≤ 2 or ≥ 10 weeks prior to sampling. RT-AS 
were sampled twice as Returning Participants (RP) if AAS usage ceased for ≥ 18 weeks. RNA was extracted from 
whole blood and trapezius muscle samples. RNA libraries were sequenced twice, for validation purposes, on the 
DNBSEQ-G400RS with either standard or CoolMPS PE100 reagents following MGI protocols. Genes were considered 
differentially expressed with FDR < 0.05 and a 1.2- fold change.

Results Cross-comparison of both standard reagent whole blood (N = 55: C = 7, RT = 20, RT-AS ≤ 2 = 14, 
RT-AS ≥ 10 = 10, RP = 4; N = 46: C = 6, RT = 17, RT-AS ≤ 2 = 12, RT-AS ≥ 10 = 8, RP = 3) sequencing datasets, showed 
that no genes or gene sets/pathways were differentially expressed between time points for RP or between 
group comparisons of RT-AS ≤ 2 vs. C, RT, or RT-AS ≥ 10. Cross-comparison of both muscle (N = 51, C = 5, RT = 17, 
RT-AS ≤ 2 = 15, RT-AS ≥ 10 = 11, RP = 3) sequencing (one standard & one CoolMPS reagent) datasets, showed one 
gene, CHRDL1, which has atrophying potential, was upregulated in RP visit two. In both muscle sequencing datasets, 
nine differentially expressed genes, overlapped with RT-AS ≤ 2 vs. RT and RT-AS ≤ 2 vs. C, but were not differentially 
expressed with RT vs. C, possibly suggesting they are from acute doping alone. No genes seemed to be differentially 
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Background
Anabolic Androgenic Steroids (AAS) increase fat free 
mass, muscle size and strength in men [1, 2] with the 
majority of hypertrophic effects mediated through the 
Androgen Receptor (AR) [3] which induces a genomic 
mode of action by modulating transcription [4]. AAS are 
known to have a rapid non-genomic AR-independent 
mode of action that influences cellular behaviour, by 
increasing intracellular Ca2+ concentration through the 
activation of a G-protein-linked receptor at the plasma 
membrane [5], however, in human skeletal muscle, the 
physiological significance of the rapid non-genomic 
action of AAS for hypertrophy remains unclear [6, 7].

Due to these ergogenic effects, AAS are amongst the 
most widely detected doping substances in strength 
and power sports [8, 9] and their detection accounts for 
67% of all the medal-winning results impacted by Anti-
Doping Rule Violations at the Summer Olympic Games 
1968–2012 [10]. The next generation “omic” approach 
to detect doping is based on the premise that doping 
methods will cause profound and, therefore, detectable 
changes in the ways genes are expressed and thereby gen-
erate a unique “omic signature” of exposure to a specific 
doping practice [11]. This “omic signature” is thought to 
be difficult to mask and deemed to have the potential to 
significantly improve the reliability and extend the win-
dow of detection of doping tests [11]. For example, both 
high [12] and low dose [13] recombinant human eryth-
ropoietin (rHuEPO) administration studies have shown 
a whole blood transcriptional signature that has a more 
prolonged detection window for rHuEPO doping com-
pared to traditional methods [13] that is not confounded 
by exercise [13] or altitude exposure [13, 14], with this 
transcriptional signature shown across two microar-
ray platforms (Affymetrix and Illumina) and two RNA-
Seq platforms (Illumina and MGI) [15]. Whole blood 
stored in K2EDTA tubes, which lack RNA preservative, 
still yielded RNA of sufficiently high quantity, purity, 
and integrity for transcriptomic analysis with no impact 
on genes previously identified in rHuEPO administra-
tion studies, potentially indicating that transcriptomic 
analysis could be integrated into the current anti-doping 

system, by utilising remaining/excess blood from routine 
testing [16].

Since the AR is expressed in whole blood [17], RNA-
Seq could be used to screen for transcriptomic biomark-
ers that could be beneficial additions to the steroidal 
module of the Athlete Biological Passport (ABP) [18] 
to enhance doping detection. A low-dose testosterone 
administration study has shown that circulating micro-
RNA 122 (miR-122) could act as a potential transcrip-
tomic biomarker, with miR-122 levels significantly higher 
24-hours after testosterone administration compared to 
both baseline and a control group [19]. This detection 
window is longer than that of individual monitoring of 
typical urinary metabolites (2–12  h) for oral testoster-
one administration [19]. RNA-Seq of liver samples from 
AAS-treated and untreated calves and boars has also suc-
cessfully identified biomarker candidates that could dis-
tinguish AAS treatment [20], further indicating that AAS 
transcriptomic signatures could aid doping detection.

This study aims to build on previous findings of poten-
tial transcriptomic biomarkers of AAS by using RNA-Seq 
on RNA extracted from whole blood from both current 
and past AAS users, in addition to control groups of resis-
tance trained and un-trained males. RNA-Seq of muscle 
samples will also be performed to further our knowledge 
of the genomic mode of action of AAS in hypertrophic 
pathways and complement previous research on this 
cohort of participants on muscle fibre parameters related 
to hypertrophy and muscle memory [21]. To the authors 
knowledge RNA-Seq has not been conducted on human 
whole blood or skeletal muscle samples from current or 
past AAS users which is one of the contributions of this 
study to the field of AAS research.

Methods
Eligibility criteria and group classification
Participants were male, aged 20–42 and were initially 
recruited to fall within one of four groups, according to 
their self-reported resistance training and AAS usage his-
tory (Table 1), as reported in a previous publication [21] 
of body composition and immunohistochemistry data on 
this cohort. If participants within RT-AS self-reported to 

expressed in muscle after the long-term cessation of AAS, whereas a previous study found long term proteomic 
changes.

Conclusion A whole blood transcriptional signature of AAS doping was not identified. However, RNA-Seq of muscle 
has identified numerous differentially expressed genes with known impacts on hypertrophic processes that may 
further our understanding on AAS induced hypertrophy. Differences in training regimens in participant groupings 
may have influenced results. Future studies should focus on longitudinal sampling pre, during and post-AAS exposure 
to better control for confounding variables.

Keywords Anabolic androgenic steroids, Doping, Skeletal muscle, Whole blood, RNA-Seq, Gene expression, 
Hypertrophy.
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having refrained from AAS usage for at least 18 weeks 
after their first visit, they were invited back for a second 
visit attempting to give the closest possible comparison to 
a situation in which AAS were completely removed. All 
participants were interviewed regarding their AAS usage 
prior to sample collection on their first visit. Returning 
Participants (RP) were interviewed prior to their second 
visit to discuss their training, nutrition, and Post Cycle 
Therapy (PCT) protocol [22, 23] which is commonly used 
in an attempt to re-stimulate endogenous testosterone 
production and manage the removal of AAS. Any par-
ticipant that declared using Testosterone Replacement 
Therapy (TRT) was not re-sampled as this could surpass 
current TRT guidelines (i.e., > 100 mg/week) [24, 25] and 
thereby confound the data collected post initial AAS 
usage.

The full self-reported lifetime history of AAS cycles 
from participants within group RT-AS and PREV have 
been published elsewhere [21].

Participants in RT-AS and PREV were subsequently 
subdivided to those where last self-declared AAS expo-
sure was less than or equal to two weeks prior to sample 
collection (RT-AS ≤ 2) and those where self-declared last 
AAS exposure was 10 or more weeks prior to sample 
collection (RT-AS ≥ 10). This is because the process of a 
steroid receptor translocating from the cytoplasm to the 
nucleus typically takes at least 30–60  min [6] and thus 
time since last exposure is a pertinent variable to clas-
sify participants when investigating potential differences 
in gene expression. The last total weekly dose of AAS 
used was noted down at interview and if the last reported 
exposure of AAS occurred over a 7-day period (e.g., an 

injection every 10th day) the daily average over this 
period would be taken and multiplied by 7 and rounded 
to the nearest 10. If the participant reported a dosage 
range of AAS used per week (e.g., 350-420 mg) the aver-
age of the range would be used. Group data are presented 
as mean ± standard deviation.

Blood Collection & muscle biopsy
Participants were instructed to not resistance train 
48-hours prior to the biopsy and they ate normally before 
visiting the laboratory due to the medical advice that 
participants could feel dizziness during the biopsy, in 
which they were seated upright on a chair with no back-
ing. 3 mL of whole blood was collected into a Tempus™ 
Blood RNA Tube (Life Technologies, Carlsbad, CA, USA) 
from an antecubital vein utilising a closed vacuette sys-
tem 2–6 h prior to the muscle biopsy, with participants 
iteratively sampled, in the order of consenting, at regu-
lar intervals throughout a working day. Immediately after 
collection the tube was manually vigorously shaken for 
10 s, left at room temperature for 3 h and then stored at 
− 80 °C.

All muscle biopsies were performed by an experienced 
Consultant Musculoskeletal Radiologist. The upper part 
of the trapezius muscle (descending I) was the chosen 
site of the muscle biopsy, as detailed in previous research 
[26–28]. The ultrasound guided biopsy technique utilis-
ing a BARD® Magnum® Disposable Core Biopsy Needle 
has been detailed in a previous publication on this cohort 
of participants [21]. The first sample of four collected 
samples, that was placed inside Qiagen® RNAlater RNA 
Stabilization Reagent (76106, Qiagen®, Hilden, North 
Rhine-Westphalia, Germany) was used for RNA extrac-
tion in this present study.

RNA extraction and purification
Blood and muscle samples were randomly sorted prior 
to RNA extraction and library preparation. Total RNA 
was extracted from whole blood using the Tempus™ Spin 
RNA Isolation Kit according to manufacturer instruc-
tions (Life Technologies, Carlsbad, CA, USA). Total 
RNA > 200 nt was extracted from muscle samples using 
the Qiagen® RNeasy Fibrous Tissue Mini Kit with Tissu-
eRuptor II Disposable Probes. Muscle total RNA samples 
were then digested using DNase I (New England Biolabs, 
Ipswich, MA, USA) and purified using RNAClean XP 
beads (Beckman Coulter, Indianapolis, IN, USA). After 
extraction, all RNA samples were stored at − 80  °C until 
further analysis.

RNA Quality Assessment
RNA quantity and quality were assessed using a Nano-
drop® ND-2000 Spectrophotometer (Thermo Fisher Sci-
entific, Waltham, MA, United States). RIN value was 

Table 1 Group allocation criteria used during initial recruitment 
of participants
Group Criteria
C 1) A control group comprised of non-resistance 

trained healthy males.

RT 1) History of resistance training ≥ 8 h a week
2) Self-reported as never using any PEDs.

RT-AS 1) History of resistance training ≥ 8 h a week
2) Self-reported to using exogenous AAS (i.e., 
synthetic AAS), supraphysiological dosages of in-
jectable testosterone (> 100 mg/week) or a closely 
related AAS compound (i.e., AAS pro-hormones or 
SARMs) < 52 weeks prior to their first sampling date.

PREV 1) History of resistance training ≥ 8 h a week
2) Self-reported to ceasing usage of exogenous AAS 
(i.e., synthetic AAS), supraphysiological dosages of 
injectable testosterone (> 100 mg/week) or a close-
ly related AAS compound (i.e., AAS pro-hormones 
or SARMs) ≥ 52 weeks prior to their sampling date 
and not exceeded any clinical recommendations 
for TRT(24, 25) during this period of absence.

AAS: Anabolic androgenic steroids; PED: Performance Enhancing Drug; SARMs: 
Selective Androgen Receptor Modulators; TRT: Testosterone Replacement 
Therapy
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assessed using an Agilent® 2100 Bioanalyzer with an Agi-
lent® RNA 6000 Nano Kit (Agilent Technologies, Santa 
Clara, CA, United States).

RNA Library Preparation and RNA-Seq
rRNA was depleted from 200 ng of total whole blood 
RNA or purified total muscle RNA with RIN ≥ 7 using 
an MGIEasy rRNA Depletion Kit. dsDNA libraries 
(with conditions for a 250-bp Insert Size) were created 
from the rRNA-depleted eluate using an MGIEasy RNA 
Directional Library Prep Set. dsDNA library quantity 
was assessed using a Thermo Fisher Scientific Qubit® 
dsDNA High Sensitivity Assay Kit and a Qubit® Fluorom-
eter (Thermo Fisher Scientific, Waltham, MA, United 
States). The quality of the fragment size distribution of 
the dsDNA library was assessed by visual inspection of 
electropherograms created using an Agilent® DNA 1000 
Kit on an Agilent® 2100 Bioanalyzer. Only dsDNA librar-
ies with satisfactory fragment size distributions were 
carried forward onto the next steps, and dsDNA librar-
ies were recreated for any samples with aberrant electro-
pherograms or low concentrations. dsDNA libraries were 
circularized and converted into ssDNA libraries using an 
MGIEasy Circularization Kit. ssDNA library concentra-
tion was assessed using a Thermo Fisher Scientific Qubit® 
ssDNA Assay Kit and a Qubit® Fluorometer. DNA nano-
balls (DNBs) were prepared from ssDNA library pools, 
with a 40-fmol ssDNA library for each reaction, using an 
MGI DNBSEQ-G400RS High-throughput Sequencing 
Set for blood samples and for muscle samples either this 
kit or a CoolMPS High-throughput Sequencing Set. DNB 
concentration was assessed using a Qubit® ssDNA Assay 
Kit (Thermo Fisher Scientific) and a Qubit® Fluorometer 
(Thermo Fisher Scientific). DNB preparations > 8 ng/µL 
were loaded onto flow cells using an MGIDL-200 H Por-
table DNB Loader, with muscle and whole blood samples 
distributed over two flow cells each, with six to eight 
samples in each lane based on their order of RNA extrac-
tion and library preparation. The flow cells were placed 
on an MGI DNBSEQ-G400 sequencer and subjected to 
PE100 sequencing with standard chemistry reagents for 
blood samples and either standard chemistry reagents or 
CoolMPS chemistry reagents for muscle samples. Two 
flow cells of whole blood samples were sequenced at the 
UoB, School of Sport and Health Sciences campus in 
Eastbourne. For validation purposes these same libraries 
were re-sequenced in MGI’s research hub in Latvia. Two 
flow cells of muscle samples were sequenced with stan-
dard chemistry reagents in MGI’s research hub in Latvia 
and for validation purposes these same libraries were re-
sequenced with CoolMPS chemistry reagents in MGI’s 
research hub in Latvia.

Sequencing data Quality Control
Raw sequences were examined by FastQC [29] version 
0.11.9 for basic quality checks (e.g., per base sequence 
quality, per base N content, duplicate sequences and 
adapter content). RSeQC [30] version 4.0.0 and the func-
tion read_duplication.py was also utilised for further 
quality checks. FastQ Screen [31] version 0.15.0 was used 
for detecting sample swaps and/or sample contamina-
tion utilising Bowtie 2 [32] version 2.4.2 for alignment 
to reference genome assemblies with pre-built Bowtie 2 
genome indices [33] for Human (GRCh38 no-alt analy-
sis set), Mouse (GRCm39) and Rat (Rnor6.0). MultiQC 
[34] was used to summarise FastQC, FastQ Screen and 
compatible RSeQC analysis reports. FastQC per base 
sequence quality scores, interactive MultiQC reports for 
FastQ Screen and RSeQC are available on OSF [35].

Read mapping, transcript quantification and differential 
expression analysis
HISAT2 [36] version 2.2.1 was used for alignment of 
reads to the reference genome assembly GRCh38.p5 
using the Ensembl 84 annotation as the publicly available 
grch38_tran pre-built HISAT2 index [37, 38] was utilised. 
For HISAT2 alignment ‘--dta’ was utilised and ‘--rna-
strandness RF’ was stated as RSeQC infer_experiment.py 
showed a directional, first strand library. Galaxy [39] was 
used to convert the Homo_sapiens.GRCh38.84.gtf.gz file 
to the BED12 file format for RSeQC infer_experiment.py. 
RSeQC read_distribution.py was used for read distribu-
tion analysis also utilized this BED12 file and SAM files 
generated from HISAT2. RSeQC split_bam.py was used 
to estimate how many reads originated from rRNA utilis-
ing the publicly available hg38_rRNA.bed file [40] from 
RSeQC. Salmon [41] version 1.7.0 was used for tran-
script quantification in mapping-based mode utilising 
the publicly available hg38 full decoy-aware salmon index 
[42] with --validateMappings, --seqBias and --gcBias 
flags switched on. Using Bioconductor version 3.14 and 
R [43] version 4.1.2 in Rstudio [44] version 2022.2.0.443 
the package “tximport” [45] was used for summarising 
transcript-level estimates to gene names based on the 
Ensembl release 105 [46] annotation and transcript IDs 
with undefined gene names were removed. Data was nor-
malised by the calcNormFactors() function in edgeR [47], 
explored with MDS and PCA Plots and if deemed appro-
priate, based on aberrant positioning, outlying samples 
were removed and data re-normalised. Data was then 
filtered by group for group comparisons or by visit for 
paired sample comparisons in returning participants. For 
group comparisons only first visit data from RP1-5 was 
utilised. For group comparisons the minimum number of 
counts per sample matched the smallest group size and 
for paired sample comparisons for returning participants, 
the minimum number of counts per sample matched the 
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total number of samples in the dataset. Data was then re-
normalised, experimental designs were then modelled 
(i.e., group comparisons or paired sample comparisons), 
dispersion estimates were calculated and then the quasi-
likelihood approach was used to fit generalised linear 
models to the data. Group contrasts or paired sample 
contrasts were made, and DGE testing was conducted. 
The function topTags() was used to select the most dif-
ferentially expressed genes using a false discovery rate 
(FDR) < 0.05 and a fold change of 1.2.

Gene Set Enrichment Analysis and hierarchical clustering
Gene Set Enrichment Analysis (GSEA) was conducted 
in R using the Bioconductor package GSEABase [48] 
version 1.56.0 and fry [49] by examining the Molecular 
Signatures Database [50, 51] (MSigDB) v7.5.1 Hallmark 
(containing 50 gene sets) [52], Gene Ontology [53, 54] 
(C5; BP: subset of GO biological processes containing 
7,658 gene sets & MF: subset of GO molecular func-
tions containing 1,738 gene sets), KEGG [55] pathway 
(186 gene sets) and Reactome [56] pathway (1615 gene 
sets) collections. A gene set/pathway was noted as dif-
ferentially expressed if FDR < 0.05. For each comparison, 
lists of differentially expressed genes and gene sets/path-
ways were exported into InteractiVenn [57] to identify 

overlaps between different sequencing locations (blood 
samples, UoB & MGI) or sequencing chemistries (muscle 
samples, standard & CoolMPS).

Gene and sample clustering was performed within 
pheatmap [58]. Firstly, normalised counts per million 
were log transformed for the top 30 most significantly 
differentially expressed genes by FDR for the group com-
parison noted. This matrix was inputted into pheatmap 
[58]; rows and columns were clustered with a complete 
clustering method, Pearson correlation was used as the 
distance measure and scale = “row” was applied.

Results
Participant sampling and AAS usage
Fifty-five participants were sampled on first laboratory 
visit (Fig.  1). Of those participants within RT-AS ≤ 2 
(n = 15), ten declared using AAS the week of sam-
pling, four declared ceasing usage 1-week prior and one 
2-weeks prior with an average last recorded weekly AAS 
dosage of 489 ± 319 mg and range of 175 mg – 1,300 mg. 
Of those participants within RT-AS ≥ 10 (n = 11), the 
number of weeks since last self-declared AAS expo-
sure ranged from 10 to 347 weeks, with one participant 
declaring ceasing usage 10 weeks ago and the remain-
ing ten declaring ceasing usage ≥ 34 weeks ago with an 

Fig. 1 Participant sampling and sample inclusion for group and returning participant comparisons. Returning Participant Visit 1 is included within their 
corresponding RT-AS cohort. C = Control; RT = Resistance Trained; RT-AS ≤ 2 = Resistance Trained participant who self-declared AAS exposure ceased ≤ 2 
weeks before sampling; RT-AS ≥ 10 = Resistance Trained participant who self-declared AAS exposure ceased ≥ 10 weeks before sampling; RP = Returning 
Participant; DGE: differential gene expression; GSEA: Gene Set Enrichment Analysis; UoB: indicates samples sequenced at the University of Brighton utilis-
ing standard chemistry reagents; MGI: indicates samples sequenced at MGI, Latvia, utilising standard chemistry reagents; CoolMPS: indicates samples 
sequenced at MGI, Latvia, utilising CoolMPS chemistry reagents
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average last recorded weekly AAS dosage of 424 ± 226 mg 
and range of 175 mg – 700 mg.

Five participants within RT-AS returned (RP1-5) for 
a second laboratory visit post exposure (Fig.  1). Four of 
these participants (RP2-5) finished exposure ≤ 2 weeks 
prior to their first visit and had 28, 28, 19 and 22 weeks, 
respectively between visits. The last recorded weekly 
dose of AAS used was 505 ± 236 mg for 7.8 ± 1.8 weeks for 
RP2-5. RP1 used 700  mg of AAS for 10 weeks, his first 
visit was 34 weeks after exposure, and his second visit 
28 weeks later. Due to the differing timescale of cessa-
tion relative to sampling for RP1 compared to RP2-5, RP1 
was excluded from returning participant comparisons. 
Three participants (RP1, RP3 and RP4) self-reported only 
using PCT compounds and no other PEDs between visits 
while two participants (RP2 and RP5), self-reported using 
either Ibutamoren or Clenbuterol between visits [21].

RNA quantity, purity, and Integrity
For all whole blood samples (n = 60, Fig. 1) extracted total 
RNA was of sufficient concentration (103.1 ± 33.70 ng/
µL), purity (A260/A280 2.09 ± 0.02; A260/A230 2.35 ± 0.1) 
and integrity (RIN 8.88 ± 0.57) for the thresholds stated in 
the used RNA library preparation protocols and thereby 
were subjected to RNA-Seq. After DNase I digestion four 
muscle samples (C = 2, RT = 2) did not have sufficient 
RNA yield for RNA library preparation. The remain-
ing muscle samples (n = 52, Fig. 1) had RNA that was of 
sufficient concentration (46.16 ± 19.59 ng/µL), purity 
(A260/A280 2.05 ± 0.05; A260/A230 1.81 ± 0.16) and integrity 
(RIN 8.34 ± 0.5) for the thresholds stated in the used RNA 
library preparation protocols and thereby were subjected 
to RNA-Seq.

RNA-Seq Quality Control
FastQC showed that Mean Sequence Quality Scores were 
high (> 30) for all samples (data available on OSF [35]). 
Fast Q Screen showed that sample swaps to those con-
taining other species had not occurred in any sequencing 
dataset (data available on OSF [35]). Six blood samples 
(P04, P13, P15, P36, P41, P43), in both MGI and UoB 
sequencing datasets (data available on OSF [35]), showed 
abnormally high sequence duplication levels with over-
represented sequences matching known DNA oligos 
[59] used for rRNA depletion. This is caused by pipet-
ting errors in the initial steps of library preparation of 
these samples in which an insufficient quantity of DNase 
enzyme was added that would digest added DNA oligos 
used for rRNA depletion. Four of these samples (P04, P15, 
P41, P43), that had the highest levels of reads mapping 
to other intergenic regions with RSeQC, were further 
deemed as outliers based on MDS & PCA Plots (Addi-
tional File 1 Fig.  1a and b) of all blood samples (n = 55) 
sequenced at UoB used in group comparisons and were 

subsequently removed from further downstream analy-
sis (Fig. 1). MDS & PCA Plots (Additional File 1 Fig. 2a 
and b) of all blood samples (n = 55) sequenced at MGI 
used in group comparisons showed, compared to the 
UoB dataset, a cluster of 8 samples sequenced on Flow 
Cell Lane B1 (P13, P17, P20, P26, P32, P44, P49, RP5 Visit 
1) and from this finding and the notion lane position 
was a randomised order were removed as outliers. The 
subsequent MDS & PCA Plots (Additional File 1 Fig. 3a 
and b) of remaining blood samples (n = 47) sequenced 
at MGI used in group comparisons was similar to the 
UoB MDS & PCA Plots (Additional File 1 Fig. 1a and b) 
and for consistency between UoB and MGI datasets the 
four samples (P04, P15, P41, P43) with aberrant library 
preparation were also removed from further downstream 
analysis from the MGI dataset as outliers (Fig. 1). MDS 
& PCA Plots of blood samples (n = 8) of RP2-5 1st and 2nd 
visits from the UoB and MGI datasets (Additional File 1 
Figs. 4a and b and 5a and b) showed that RP5 Visit 1, like 
in the MGI group comparison data set, was an outlier 
and so due to paired sample analysis RP5 was removed 
from further downstream analysis in the MGI returning 
participant dataset (Fig. 1). The subsequent MDS & PCA 
Plots (Additional File 1 Fig. 6a & b) of the MGI dataset 
of RP2-4 (n = 6) 1st and 2nd visits were similar to the UoB 
dataset of all (n = 8) RP samples (Additional File 1 Fig. 4a 
and b).

No muscle samples were excluded from downstream 
analysis (Fig.  1). No abnormally high levels of sequence 
duplication levels were observed, and no overrepresented 
sequences matched DNA oligos used for rRNA deple-
tion. MDS & PCA Plots of the standard and CoolMPS 
chemistry sequencing datasets, used in group compari-
sons (Additional File 1 Figs. 7a and b and 8a and b) and 
RP Visit comparisons (Additional File 1 Figs.  9a and b 
and 10a and b), showed no obvious outliers and were 
similar. The RSeQC function split_bam.py showed that 
all blood and muscle samples had zero reads originating 
from rRNA showing that rRNA depletion was successful.

Read mapping, read distribution, and transcript 
quantification
Genome mapping using HISAT2 [36] respectively 
showed average overall alignment rates of 96.6 ± 1.2% and 
95.4 ± 1.9% for whole blood samples sequenced at UoB 
(n = 55) and MGI (n = 46) and 95.3 ± 1.7% and 98.4 ± 0.4% 
for muscle (n = 51) samples sequenced with standard and 
CoolMPS reagents (Additional File 2 Tables 1, 2, 3 and 4) 
that were used in downstream DGE/GSEA analyses.

RSeQC [30] showed a higher proportion of reads 
in whole blood samples sequenced at UoB (n = 55, 
26.4 ± 4.5%) and MGI (n = 46, 26.2 ± 4.7%) used in down-
stream DGE/GSEA analyses mapped to introns com-
pared to muscle (n = 51) samples used in downstream 
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DGE/GSEA analyses sequenced with standard and 
CoolMPS reagents (17.1 ± 2.7% and 17.2 ± 2.6%) (Addi-
tional File 2 Tables  5, 6, 7 and 8). These differences are 
likely related to differences in the RNA extraction pro-
tocols used (extracting total RNA in whole blood vs. 
extracting total RNA > 200 nucleotides in length in 
muscle).

For whole blood samples sequenced at UoB (n = 55) 
and MGI (n = 46) used in downstream DGE/GSEA 
analyses the average number of processed reads 
(59.5 ± 15.4  million and 59.9 ± 11.5  million) and mapped 
reads (55.4 ± 6.9% and 55.6 ± 6.4%) used by Salmon was 
lower than in muscle samples (n = 51) sequenced with 
standard (69.3 ± 12.2  million, 70.2 ± 3.8%) and CoolMPS 
(68.2 ± 11.6 million, 70.5 ± 3.7%) reagents (Additional File 
2 Tables 9, 10, 11 and 12).

The number of genes available for DGE analysis, across 
the four analysed datasets, was 14,353–16,687 (Addi-
tional File 2 Table  13a - d) following the stated count 
filtering criteria after Salmon transcript-level estimates 
were summarised to genes.

The biological coefficient of variation (BCV) for whole 
blood samples sequenced at UoB and MGI is greater 
(0.26) than the 0.01 threshold stated in the edgeR user 
manual [60] as an acceptable amount of variation for 
technical replicates and thereby they have not been 
merged as one dataset and instead have been used to 
cross-validate each other. As standard reagent and 
CoolMPS reagent sequencing chemistries differ [61] 
these two muscle datasets cannot be merged as technical 
replicates and so have been used to cross-validate each 
other.

Differential Gene Expression analysis – returning 
participants
For returning participant visit comparisons no differen-
tially expressed genes were identified in the UoB (n = 8) 
sequencing dataset, although 11 differentially expressed 
genes were identified in the MGI (n = 6) sequencing 
dataset and so none overlapped between sequencing 
datasets (Additional File 2 Table  14a & 14b). Returning 

participants clustered by participant in MDS & PCA 
Plots (Additional File 1 Figs. 4a and b and 6a and b).

Of the six genes identified as differentially expressed, 
across both muscle sequencing datasets (Additional File 
2 Table 14c & 14d), from returning participants first and 
second visits (n = 6), only one of these genes was differen-
tially expressed in both datasets (Table 2) with CHRDL1 
being upregulated in Visit 2. Returning participants clus-
tered by participant in MDS & PCA Plots (Additional File 
1 Figs. 9a and b and 10a and b).

Differential Gene Expression analysis – group comparisons
Both blood sequencing datasets subjected to DGE analy-
sis (Fig.  1) did not show clear group clustering in MDS 
& PCA Plots (Additional File 1 Fig.  11a,b & 12a,b). 
Cross comparison of DGE analysis results of both blood 
sequencing datasets (Additional File 2 Table 14a & 14b) 
only identified two genes as differentially expressed in 
both datasets, with MTND1P23 downregulated when 
RT was compared to C and IGLV3-10 upregulated when 
RT-AS ≥ 10 was compared to RT.

Both muscle sequencing datasets subjected to DGE 
analysis (Fig.  1) did not show clear group clustering in 
MDS & PCA Plots (Additional File 1 Figs. 7a and b and 
8a and b). When both muscle datasets (Additional File 
2 Table  14c & 14d) were cross compared, for valida-
tion purposes, each group comparison had differentially 
expressed genes, except for when RT-AS ≥ 10 was com-
pared to RT when no differences were present (Table 2). 
The greatest number of differentially expressed genes 
occurred when RT-AS ≤ 2 was compared to Group RT in 
which 68 genes were upregulated and 37 downregulated 
(Table  2). Figure  2 shows, for genes that overlap across 
both muscle sequencing datasets, a Venn Diagram of all 
five group comparisons that had differentially expressed 
genes.

Lists of all genes and associated log Fold Change and 
FDR values for all returning participant and group com-
parisons subjected to DGE analysis are available on 
OSF [35]. For muscle sequencing datasets a list of all 
overlapping significantly differentially expressed genes 

Table 2 Number of differentially expressed genes that overlap for muscle samples sequenced with standard and CoolMPS reagents at 
MGI subjected to DGE analysis across different group comparisons
Comparison
RP2-4 Visit 2 
(n = 3) vs. Visit 1 
(n = 3)

RT (n = 17) vs. C 
(n = 5)

RT-AS ≤ 2 (n = 15) 
vs. C (n = 5)

RT-AS ≥ 10 
(n = 11) vs. C 
(n = 5)

RT-AS ≤ 2 (n = 15) 
vs. RT (n = 17)

RT-AS ≥ 10 
(n = 11) vs. RT 
(n = 17)

RT-AS ≤ 2 (n = 15) vs. 
RT-AS ≥ 10 (n = 11)

Up/Down 
regulation

1 2 18 2 68 0 11 Up

0 1 20 0 37 0 6 Down
Genes with a false discovery rate (FDR) < 0.05 and fold change of 1.2 were reported as differentially expressed. DGE: differential gene expression; UoB: University 
of Brighton; RP: Returning Participant; C: non-resistance trained control group; RT: Resistance Trained control group RT-AS ≤ 2: Resistance Trained participant who 
self-declared AAS exposure ceased ≤ 2 weeks before sampling; RT-AS ≥ 10: Resistance Trained participant who self-declared AAS exposure ceased ≥ 10 weeks before 
sampling
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(FDR < 0.05 and a 1.2- fold change) for all group compari-
sons is also available (Additional File 3).

Gene Set Enrichment Analysis – returning participants
Both blood sequencing datasets for returning partici-
pants (Fig.  1), did not show any differences in the gene 
sets or pathways tested between visits.

Cross comparison of the two muscle sequencing data-
sets, showed for returning participants (n = 3, RP2-4) no 
differences between visits in the gene sets or pathways 
tested (Table  3). However, each individual dataset did 
identify a low number of differences, with the standard 
chemistry dataset having one GO BP gene set differen-
tially expressed and the CoolMPS dataset having two 
Reactome pathways differentially expressed (Additional 
File 2 Table 15a and 15b).

Hierarchical clustering
Respectively, hierarchical clustering of muscle samples 
and the top 30 most significantly differentially expressed 
genes by FDR, with a minimum 1.2-fold change, for the 
group comparison RT-AS ≤ 2 (n = 15) vs. RT (n = 17) for 
standard (Fig. 3) and CoolMPS (Fig. 4) datasets showed 
that samples within RT-AS ≤ 2 tended to cluster together 
with a subset of genes being down and upregulated.

Gene Set Enrichment Analysis – group comparisons
For blood samples sequenced at UoB subjected to GSEA 
(Fig.  1), only two GO BP gene sets showed differences 
when RT-AS ≤ 2 was compared to C and one GO MF 
gene set when RT-AS ≤ 2 was compared to RT-AS ≥ 10 
with no other group comparisons showing differences 
in the tested gene sets or pathways. For blood samples 
sequenced at MGI subjected to GSEA (Fig. 1) no group 
comparison showed differences in any of the tested gene 
sets or pathways. Thereby, no gene sets or pathways were 

Fig. 2 A Venn Diagram of differentially expressed genes that overlapped between the standard and CoolMPS sequencing datasets of the muscle samples 
with different group comparisons. Numbers in brackets indicate the total number of differentially expressed genes for that comparison. C: non-resistance 
trained control group (n = 5); RT: Resistance Trained control group (n = 17); RT-AS ≤ 2: Resistance Trained participant who self-declared AAS exposure 
ceased ≤ 2 weeks before sampling (n = 15); RT-AS ≥ 10: Resistance Trained participant who self-declared AAS exposure ceased ≥ 10 weeks before sampling 
(n = 11)
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Table 3 Number of overlapping differentially expressed gene sets or pathways for muscle samples sequenced with standard reagents 
and CoolMPS reagents at MGI subjected to GSEA analysis across different group comparisons
Comparison
RP2-4 Visit 2 
(n = 3) vs. Visit 1 
(n = 3)

RT (n = 17) vs. C 
(n = 5)

RT-AS ≤ 2 
(n = 15) vs. C 
(n = 5)

RT-AS ≥ 10 
(n = 11) vs. C 
(n = 5)

RT-AS ≤ 2 
(n = 15) vs. RT 
(n = 17)

RT-AS ≥ 10 
(n = 11) vs. RT 
(n = 17)

RT-AS ≤ 2 (n = 15) 
vs. RT-AS ≥ 10 
(n = 11)

Gene Set or 
Pathway

0 0 0 0 0 0 0 Hallmark

0 0 1 0 12 2 0 KEGG

0 0 0 0 74 0 1 Reactome

0 0 14 0 176 0 2 GO BP

0 0 6 0 120 0 8 GO MF
Gene sets or pathways with a false discovery rate (FDR) < 0.05 were reported as differentially expressed. GSEA: Gene Set Enrichment Analysis; UoB: University of 
Brighton; RP: Returning Participant; C: non-resistance trained control group; RT: Resistance Trained control group; RT-AS ≤ 2: Resistance Trained participant who 
self-declared AAS exposure ceased ≤ 2 weeks before sampling; RT-AS ≥ 10: Resistance Trained participant who self-declared AAS exposure ceased ≥ 10 weeks before 
sampling; GO BP: subset of GO biological processes; GO MF: subset of GO molecular functions

Fig. 3 A heatmap of the top 30 most differentially expressed genes by FDR, with a minimum 1.2-fold change, from the group comparison RT-AS ≤ 2 vs. 
RT for all muscle samples subjected to DGE analysis sequenced with standard chemistry reagents at MGI, Latvia. Gene and sample clustering was per-
formed within pheatmap [58]. C: non-resistance trained control group (n = 5); RT: Resistance Trained control group (n = 17); RT-AS ≤ 2: Resistance Trained 
participant who self-declared AAS exposure ceased ≤ 2 weeks before sampling (n = 15); RT-AS ≥ 10: Resistance Trained participant who self-declared AAS 
exposure ceased ≥ 10 weeks before sampling (n = 11); DGE: differential gene expression
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differentially expressed when both sequencing datasets 
were cross compared.

Overlapping differentially expressed gene sets/path-
ways from cross comparison of the muscle sequenc-
ing datasets are shown in Table 3. The greatest number 
of differentially expressed gene sets/pathways occurred 
when RT-AS ≤ 2 was compared to RT. All seventy-four 
(Table  3) of the differentially expressed Reactome path-
ways in this comparison were unique and eleven of twelve 
of the differentially expressed KEGG pathways for this 
comparison were unique. A Venn Diagram for RT-AS ≤ 2 
compared to C, RT and RT-AS ≥ 10 for GO BP gene sets 
are shown in Fig. 5.

Lists of all gene sets and pathways and associated 
FDR values for all returning participant and group 

comparisons that were subjected to GSEA are available 
on OSF [35]. Lists of GO BP and GO MF gene sets and 
KEGG and Reactome pathways that have overlapping 
expression data with FDR < 0.05 based on cross compari-
son of the muscle sequencing datasets are also available 
(Additional File 4–7).

Discussion
Although AAS are primarily used for hypertrophic ben-
efit, their adverse and corollary effects on other physio-
logical systems are also well documented [62]. AAS usage 
is known to stimulate erythropoiesis directly and EPO 
synthesis in the kidney [63], alongside promoting eryth-
ropoietic stem cell differentiation [64]. rHuEPO adminis-
tration studies [12, 13] have shown a cross-platform [15] 

Fig. 4 A heatmap of the top 30 most differentially expressed genes by FDR, with a minimum 1.2-fold change, from the group comparison RT-AS ≤ 2 vs. 
RT for all muscle samples subjected to DGE analysis sequenced with CoolMPS reagents at MGI, Latvia. Gene and sample clustering was performed within 
pheatmap [58]. C: non-resistance trained control group (n = 5); RT: Resistance Trained control group (n = 17); RT-AS ≤ 2: Resistance Trained participant 
who self-declared AAS exposure ceased ≤ 2 weeks before sampling (n = 15); RT-AS ≥ 10: Resistance Trained participant who self-declared AAS exposure 
ceased ≥ 10 weeks before sampling (n = 11); DGE: differential gene expression
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whole blood transcriptional signature to rHuEPO doping 
that may provide novel biomarkers for the haematologi-
cal module of the ABP that are largely unconfounded by 
exercise [13] and altitude exposure [14]. Despite this con-
nection, limited research [65] on the potential of a whole 
blood transcriptional response to AAS exposure exists, 
although one study has shown that circulating levels of 
the liver specific miR-122 may act as a biomarker of tes-
tosterone abuse [19]. In this present study, RNA librar-
ies were sequenced twice and cross-compared to verify 
the identified differentially expressed genes/pathways. 
However, it should be noted that orthogonal method 
validation (e.g., qPCR) would provide a further level of 
verification to the findings in this study. Additionally, 
only DGE and GSEA was conducted on the sequencing 
datasets. Although not an intended goal of this research 
study, alternative splicing/isoform analysis may have 
identified additional differentially expressed transcripts 
that do not emerge at the gene level and future studies 

may want to investigate these transcripts. AAS users 
who self-declared AAS cessation ≤ 2-weeks prior to first 
sampling and returned 19–28 weeks later, did not show 
differences in gene expression in whole blood between 
time points when all samples (i.e., the full dataset) was 
analysed (Additional File 2 Table 14a). Re-sequencing of 
these RNA libraries and removal of one sample for aber-
rant sequencing quality control values unique to this 
re-sequencing dataset (i.e., the MGI dataset) did show 
some differences in gene expression between time points 
(Additional File 2 Table  14b), but this reduction in sta-
tistical power from lower participant numbers could 
have influenced this dataset specific result. Both return-
ing participant whole blood sequencing datasets did not 
show any differences in the gene sets or pathways tested 
between timepoints.

Cross-comparison of both whole blood sequencing 
datasets of group comparisons showed that RT-AS ≤ 2 did 
not differ in gene expression to C, RT, and RT-AS ≥ 10. 

Fig. 5 A Venn Diagram of GO BP gene sets that overlapped between the standard and CoolMPS sequencing datasets of the muscle samples, showing 
comparisons of RT-AS ≤ 2 (n = 15) to C (n = 5), RT (n = 17) and RT-AS ≥ 10 (n = 11), which were the only comparisons that had differences in GO BP gene 
sets. Numbers in brackets indicate the total number of differentially expressed GO BP gene sets for that comparison. C: non-resistance trained control 
group; RT: Resistance Trained control group; RT-AS ≤ 2: Resistance Trained participant who self-declared AAS exposure ceased ≤ 2 weeks before sampling; 
RT-AS ≥ 10: Resistance Trained participant who self-declared AAS exposure ceased ≥ 10 weeks before sampling
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Both sequencing datasets did show RT-AS ≥ 10 did have 
had one gene (IGLV3-10) upregulated when compared to 
RT. However, it would be difficult to conclude that this 
is a lingering whole blood transcriptional biomarker of 
AAS usage given there was no differences in this gene in 
users who ceased AAS exposure at an earlier time frame, 
or controls. Additionally, this gene codes for a variable 
domain of an immunoglobulin light chain and is likely to 
be impacted heavily by the immune response to patho-
gens/exogenous factors. Cross-comparison of both whole 
blood sequencing datasets for group comparisons did not 
reveal any differentially expressed gene sets or pathways.

For the two muscle sequencing datasets, cross-com-
parison of the paired sample analysis of returning partici-
pants post AAS exposure found that one gene (CHRDL1) 
was upregulated in visit two in both datasets (Table  2). 
CHRDL1 encodes for the Chordin-Like 1 (CHRDL1) 
protein which is a known antagonist of bone morpho-
genetic protein (BMP), and BMP signalling is known to 
play a key role in muscle development, hypertrophy and 
regeneration [66]. In adult mice, in the absence of injury, 
increasing BMP expression, or BMP receptor activity, is 
known to induce hypertrophy via activation of mTOR 
signalling [67]. Furthermore, inhibition of BMP signal-
ling causes muscle atrophy and abolishes the hypertro-
phic phenotype of myostatin-deficient mice, with BMP 
signalling being regarded as a fundamental hypertro-
phic signal in mice [68]. In the present study, these three 
returning participants (RP2-4) that showed an upregu-
lation of CHRDL1 in their second visit, also showed a 
4.4 ± 0.3 kg loss of Fat Free Mass as measured with bio-
electrical impedance [21], a finding which corroborates 
with CHRDL1 as an antagonist of BMP and BMP inhi-
bition causing atrophy. Furthermore, RP2 also exhibited 
a decrease in muscle fibre cross-sectional area (CSA) 
between visits (7854 vs. 5677 µm2), whereas for RP3 an 
increase in CSA (7167 vs. 7889 µm2) was observed and 
RP4 did not have a sample stored for immunohistochem-
istry on first sample visit [21]. When cross-compared, 
none of the tested gene sets or pathways showed differ-
ences in both muscle sequencing datasets for compari-
sons of returning participant visits.

Cross-comparison, of both muscle sequencing data-
sets showed that the greatest number of differentially 
expressed genes occurred when RT-AS ≤ 2 was com-
pared to other groups (Table 2). Comparing RT vs. C (the 
effect of training), RT-AS ≤ 2 vs. C (the effect of training 
and acute AAS usage) and RT-AS ≤ 2 vs. RT (the effect 
of acute AAS usage), showed that nine differentially 
expressed genes (ABCA7, ARHGEF17, BOK, FILIP1L, 
LDAF1, RBL1, RPIA, SDC4, ZFP36L1) overlap (Fig.  2) 
between RT-AS ≤ 2 vs. C and RT-AS ≤ 2 vs. RT, but were 
not differentially expressed in RT vs. C, potentially indi-
cating this is caused by acute AAS usage and not from 

training alone. Amongst these genes, associated with 
performance benefit would be a downregulation of RBL1, 
with reduced expression of this transcriptional core-
pressor being associated with mitochondrial biogenesis, 
typically stimulated by exercise [69]. However, contra-
dictory to performance/hypertrophic benefit amongst 
these genes was downregulation of SDC4, a proteogly-
can known to be crucial for muscle differentiation [70] 
that may act as a reservoir for promyostatin [71], sub-
sequently inhibiting the formation of active myostatin, 
with reduced expression being associated with elevated 
levels of myostatin [71]. Additionally, BOK, a pro-apop-
totic member of the BCL-2 family, was upregulated, with 
this family of proteins being upregulated in denervation-
induced muscle atrophy [72] and ZFP36L1 was down-
regulated, with reduced expression being associated with 
reduced skeletal muscle mass and reduced satellite cell 
numbers [73].

Although two genes (NAP1L4 and CARS1) were differ-
entially expressed when RT-AS ≥ 10 was compared to C 
(Table 2) in both muscle sequencing datasets, these two 
genes were not unique to this comparison and were also 
differentially expressed in RT vs. C and RT-AS ≤ 2 vs. C 
(Fig. 2) indicating they are unlikely to be unique markers 
of long-term steroid usage and more likely due to resis-
tance training alone as they were also not differentially 
expressed when RT-AS ≤ 2 was compared to RT.

Hierarchical clustering and heatmaps of muscle sam-
ples using the top 30 most significantly differentially 
expressed genes by FDR, with a minimum 1.2-fold-
change, for the group comparison RT-AS ≤ 2 to RT 
showed that most samples within RT-AS ≤ 2 clustered 
together in both sequencing datasets (Figs.  3 and 4). 
However, previous research in animal husbandry has 
shown that similar hierarchical clustering methods using 
20 differentially expressed genes in liver samples can fully 
distinguish boars and calves treated with AAS with no 
cross-group clustering [20]. Using an Orthogonal Projec-
tions to Latent Structures Discriminant Analysis (OPLS-
DA) model [74], proteomic analysis of human vastus 
lateralis muscle samples from 10 current AAS users, who 
had used large AAS doses (> 800  mg) for 5–15 years, 
showed a clear separation from 7 non-AAS using resis-
tance trained controls. Liquid chromatography followed 
by tandem spectrometry identified 14 protein spots (rep-
resenting nine different proteins) of significant difference 
in relative quantity between the doped and clean groups 
[74]. However, analysis of the RNA-Seq data from both 
muscle datasets in this study did not identify any of the 
genes that correspond to these nine proteins as differ-
entially expressed (Additional File 3) in any comparison. 
The participants in this present study having much lower 
AAS exposure regimens could have contributed to this 
discrepancy.
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Cross-comparison of both muscle sequencing datasets 
showed that no gene sets or pathways were differentially 
expressed when RT was compared to C, with differences 
only observed when RT-AS ≤ 2 was compared to C, RT 
and RT-AS ≥ 10 with no differences between returning 
participants visits (Table 3). Notably, eight GO BP gene 
sets (Fig.  5), were uniquely differentially expressed for 
the comparison RT-AS ≤ 2 vs. C, including a downregu-
lated of a gene set that reduces the activity of intracellular 
steroid hormone receptor signalling pathways, corrobo-
rating with the known AR pathway for AAS induced 
transcription. For GO MF gene sets, none were uniquely 
differentially expressed for the comparison RT-AS ≤ 2 
vs. C (Additional File 5). Two KEGG Pathways were dif-
ferentially expressed when RT-AS ≥ 10 was compared to 
RT, but no KEGG Pathways were differentially expressed 
when RT-AS ≥ 10 was compared to C, making it unlikely 
that these are long-term markers of AAS usage (Table 3).

This study has numerous methodological limitations, 
of which some have been detailed elsewhere [21]. Due to 
the known deleterious impact of AAS on health mark-
ers [62] it can be argued that the only ethically feasible 
way to study high-dose/sustained AAS usage is through 
observational research [75]. Inherently this results in 
confounding variables that could impact the results of 
this study including: AAS regimens and date of cessation 
differing between participants, self-reported AAS cycles 
being fallible to recall errors, reported time frames of 
AAS abstinence being inaccurate and AAS quality being 
unknown. The AAS exposure results in this study there-
fore only serve as estimates and for RT-AS ≥ 10 time since 
last AAS cessation had a large range. Despite these inac-
curacies there is some value in obtaining verbal decla-
rations of AAS usage as it enables a broad classification 
between “high” and “low” doses as previous research has 
identified that reported cycles from 100 AAS users var-
ied 10-fold in maximum weekly dosage and 100-fold in 
cumulative cycle dose [76]. Although most participants 
in RT and RT-AS ≤ 2 were recreational lifters [21], train-
ing regimens and training volumes will differ amongst 
participants, with this being a notable confounding vari-
able that could influence differences in expressed genes. 
Differences in age and other lifestyle factors (e.g., dietary 
habits) are other possible confounding variables. The 
number of participants within RT-AS who returned for 
sampling post AAS exposure was low, but only six partic-
ipants verbalized intentions for complete removal of AAS 
for ≥ 18 weeks after usage and only five were sampled on 
a second visit. It is common for AAS users to undergo a 
“blast and cruise” usage pattern [77] in which AAS expo-
sure peaks (the “blast”) but then never drops to genuine 
physiological levels of testosterone where users “cruise” 
on above physiological testosterone levels instead of 
AAS cessation or using true TRT. Finding AAS users 

who did not partake in a “blast and cruise” usage pat-
tern, which heavily confounds AAS cessation post initial 
exposure, was difficult and contributed to the low num-
ber of returning participants. Group C also had the low-
est number of recruited participants; however this was a 
difficult group to recruit as individuals who do not resis-
tance train were not as interested to partake in a study 
that did not offer remuneration, unlike those in Group 
RT and RT-AS. Future studies investigating the impact of 
AAS usage on gene expression should focus on sampling 
higher numbers of AAS users longitudinally, ideally pre, 
during and post AAS exposure, as paired-sample analysis 
reduces the impact of confounding variables. AAS sam-
ples could also be collected and tested for purity. Future 
studies could focus on AAS administration to cell culture 
lines to further investigate differentially expressed genes 
identified in this study. Serum and plasma samples were 
also collected from participants and a future avenue of 
research could be to investigate if an AAS metabolomic 
doping signature could be identified, similar to how a 
rHuEPO metabolomic doping signature has been identi-
fied [78].

Conclusions
In conclusion, although the observational nature of this 
study would have impacted its findings, given that no 
differentially expressed genes were identified in whole 
blood in both sequencing datasets when RT-AS ≤ 2 was 
compared to RT or C, this current data suggests that it 
seems unlikely that a whole blood transcriptional sig-
nature could be used to identify AAS doping. How-
ever, in muscle, AAS exposure had a greater impact on 
gene expression, with differential expression in genes 
known to impact hypertrophic processes. Furthermore, 
the majority of current AAS users clustered together in 
muscle gene expression profiles, showing that a subset 
of genes seems to be both up- and downregulated from 
AAS exposure, with this finding potentially contributing 
to furthering our understanding of AAS induced hyper-
trophic processes.
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