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Abstract

Physical exercise induces acute psychophysiological responses leading to chronic adaptations when the exercise
stimulus is applied repeatedly, at sufficient time periods, and with appropriate magnitude. To maximize long-term
training adaptations, it is crucial to control and manipulate the external load and the resulting psychophysiological
strain. Therefore, scientists have developed a theoretical framework that distinguishes between the physical work
performed during exercise (i.e., external load/intensity) and indicators of the body’s psychophysiological response
(ie., internal load/intensity). However, the application of blood flow restriction (BFR) during exercise with low external
loads/intensities (e.g., < 30% of the one-repetition-maximum, < 50% of maximum oxygen uptake) can induce physi-
ological and perceptual responses, which are commonly associated with high external loads/intensities. This cur-
rent opinion aimed to emphasize the mismatch between external and internal load/intensity when BFR is applied
during exercise. In this regard, there is evidence that BFR can be used to manipulate both external load/intensity

(by reducing total work when exercise is performed to exhaustion) and internal load/intensity (by leading to higher
physiological and perceptual responses compared to exercise performed with the same external load/intensity with-
out BFR). Furthermore, it is proposed to consider BFR as an additional exercise determinant, given that the amount
of BFR pressure can determine not only the internal but also external load/intensity. Finally, terminological recom-
mendations for the use of the proposed terms in the scientific context and for practitioners are given, which should
be considered when designing, reporting, discussing, and presenting BFR studies, exercise, and/or training programs.

Key Points

The application of BFR during exercise with low external load/intensity can lead to internal responses that are
commonly associated with high external load/intensity resulting in a discrepancy between the characteristics
of exercise and the acute psychophysiological responses.

The BFR pressure can be adjusted to increase the internal load/intensity (i.e, elevating physiological and per-
ceptual responses) to intensify the exercise stimulus or to decrease the external load/intensity (e.g., reducing
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the number of repetitions when exercise is performed to exhaustion), which is of particular importance dur-
ing musculoskeletal rehabilitation when high or cumulative low mechanical stress might be contraindicated.

- We encourage researchers to adapt their wording in the BFR literature accordingly, given that the extent of inter-
nal load/intensity during BFR exercise is determined by the interaction of several external exercise variables (e.g.,
external resistance, number of repetitions/cycles, cuff pressure) to specify the generated exercise stimulus (e.g,,
“low external load BFR walking’, “low external load BFR resistance exercise”).

Keywords Vascular occlusion, Metabolic stress, Muscle pain, Effort perception, Stimulus, Terminology

Introduction

Over the last two decades, blood flow restriction (BFR)
training has increasingly been used to improve perfor-
mance across different populations (e.g., elite athletes
[1], healthy active elderly [2], and patients during mus-
culoskeletal rehabilitation [3]). In this regard, BFR has
been applied during several exercise modalities such as
resistance [4], endurance [5], balance [6], or whole-body
vibration exercise [7]. To achieve a target restriction
pressure, usually a pneumatic tourniquet cuff is applied
to the proximal part of the limb to partially restrict and
completely occlude arterial inflow and venous return of
the blood, respectively [8]. It is known that the degree of
restriction of arterial and venous blood flow induced by
the applied cuff depends on various moderator variables
including individual characteristics (e.g., blood pressure,
arm circumference [9]), and cuff properties (e.g., width
[10], stiffness [11]). To account for these moderator vari-
ables, the target pressure is commonly determined as a
percentage of the arterial occlusion pressure (AOP; also
referred to as limb occlusion pressure), which is defined
as the lowest pressure that is required to occlude arterial
inflow to the limb [12]. The external pressure generated
by the BER cuff promotes blood pooling, which induces
a local hypoxic environment distal to the restriction [13].
It is assumed that the hypoxia-induced shift towards
a greater proportion of anaerobic metabolism and the
reduced removal of metabolites from the muscle pro-
duced during exercise leads to an increased metabolic
stress and performance decline (i.e., motor performance
fatigue [14]) compared to the same exercise without
BER [15]. When applying BFR, it is recommended to
use 20-40% of the one-repetition-maximum (1RM)
and < 50% of peak oxygen uptake (VO peak) or heart rate
reserve for resistance and aerobic exercise, respectively
[16]. In this regard, the terms low-load BFR exercise
[17-19] or low-intensity BFR exercise [20, 21] are fre-
quently used in the literature. However, the external load/
intensity is characterized by the exercise characteristics
(e.g., external resistance, repetition scheme, volitional
muscle failure), while the internal load/intensity (i.e.,
psychophysiological responses) is mirrored by multiple

variables including heart rate or rate of perceived exer-
tion (RPE) [22-24]. In this context, the application of
BER during low load/intensity exercise and its mode of
action can lead to psychophysiological responses that are
typically not associated with low but moderate or even
high external load/intensity exercise. Therefore, the aim
of this opinion article is (i) to elaborate on the interac-
tion between external and internal load/intensity moder-
ated by the level of BFR and its relevance for researchers
and practitioners as well as (ii) to discuss the potential
of BFR as an additional variable to manipulate external
and internal load/intensity when designing exercise and
training programs [25].

Defining External and Internal Load/Intensity

Physical activity and/or exercise (e.g., running, cycling,
swimming) triggers acute psychophysiological responses
and can lead to chronic adaptations when the exercise
stimulus is applied repetitively, at sufficient time periods,
and with appropriate magnitude [23, 26]. To maximize
long-term training adaptations, it is crucial to control and
manipulate the stress applied to the exercising individual
and the resulting psychophysiological strain. Therefore,
scientists have developed theoretical frameworks that
distinguish between the physical work performed dur-
ing exercise (i.e., external load/intensity) as well as indi-
cators of the body’s psychophysiological reactions and
the strain experienced by specific tissues (i.e., internal
load/intensity) in response to the applied external train-
ing load/intensity [22-24, 27]. The terminology ‘external
and internal training load’ was recently criticized from
a biomechanical perspective pointing out that load is
a mechanical variable, which describes forces [28-30].
However, it was subsequently argued that mechanics do
not have the monopoly on the term ‘load’ or other com-
mon terms like ‘stress’ and ‘fatigue’ Consequently, ‘train-
ing load’ must be considered a label representing a higher
order construct with subdimensions (i.e., referred to as
external and internal load from this point) that provides
a framework to support the research and practical field
[31]. The distinction between external and internal load
allows for a better understanding of the training process
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Table 1 Definition and exercise-dependent measures of external and internal load as well as contextual factors during blood flow

restriction (BFR) exercise

External load

Internal load

Contextual factors

Definition Physical work performed during exer-
cise
Characteristics Resistance Resistance

and measures e.g. external resistance, time under ten-
sion, number of repetitions per set,

number of sets, rest intervals

Endurance

e.g. velocity, power output or total
work, exercise duration, distance cov-
ered, rest intervals

Team sports

e.g. velocity, distance covered, accelera-
tions

Acute psychophysiological responses

e.g. effort perception, exercise-induced
muscle pain perception

Endurance

e.g. heart rate, blood lactate concentra-
tion, effort perception, exercise-induced
muscle pain perception

Modifiable and non-modifiable determi-
nants

Personal factors

e.g. training status, age, sex
Environmental factors

e.g. climatic and geographic conditions
BFR-related factors

e.g, cuff pressure’, type of application?

Team sports
e.g. heart rate, blood lactate concentra-
tion, effort perception, exercise-induced

muscle pain perception

! percentage arterial occlusion pressure

2 continuous or intermittent (i.e., no BFR during rest or exercise)

and the associated exercise-related adaptations (Table 1).
The external load is determined by the characteristics of
exercise (i.e., physical work performed during exercise)
and the measures to quantify the external load depend
on the exercise modality (e.g., endurance and resistance
exercise) and/or sport (e.g., team sports). For instance,
during endurance exercise, the external load is deter-
mined, e.g., by the velocity, power output or total work,
exercise duration, distance covered, and rest intervals.
Similar metrics are used to quantify the external load
in team sports (e.g., velocity, distance covered, accelera-
tions), while the external resistance, time under tension,
number of repetitions per set, number of sets, and rest
intervals are often used to describe the external load dur-
ing resistance exercise [23, 29, 32, 33]. To cope with the
external load, acute and individual psychophysiologi-
cal responses are initiated that depend on the exercise
modality (e.g., endurance or resistance exercise) and spe-
cific contextual factors (e.g. personal and environmental
factors) [23, 34]. Therefore, exercise-specific variables are
used to describe the internal load. For instance, heart rate
(HR) is often used to characterize the internal load dur-
ing endurance exercise, although this marker is often not
a suitable internal load measure for resistance exercise
[23]. Besides physiological markers, perceptual responses
during exercise (e.g., RPE or effort perception, exercise-
induced muscle pain perception) can be used to charac-
terize the internal load during several exercise modalities
[33-36]. Given that the psychophysiological responses
are strongly determined by the characteristics of the per-
formed exercise [14], the respective internal load markers

scale with the applied external load measures. Neverthe-
less, due to modifiable and non-modifiable personal fac-
tors (e.g., nutrition, training status, health, psychological
status, genetics) that affect the extent of the individual
psychophysiological response to exercise, the same exter-
nal load (e.g., same running velocity) generates interin-
dividual differences in internal load markers (e.g., HR,
RPE). Moreover, modifiable personal factors (e.g., nutri-
tion, training status) and environmental conditions (e.g.,
heat [37], local and systemic hypoxia [38]) can change,
leading to different psychophysiological responses to the
identical exercise stimulus in the same individual. Given
that the interplay of the characteristics of the exercise,
the contextual factors, and the resulting acute response
to the exercise determine chronic adaptations and, thus,
the training outcome, it is recommended to use internal
load markers in conjunction with external load measures
to monitor and control the training process [23, 39-42].
In addition, specific contextual factors should also be
considered, especially if the training method used implies
a deliberate change in one or more of these factors (e.g.,
hypoxia [43] or heat conditioning [44]).

In contrast to the general observation that performing
exercise with higher external loads (e.g. 70% 1RM) [45]
or until exhaustion [46] results in an increased internal
load, similar high psychophysiological responses are also
present when exercising with low external loads (e.g.,
30% 1RM) combined with BFR. For instance, studies have
found a similar RPE [47, 48] and discomfort [49, 50] for
resistance exercise at<30% 1RM with BFR (65-75 rep-
etitions) and resistance exercise at>70% 1RM without
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Fig. 1 Schematic illustration of the influence of blood flow restriction (BFR) on example parameters of internal and external load during several
exercise modalities with (A) matched external load and (B) to exhaustion. The numbers on the individual parameters refer to the articles' reference

list

BFR (30-40 repetitions). Moreover, when BFR is applied
during specific exercise modalities (e.g., repeated cycling
sprints or resistance exercise performed to exhaustion)
not only the internal but also the external load can be
manipulated due to an accelerated motor performance
fatigue development and the subsequent reduction in
external load measures (i.e., power output [25], number
of repetitions [51]). Therefore, an adequate exercise and
training prescription should primarily focus on the inter-
nal load, while also considering external load and relevant
contextual factors (i.e., modifiable and non-modifiable
personal factors and environmental conditions) [27, 34].

The Discrepancy Between Internal and External
Load during Blood Flow Restriction Exercise

Internal load Measures in Response to Exercise with Low
External Load Combined with and without Blood Flow
Restriction

When combining BFR with exercise using low external
loads, the psychophysiological responses representing the
internal load can increase compared to exercise without

BER (Fig. 1A). Therefore, the relationship between exer-
cise (e.g., slow to fast running or cycling) and the inten-
sity categories (i.e., light, moderate, vigorous, high [52])
does not apply for BFR exercise resulting in a potential
discrepancy between external and internal load meas-
ures. A recent meta-analysis [46] revealed that when
performing resistance exercise with identical external
load at<30% 1RM, participants’ perceptual responses
(e.g., effort and exercise-induced muscle pain/discomfort
perception) were higher with BFR than without BFR. For
instance, Miller et al. [50] reported higher RPE and mus-
cle discomfort during leg press and knee extension exer-
cise at 30% 1RM with BFR (50% AOP) compared to the
same exercise (i.e., identical external load) without BFR.
Similar results were found by Mok et al. [53] revealing
higher leg discomfort during 5 walking intervals of 2 min
at 5 km-h™ with BFR (200 mmHg) compared to walking
alone.

The different perceptual responses can be explained
by accompanying physiological changes associated with
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BFR exercise. For example, given that exercise-induced
muscle pain or discomfort perception is triggered by the
stimulation of nociceptive group III and IV muscle affer-
ents, venous blood pooling (induced by the external cuff
pressure during BFR) might lead to venous expansion,
which has been shown to stimulate group IV afferents in
an animal study [54]. Moreover, nociceptive muscle affer-
ents seem to be sensitive to high amounts of metabolites
[55], which are associated with BFR exercise due to an
increased anaerobic metabolism and impaired metabo-
lite removal. In this regard, invasive catheter examina-
tions by Franz et al. [56] have revealed that BFR (50%
AOP) induced elevated venous blood lactate concen-
tration (BLC) and increased metabolites (i.e., K*, Ca®",
Na*) leading to metabolic acidosis (i.e., lower arterial and
venous pH) during 4 sets (75 repetitions) of unilateral
biceps curls at 30% 1RM compared to the same exercising
without BFR. Moreover, studies have shown, for instance,
higher deoxyhemoglobin concentration as a proxy of
metabolic stress during 4 sets (75 repetitions) of isomet-
ric knee extensions at 20% MVC [57], as well as increased
muscle thickness as a marker for hydration-mediated cell
swelling during 4 sets (75 repetitions) of unilateral leg
press at 30% 1RM [58] performed with BFR compared
to the same exercise without BFR. In this context, Kilgas
et al. [59] found higher changes in BLC and quadriceps
muscle deoxyhemoglobin concentration accompanied
by higher exercise-induced muscle pain ratings during 6
cycling intervals of 2 min at 40% VO, peak when using
BFR (60% and 80% AOP) compared to exercising at the
same external load without BFR.

The higher RPE or effort perception during BFR
resistance [50] and endurance exercise [60] might
be related to the loss of contractile function induced
by the greater metabolic disturbance [61, 62] due to
impaired removal of accumulated metabolites leading
to decrements in Ca’'-sensitivity and/or release from
the sarcoplasmic reticulum [63]. Based on the corollary
discharge model discussed by Pageaux [64], the central
motor command increases as a compensatory mecha-
nism to counteract the loss of contractile function due
to greater metabolic stress. The higher descending neu-
ral drive to the muscle (i.e., increase in muscle activity)
is required to maintain the muscle forces needed for
exercise continuation [35, 65, 66] resulting in a higher
effort perception. In this context, Husmann et al. [35]
showed that the application of BFR (60% AOP) induced
higher ratings of effort perception accompanied by
greater muscle activity in the vastus medialis and later-
alis muscles during knee extension exercise at 30% 1RM
compared to without BFR. These results are supported
by Cai et al. [67] who found higher rectus femoris and
vastus lateralis muscle activity as well as higher RPE
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averaged over 10 sets of whole-body vibration exercise
in a squat position with BFR (140 mmHg) compared to
identical exercise alone.

External Load Measures in Response to Exercise

with and without Blood Flow Restriction Performed

to Exhaustion

Furthermore, studies have shown a lower external load
(i.e., lower number of repetitions) and similar percep-
tual responses during BFR compared to without BFR
when the exercise was performed to exhaustion [68,
69] (Fig. 1B). In this regard, Kolind et al. [70] found that
participants who performed one set of unilateral knee
extensions at 20% 1RM with BFR (100 mmHg) achieved
43% fewer repetitions with higher exercise-induced
muscle pain perception. However, although the number
of repetitions was lower in the BFR condition, similar
changes in muscle oxygenation and muscle activity of
vastus medialis and lateralis were found at the respec-
tive percentage of time to exhaustion [70]. Compara-
ble to Kolind et al. [70], Behringer et al. [71] found that
BFR (AO—20 mmHg) reduced the number of repetitions
during four sets of unilateral eccentric knee extensions
at 75% 1RM, while inducing similar internal responses
(e.g., peak BLC, insulin-like growth factor 1, creatine-
kinase, muscle pain). Furthermore, Buckner et al. [72]
also observed a reduced number of repetitions to exhaus-
tion during 4 sets of unilateral elbow flexions at 15% 1RM
with BFR (80% AOP) compared to without BFR. There-
fore, the additional application of BFR during exercise
performed to exhaustion can reduce repetitions and time
to exhaustion and thus the external load, while elicit-
ing similar levels of internal responses (e.g., blood pool-
ing, muscle oxygenation, and muscle activity at the same
percentage of exercise time) [70]. Furthermore, BFR was
also shown to reduce the external load during maximal
motor tasks meaning that multiple studies have revealed
a reduced number of total sprints during repeated-sprint
exercise to exhaustion [73-75]. This phenomenon might
be explained by the accelerated motor performance
fatigue development [14] induced by BFR, which was
shown by Husmann et al. [35] who found a larger decline
in maximal voluntary torque in the BFR (60% AOP)
compared to non-BFR condition after each set during 4
sets (75 repetitions) of knee extensions at 30% 1RM. In
addition, Behrendt et al. [38] found that BFR (40% AOP)
led to a greater decline in mean and peak power output
during 6X10 s repeated cycling sprints compared to
the same exercise without BFR. The lower external load
during each training session consequently results in a
reduced external training load during an intervention
period, as shown by Pignanelli et al. [76]. The authors
found a reduction in external load (i.e., training volume)
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of ~33% during a 6-week BFR training period (60-70%
AOP) using single-leg squats at 30% 1RM to volitional
failure. Interestingly, despite a lower training volume,
similar increases in muscle strength and size were found.
This is of particular importance for musculoskeletal reha-
bilitation during which gains in muscle strength and size
are desired but a high or cumulative low mechanical
stress might be contraindicated [77].

Understanding Blood Flow Restriction Pressure

as a Determinant to Modulate Internal

and External Load

The current BFR literature describes the cuff pressure for
resistance and endurance exercise to be sufficient and
beneficial between 40 and 80% AOP [16]. Accordingly,
the level of cuff pressure is a critical variable to manipu-
late the psychophysiological responses to BFR exercise
[78-80]. For instance, Ilett et al. [57] investigated the
physiological responses during 4 sets of isometric knee
extensions (32 repetitions) at 80% MVC (i.e., high exter-
nal load) and 4 sets (75 repetitions) at 20% MVC (i.e., low
external load) combined with BFR at 80%, 60%, and 40%
AQP as well as without BFR. The authors found similar
BLC levels for high external load exercise without BER
and low external load exercise combined with BFR at
80% AOP as well as for low external load exercise com-
bined with BFR at 40% AOP and without BFR. In addi-
tion, Hughes et al. [81] found a similar RPE during 4 sets
of unilateral leg press exercise (75 repetitions) at 30%
1RM combined with 40% AOP, but a higher RPE when
combined with 80% AOP, compared with 3 sets (30 rep-
etitions) at 70% 1RM. In another study by Hughes et al.
[82], muscle discomfort was found to be higher during
20 min of aerobic cycling at 40% VO, peak with BFR at
80% AOP compared to 40% AOP. Furthermore, Loenneke
et al. [48] found higher ratings of discomfort at 60% AOP
compared with 40% AOP during 4 sets (75 repetitions)
of bilateral knee extensions at 20% 1RM combined with
BER. The perceptual differences might be related to the
higher mechanical pressure on the blood vessels leading
to a greater extent of metabolic disturbances (e.g., higher
deoxyhemoglobin concentration, increased venous blood
pooling and expansion, greater metabolite accumulation)
finally causing, for instance, higher muscle pain ratings
due to greater activation of group III and IV afferent fib-
ers [55]. This assumption is supported by the results of
Bielitzki et al. [6], who revealed that effort perception,
exercise-induced leg muscle pain perception, and myoe-
lectrical activity of the quadriceps muscle (recorded via
surface electromyography) were higher, while muscle
oxygen saturation in the vastus lateralis muscle was lower
during the last set of a static BFR balance exercise with
80% AOP compared to 40% AOP. These findings are
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similar to those by Ilett et al. [57], who revealed that BLC,
HR, and muscle activity were higher, while muscle oxy-
gen saturation was lower, when applying BER at 80% AOP
compared to 40% AOP during 4 sets (75 repetitions) of
rhythmic isometric knee extensions at 20% MVC. There-
fore, it can be assumed that physiological and perceptual
responses during exercise with low external load com-
bined with BFR depend, among others, on the applied
cuff pressure [6, 57, 59, 81, 82].

Regarding the manipulation of external load, a recent
meta-analysis by Cerqueira et al. [83] revealed that high
cuff pressures are required to reduce the time to exhaus-
tion and, thus, the external load. Therefore, the cuff pres-
sure seems not only to modulate the internal load during
volume-matched exercise but also the external load,
when exercises are performed to exhaustion. For exam-
ple, Jessee et al. [84] revealed lower repetitions to voli-
tional failure during 4 sets of unilateral knee extensions
at 15% 1RM with BFR at 80% AOP (mean: 73 repetitions)
compared to 40% AOP (mean: 114 repetitions), while
rectus femoris and vastus lateralis muscle activity in each
set were similar between pressures. Comparable findings
were revealed by Buckner et al. [72] during 4 sets (per-
formed to exhaustion) of elbow flexion at 15% 1RM with
BER at 80% AOP and 40% AOP.

Of note, a recent study by Jacobs et al. [85] found that
pneumatic tourniquet systems with autoregulation (i.e.,
cuff pressure adapts automatically to changes in limb
circumference during exercise) have led to lower RPE
and discomfort during 4 sets (75 repetitions) as well as
a lower number of repetitions per set during 4 sets (to
exhaustion) of unilateral knee extension at 20% 1RM with
60% AOP compared a non-autoregulated system. There-
fore, cuff type (e.g., single- vs. multi-chambered blad-
der) and type of tourniquet system (e.g., non-auto- vs.
autoregulated) might additionally influence the internal
and external load [86].

In summary, current evidence indicates that the
amount of relative cuff pressure (i.e., %AOP) can
be used to manipulate physiological and perceptual
responses during resistance [48, 79, 81], endurance
[82], and balance exercise [6] as well as neuromuscu-
lar electrical stimulation [87] when the external load is
kept constant (Fig. 2). The amount of BFR pressure is
of particular importance especially when only very low
external loads with a fixed number of repetitions are
applied (e.g.,<20% 1RM ([78, 80], static balance exer-
cise [6]). This might be relevant for individuals that are
only able to tolerate very low external loads (e.g., dur-
ing musculoskeletal rehabilitation). Therefore, practi-
tioners (e.g., physicians and therapists) should be aware
of the BER pressure as an additional variable to manip-
ulate psychophysiological responses during exercise.
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Fig. 2 lllustration of a conceptual framework of exercise with blood flow restriction. The external load is determined by a variety of exercise
parameters, which also dictate the psychophysiological responses, and therefore, the internal load. The internal load in response to a specific
external load depends on a multitude of influencing factors (i.e., environmental and personal factors). The level of relative cuff pressure,
along with other variables, represents a modifiable environmental factor to manipulate the internal load. Relative cuff pressures between 40
and 80% of the individuals'arterial occlusion pressure are assumed to induce favorable long-term adaptations

On the one hand, by elevating the cuff pressure, the
stimulus during exercise can potentially be intensi-
fied by increasing physiological responses (e.g., BLC,
deoxygenation, muscle activity) as well as reducing the
cumulative external load (e.g., number of repetitions)
when exercising to exhaustion. On the other hand, if
participants or patients are less tolerant to pain (i.e.,
exercise-induced muscle pain, cuff pressure-induced
discomfort), the BFR pressure can be decreased to
lower the local hypoxic stimulus and support metabo-
lite removal in order to lower perception of effort and
pain. Since it has been found that perceptual responses
to exercise are significant predictors of future physical
activity behavior [88], reducing the applied BFR pres-
sure might ensure exercise adherence. However, as with
other forms of exercise, chronic exposure to BFR may
attenuate perceptions of effort and pain thus reducing
internal load and creating a window to increase exter-
nal load [89].

Conclusion

The additional application of BFR during exercise can,
on the one hand, increase the internal load (i.e., physi-
ological and perceptual responses to exercise) when

the external load (i.e., physical work performed dur-
ing exercise) is similar. On the other hand, applying
BFR during specific exercise modalities (e.g., resistance
exercise to exhaustion or repeated sprint exercise) can
reduce the external load (i.e., number of repetitions,
power output) by accelerating motor performance
fatigue development without substantially different
psychophysiological responses (i.e., internal load).
Of note, there are several other aspects that influence
internal and external loads during BFR exercise (e.g.,
continuous vs. intermittent BFR [90, 91]). Further-
more, the amount of cuff pressure applied during exer-
cise can be used to manipulate internal and external
loads to maximize long-term training adaptations and
adherence.

Recommendations for Scientists

This opinion aimed to encourage scientists in the field of
BFR research to use the established terminology external
and internal load [23, 25] to describe the characteristics
of the applied exercise protocol and the associated psy-
chophysiological changes. Adopting this terminology
may allow a more precise classification of the measured
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outcomes and a better understanding of the interactions
between external and internal loads during BFR exercise
mediated by the level of cuff pressure. Given that the
interaction of several external exercise parameters (e.g.,
external resistance, number of repetitions/cycles, cuff
pressure) determine the extent of internal load during
BER exercise, researchers are encouraged to specify the
wording in their articles accordingly to clarify whether
the external or internal load was low or high in their
BFR studies. For instance, resistance exercise at<30%
1RM combined with BFR can lead to high perceptual
responses (i.e., high internal load) and might benefit
from a specification in wording by using the description
“low external load BFR resistance exercise” instead of
“low load BEFR resistance exercise” The integration of the
terms external and/or internal load in the wording can be
a helpful addition for the readers to instantly get a clearer
view on the exercise characteristics and/or the psycho-
physiological response.

Recommendations for Practitioners

Practitioners should be aware of the differentiation
between external as well as internal load and should con-
sider the BFR pressure as an additional exercise variable
when designing exercise and training programs (also with
regard to the used cuff type and tourniquet system). The
exercise/training stimulus can potentially be increased
by elevating the cuff pressure. Furthermore, reduc-
ing the cuff pressure lowers effort and exercise-induced
muscle pain perception, which is of particular impor-
tance for participants or patients with pain intolerance
to increase exercise adherence. In addition, the external
load (e.g., number of repetitions during exercise) can be
reduced by adding high BFR pressures [83], while induc-
ing similar internal responses. This could be of particular
importance during musculoskeletal rehabilitation, when
high as well as cumulative low mechanical loads may be
contraindicated.
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