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ABSTRACT
Purpose: Virtual reality (VR) offers immersive environments for studying psychomotor performance, but the reliability of dry-
electrode electroencephalography (EEG) in assessing brain activity during dynamic VR exergames (VRex) remains unclear. The
present study investigated the feasibility and reliability of dry-electrode EEG frequency band, with primary focus on alpha band
activity.
Methods: Ten amateur combat sports male participants (37 ± 11 years) volunteered for this study. The feasibility of dry-electrode
EEG recording during motion and test-retest (24 h) reliability, was investigated. EEG measurements were obtained pre, post, and
throughout a standardized boxing focus ball VRex session, comprising three 3-min rounds interspersed with 1-min rest intervals.
EEG data were analyzed globally and at each electrode site, calculating average power spectral density values.
Findings: ICCs data indicated poor-to-excellent (0.208–0.858) reliability across all measurements within the 4- to 30-Hz frequency
range. Poor-to-good reliability (0.393–0.636) was found across the task-active VRex intervals. Electrode sites ranged in reliability
from poor (electrode P3; 0.262) to excellent (electrode P4; 0.728), with higher reliability found in the alpha band across electrode
sites compared to average spectral band values.
Conclusion: The present study demonstrates the feasibility, although variable reliability, in neuronal detection during a dynamic
VR task, using novel dry-electrode EEG technology.

1 Introduction

Virtual reality (VR) encapsulates the simulation of the real-
world through interactive 3D modeling, often channeled via
a headset with integrated screen to the user (Dwivedi et al.
2022). Simulated environments leveraging VR technology engage
the human cognitive system through multisensory (e.g., visual,

kinesthetic) motor function activation (Djebbara et al. 2019),
therefore for its immersive aspects, offer applications within
various fields. Resultantly, the implementation of VR has been
found within the fields of education (e.g., Jensen and Konradsen
2018; Radianti et al. 2020; Snelson and Hsu 2020), healthcare
(Guan et al. 2022; Kouijzer et al. 2023; Kumar Javvaji et al. 2024),
and sports (Richlan et al. 2023; J. Wang 2012). For instance,
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VR exergames (VRex), defined as VR games requiring physical
exertion from players (Yoo et al. 2017), are used to exercise
psychomotor performance for real-world training (Fahl et al.
2023). By integrating the cognitive efforts associated withmotoric
actions, VRex has been shown to alter cognitive functions and
fine motor skills (Grosprêtre et al. 2023), as well as overall phys-
iological response (Gomez et al. 2018), similar to the real-world
scenarios. Psychomotor performance, referring to the integration
of cognitive and motor pathways, plays a critical role in both
every day, and highly specific tasks, such as those found in sports
(Morrone and Pedlar 2024a). For this reason, VR-based training
is of increasing interest (Richlan et al. 2023), especially within
sports, where cognitive aspects such as high attention, alertness,
visuospatial cognition, anticipatory skills, or reaction time are
of critical importance (Morrone and Pedlar 2024b; Morrone and
Minini 2023; Nuri et al. 2013; Russo and Ottoboni 2019).

Traditional training methods often lack the ability to isolate
and target dynamic psychomotor performance in ecologically
valid environments. As immersive and interactive environments
allow the execution of more controlled and targeted scenarios
involving psychomotor performance found within various daily
tasks and sports skills (Yoo et al. 2017), VR acts as a means
to enhance experimental control. For instance, VRex may be
used to assess realistic human performance and the underlying
psychomotor functions (e.g., motor coordination, reaction speed)
in regulated yet simulated scenarios (Michalski et al. 2019). As
such, VRex has been implemented within sports, such as golf
(Harris et al. 2020), football (Fortes et al. 2021; Nambi et al. 2020),
table tennis (Michalski et al. 2019), as well as combat sports,
such as karate and boxing (Petri et al. 2019; Y. Wang et al. 2023).
As VRex is used to support the enhancement of sports related
psychomotor performance (Michalski et al. 2019), the neural
adaptations associated with such tasks are of interest.

By further integrating VR technology with techniques, such as
electroencephalogram (EEG), the quantification of the neuro-
physiological mechanisms associated with VR environment can
be made (Choi et al. 2023; Ocklenburg and Peterburs 2023;
Oliveira et al. 2018). The EEG is a non-invasive and real-time
measure of neuroelectric activity (Biasiucci et al. 2019), which has
been used to examine cognitive demands in sporting performance
(Nakata et al. 2010; Park et al. 2015; C. H. Wang et al. 2019),
providing insight on neural correlates linking cognitive skills
and sport expertise (Cheron et al. 2016; Yarrow et al. 2009).
However, traditional EEG instruments are limited by wired
systems, sensitive to motion artifacts, and involve demanding
operational requirements (e.g., long setup time), thereby con-
straining real-world application across various environments
such as clinical settings and scientific experiments (Zander et al.
2011). Traditional EEG during dynamic tasks has been used (e.g.,
in the MoBi-EEG; Gramann et al. 2011), although these systems
have predominantly been limited to walking movements, are
high in cost, and complex to use. For this reason, cheaper and
simpler (e.g., fast setup) instruments to measure brain electrical
signals during a wider range of natural movements, including
sports actions, is key to unlocking scientific advancements in the
understanding of brain dynamics during movement.

Alternative advancements in EEG systems, such as wireless
dry-electrode EEG systems, offer potential to overcome such

limitations (Hinrichs et al. 2020; C. H. Wang et al. 2019). For
instance, advances in wireless dry-electrode technology allow
for application times of only a few minutes, offering an ease
of use (i.e., by scientists and practitioners) and requiring less
preparation and cleaning (Hinrichs et al. 2020; C. H. Wang et al.
2019). Such advancements therefore support the facilitation of
rapid EEG data collection, creating new opportunities for EEG
recording implementation (Drollinger et al. 2019; Rice et al.
2019). Although the integrity of detectable signal is maintained
in dry-electrode technology compared to traditional EEG systems
(Hinrichs et al. 2020; Leach et al. 2020), the recording feasibility
(i.e., signal integrity during motion) and the reliability of dry-
electrode EEG during dynamic VR tasks (e.g., VRex) is less
known.

Interpretation of EEG power spectrum provides insight and
understanding on the relationship between cortical areas and
intrinsic features of task demand at hand (Oliveira et al. 2018).
Notably, alpha EEG activity is directly linked with the accessing
and processing of informationwhich is involved in navigating the
environment (e.g., sensorimotor processing, action observation,
and movement planning; Klimesch 1997, 1999, 2012; Klimesch
et al. 2007, 2011; Minarik et al. 2018; Quandt et al. 2011; ter
Horst et al. 2013). This indicates that changes in alpha band
activity acts as a means of evaluating the brain in response to
multimodal sensory input from the environment (Klimesch 2012;
Morrone and Minini 2023; Peylo et al. 2021). Further, the use
of power frequency band investigation in adults shows adequate
reliability acrossmost bands and relational bandmeasures (Lopez
et al. 2023), with the highest reliability found centering the
alpha band, compared to both lower (i.e., delta; 1–3 Hz) and
higher (i.e., gamma;>30 Hz) frequency ranges (Hatz, Hardmeier,
Bousleiman, et al. 2015; Höller, Uhl, et al., 2017). However, to the
best of our knowledge, no reliability data are available for such
EEG parameters when exposed to VRex. For this reason, alpha
activity as a metric of EEG reliability acts as the primary form of
evaluation within the present study.

Themain aimof the present studywas to investigate the feasibility
and test-retest reliability of neurophysiological indices collected
with a dry-electrode EEG headset, before, during, and after
exposure to a dynamic psychomotor task, in the form of a boxing
VRex. Both global and local evaluation is performed in terms of
EEG-based alpha band power spectrum activity, particularly due
to the band’s association with attentional and relevant cognitive
demands. However, other frequency bands will be included in
the evaluation, such as theta and beta frequency bands, due to
their considered importance for cognitive and motor processing
in athletes (Babiloni et al. 2008; Kao et al. 2013; Nakata et al.
2010). We hypothesized to find moderate-to-excellent reliability
across the metrics analyzed, with the highest EEG recording
reliability at resting conditions due to minimized motion. This is
a consequence of the wireless dry-electrode EEG headset’s design
to comply with the needs of scientific and clinical applications.

2 Materials andMethods

2.1 Participants

Ten healthy male participants (age = 37 ± 11 years; height = 178 ±
8 cm; body mass = 78 ± 10 kg) with an amateur combat sports
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FIGURE 1 A schematic timeline of the experimental design (read from left, follow the arrows). The virtual reality headset and the EEG systems
shown are the Meta Quest 3 (Meta Quest 3, Menlo Park, USA) and the wireless DSI-7 system (Wearable Sensing, LLC, USA), respectively. EEG was
recorded for 1 min before and after VRex exposure, and continuously recorded during the 11-min VRex protocol. VRex = virtual reality exergame; EEG
= electroencephalogram.

background (i.e., familiar with fundamental boxing punching
technique) volunteered for this study. A similar sample was used
in previous EEG reliability research (Khanna et al. 2014). All
were classified as novice to intermediate to capture brain activ-
ity across common amateur fighting skill ranges. All reported
having normal or corrected vision (i.e., corrected vision was
used if required), as well as being free from any neuromuscular
pathological conditions. Ethical approval was granted by the
St Mary’s University Ethics Committee (SMU_ETHICS_2023-
24_494), in accordance with the ethical standards established
in the Declaration of Helsinki. Informed written consent was
provided by all participants.

2.2 Experimental Design

A repeated measure design was used, whereby participants
attended the lab twice, 24 h apart (test-retest). The 24-h interval
was used to assess the short-term stability of the dry-electrode
EEG frequency band evaluation. Each session involved a 5-min
minimal heart rate (HR) baseline to calculate HR reserve zones
(Karvonen et al. 1957), a 1-min pre-VRex exposure EEG, an 11-
min task-active VRex interval along with continuous EEG and
HR recording, internal/external load quantification, and a 1-min
post-VRex exposure EEG. Familiarization took place in the first
session, which involved an introduction and demonstration of the
equipment used, as well as a trial of the protocol. Participants
repeated the exact protocol within the retest session (Figure 1).
The independent variable was time, that is, test versus retest (and
time within test/retest sessions). Dependent variables were the
EEG metrics (as described below). HR peaks (beats per minute,
bpm), punch count, punch maximal speed, and the perception of
effort (CR100) were used to verify the standardization of the VRex
execution. This entailed identical external load (i.e., punch count
and speed) and comparable internal load (i.e., perception of effort
and hear rate frequency) to ensure EEG recording occurred under
the same conditions.

2.3 Procedures

At the start of each session, participants were fitted with the
heart rate monitor and were instructed to lie supine on a portable
massage plinth, relaxed with eyes closed. A silent 5-min lying
resting HR baseline was performed.

2.3.1 EEG Setup and Protocol

A validated wireless dry-electrode 7-sensor DSI-7 EEG system
(DSI-7 SN:2449; Wearable Sensing, LLC, USA) was used (Kohli
andCasson 2015;Mahdid et al. 2020; Snider et al. 2022). Recording
occurred at a sampling rate of 300 Hz with the electrode setup
(F3, F4, C3, C4, Pz, P3, P4) abiding by the 10–20 International
System (as displayed in Figure 2, panel a) and was pre-filtered by
the DSI-7 system with a high-pass filter of 1 Hz, and a low-pass
filter of 50 Hz. The reference electrode was located on electrode
site LE. Electrode impedance (<1 MΩ) was monitored both prior
to and during all collections of data. To account for edge artifacts,
buffer times of three secondswere used before and after each EEG
collection (Delorme and Makeig 2004).

EEG was recorded for 1 min before and after VRex exposure,
and continuously recorded during the 11-min VRex protocol. The
1-min eyes open resting procedure performed both pre- and post-
VR exposure served as intraparticipant baselines (Cole et al., 2016;
Olbrich et al. 2015; Popov et al. 2023; Raichle,2015). This was done
to both confirm reliability at rest and evaluate the impact of the
VRex protocol on subsequent resting conditions. Pre- and post-
VR exposure EEG measurements were collected within 5-min
prior and proceeding the task-active interval, respectively. Both
pre- and post-VR exposure EEG collections were performed with
participants seated in a visually controlled setting while staring at
a blank wall with a marked single fixation point at eye level, with
natural blinking rates.
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FIGURE 2 (a) Virtual reality (VR) headset (Meta Quest 3, Meta, USA), the dry-electrode electroencephalogram (EEG) system (DSI-7, Wearable
Sensing, LLC, USA) with electrodes (F3, F4, C3, C4, Pz, P3, and P4) based upon the international 10–20 system, and view of the combined participant
setup (front, back, side views) next to the casted VR boxing exergame. (b) From left: the heart rate hardware, the punch tracking device, the VR game,
the VR task, example of participants during testing.

2.3.2 VRex Setup and Protocol

After the pre-VR exposure EEG, participants were instructed to
the VR setup. A VR headset (Meta Quest 3, Menlo Park, USA)
with head-mounted display (HMD; resolution of 2,064 × 2,208
pixels per eye; refresh rate of 120 Hz, 6 degrees of freedom, DoF)
was employed (Figure 2, panel a). VR straps were adjusted to
in accordance with (1) achieving a clear VR field of view, as
confirmed by the participants; (2) a firmly secured (clear signal)
EEG underneath the VR headset; and (3) each participants’
comfort. Participants were handed VR controllers then guided
over to an open space into the VR boundary (3 × 3 m). The focus
ball exergame within the “Thrill of The Fight” game (Sealost
Interactive LLC, 2016) was used (Figure 2, panel b). The focus
ball task was selected for its ability to stimulate attentional
cues and complex reaction time (i.e., attention on a fast-moving
object) in controllable manner, which was expected to influence
EEG metrics (Magosso et al. 2019; Ray and Cole 1985a, 1985b).
Participants were guided to select the focus ball option via VR
casting.

The VRex involved a 3- by 3-min focus ball protocol (denoted
as VR Round-1, VR Round-2, and VR Round-3 for the three
VR rounds) with a 1-min rest between each subsequent round
(Rest-1 and Rest-2). The protocol mimicked the typical boxing
match format. The VRex was live-casted to a laptop throughout
the protocol to ensure that participants adhered to standardized
instructions. To standardize the VRex, it was considered neces-
sary that (1) repeated standardized boxing combinations were
used to reasonably control for punching technique, which in
turn created a fast random motion, thereby inducing necessary
attentional cues and (2) punch quantity was identical for all
participants to induce the same amount of focus ball collisions. A
digital metronome sound (20 bpm) was used to dictate punching
rhythm (i.e., one combo every 3 s) within every 3-min round.
Combos were sequentially: (1) three consecutive jabs, (2) cross +
jab, and (3) cross + jab + cross. Straight punches were selected
to avoid excessive levels of focus ball collision, for instance, as
seen by those caused by hooks and/or uppercuts. Participants

were also instructed to remain in a consistent field frame relative
to the focus ball. If a combination was missed or performed
incorrectly, the mistake was ignored, and participants were asked
to continue with the next combination to minimize the risk of
further mistakes. During the two 1-min rest periods, participants
remained standing, looking at the virtual coach presented in the
virtual environment, to simulate real-life training procedures and
standardize cognitive demand at rest.

An initial familiarization was held, wherein participants were
reminded of the protocol and were provided with a 1-min trial
bout to perform the protocol before data collection commenced.
During the familiarization time, detailed and standardized
instructions on the CR100 scale were also provided (see below;
Pageaux et al. 2016, 2020). Once participants were comfortable
with the protocol, data collection (EEG, HR monitor, and punch
trackers) commenced, and the VR protocol began.

2.3.3 VRex Standardization

To demonstrate the comparable effort across individuals during
the 11-min protocol (Figure 1), (i) HRwas continuouslymonitored
using anHRmonitor (Polar P10; Kempele, Finland); (ii) wearable
punch trackers (Hykso Inc., USA)were employed to reliably track
punch count (Omcirk et al. 2021) and were strapped directly
on top of the wrist as per manufacturer’s instructions and
previous research (Omcirk et al. 2021), using elasticated adhesive
tape to secure and minimize movement (TigerTape; Physique
Management Company Limited, UK); (iii) the perception of
effort was collected immediately after each trial using the Borg
CR100 (Borg and Borg 2002; Borg and Borg 2012; Hopkins 2000).
Participants were asked to rate how hard overall it was for them
to play the VRex game before participants completed the post-VR
1-min EEG. The CR100 scale ranges from 0 (no effort at all) to
100 (maximal effort); maximal effort was anchored as the greatest
intensity of effort ever experienced by one participant during a
physical task.
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2.4 Data and Statistical Analysis

All data are presented as means ± standard deviation unless
stated otherwise.All variableswere tested for normality (Shapiro–
Wilk test). When a variable was not normally distributed, a non-
parametric statical test was used. The alpha level for statistical
significance was set at α ≤ 0.05. Partial eta squared (ηp2) are
reported; thresholds for small, moderate, and large effects were
set at 0.01, 0.07, and 0.14, respectively (Cohen 1988). Cohen’s
d were calculated when t-tests were performed and thresholds
for small, moderate, and large effects were set at 0.2, 0.5, and
0.8, respectively (Cohen 1988). For Wilcoxon rank tests, rank-
biserial correlation effect size thresholds were 0.10 small effect,
0.30 medium effect, and 0.50 large effect. Statistical analysis was
performed using Jamovi version 2.5.6.0 (The Jamovi Project 2024)
unless stated otherwise.

2.4.1 EEG Analysis

All data were pre-processed (see Appendix 1 for details),
processed, and analyzed using MATLAB_R2021a (TheMath-
Works, Inc., Natick, USA) and the EEGLAB 2024.0 package
(Delorme and Makeig 2004). Topographical maps were achieved
using EEGLAB (MATLAB Toolbox, USA). An initial group-
level global topographical map evaluation was performed using
EEGLab’s permutation statistical topographical software. Topo-
graphical plots (paired sample t-tests) displayed the normalized
interindividual differences (p-values) in Power Spectrum Den-
sities (µV2/Hz) between the test and the retest sessions across
all electrode sites. This was performed within the frequency
ranges of 4–30 Hz (i.e., frequencies ranging from the theta
to the beta band) and 8–12 Hz (alpha band), independently.
These plots were captured for the (1) pre-VR exposure, (2) first
VR round (VR Round-1), (3) first 1-min rest interval (Rest-
1), (4) second VR round (VR Round-2), (5) second 1-min rest
interval (Rest-2), (6) third VR round (VR Round-3), and (7)
post-VR exposure, as an initial view of the main effects of the
protocol.

Main effects of the sessions were initially tested using F-tests in
the form of repeated analyses of variance (ANOVAs) (Ip et al.
2018). Paired samples t-tests were then performed to further
evaluate the p-values, effect size (d), and relevant descriptives
(e.g., mean differences, MD). Such evaluation was performed
for the global and local (i.e., at each electrode site) participant
PSD averages, for all tasks individually (i.e., pre-VR exposure, VR
Round-1, Rest-1, VR Round-2, Rest-2, VR Round-3, and post-VR
exposure). This was conducted both within each band frequency
band, as well as overall across the 4–30 Hz frequency range.
Averages across the specified frequency rangewere evaluated due
to the reported variability in reliability found across individual
frequency bands (e.g., Hatz, Hardmeier, Bousleiman, et al. 2015)
and due to how averaging over a specified range supports higher
reliability across EEG power band investigations (Höller, Uhl,
et al., 2017). Local electrode investigation was performed across
the specified frequency range, as well as for the alpha band
independently, in alignment with the present work emphasis on
this band.

2.4.2 Heart Rate Analysis

Average absolute HR peaks and average relative (%) HR peaks
were compared between the test and retest sessions using paired-
samples t-tests. Holm–Bonferroni correction was applied to
pairwise comparisons. Because HR was not synchronized, HR
peakswere extracted using a 6-s average, 3 s either side of the peak
for respective VR-boxing rounds, to have a good representation
of the effort during boxing rounds. To assess if HR responses
during the VR intervals were typical of intermittent exercise,
Friedman’s ANOVAswere used to analyzeHR variations between
roundswithin each testing session separately (i.e., test and retest).
Durbin–Conover pairwise analysis was used where significant
differences occurred. Relative HR % was calculated using the
following formula:

(Peak 6 − sHR − RHR)∕(HRmax − RHR) × 100, (1)

where RHR is resting HR average from 5-min lying baselines;
HRmax = 206.9 − (0.67 × age) (Jackson 2007).

2.4.3 Punch Trackers

Average total punch count and average maximal punch speed
across all rounds were compared using paired-samples t-tests.
To confirm that punching output (i.e., external load) was the
same round by round, total punch count and maximal punch
speed (ms−1) by VRex round were extracted from the tracking
application and assessed for differences between rounds using
Friedman’s tests for each session separately (i.e., test and retest).

2.4.4 Perception of Effort

A paired-samples t-test was performed for the CPR100 scores to
confirm that participants reported statistically identical percep-
tions at the end of the VR protocol.

2.4.5 EEG Test-Retest Reliability

For all parameters, the 24-h inter-day EEG relative reliability
was assessed using the intraclass correlation coefficient (ICC;
Ip et al. 2018; McGraw and Wong 1996; Popov et al. 2023). ICC
consistency model (3, 1) was employed to compute the degree of
reliability between the test and retest sessions of the specific raters
involved in the study (Koo and Li 2016). The interpretation of ICC
was followed: less than 0.40, poor reliability; between 0.40 and
0.59, fair reliability; between 0.60 and 0.74, good reliability; and
between 0.75 and 1.00, excellent reliability (Cicchetti 1994; Tozzi
et al. 2020). The absolute reliabilitywas calculatedwith the typical
error of measurement (i.e., standard error of measurement, SEM)
to measure the noise of the parameters investigated (Hopkins
2000). Bland Altman’s 95% limits of agreement were calculated
to provide an additional representation of the agreement of the
test-retest results. As Bland–Altman plots portray the graphical
agreement by using the statistical limits of agreement (i.e., based
on the mean and standard deviation of the differences between
two measurements), Bland–Altman plots were produced and
represented accordingly.
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3 Results

3.1 Verification of Protocol Standardization

3.1.1 Heart Rate

Test data were normally distributed (w = 0.94, p = 0.092), and
retest data were not normally distributed (w = 0.89, p = 0.004).
The Wilcoxon rank test showed no significant difference in the
three-round-median peak HR between Test (130.0 bpm ± 30.8
IQR) andRetest (132.5 bpm± 26.0 IQR) sessions (z= 23, p= 0.695,
r = −0.16 small). Repeated measure ANOVA revealed a simple
effect of round on HR for the Test session (f = 14.93, p = 0.001,
η2p = 0.62), and Friedman tests revealed significant differences
for the Retest (X2 (2) = 14.6, p < 0.001) session. For the Test
session, post hoc comparisons identified significant differences
between R1 (132.3 bpm ± 24.9) and both (p = 0.018, d = 0.21
small) R2 (137.4 bpm ± 25.0) and R3 (143.7 bpm ± 28.3) (p =
0.007, d = 0.43 small), and between R2 and R3 (p = 0.007,
d = 0.24 small). Pairwise Durbin–Conover comparisons within
the Retest session identified significant differences between R1
(123.5 bpm ± 23.8 IQR) and both (p = 0.001, d = 0.53 moderate)
R2 (130.0 bpm ± 26.5 IQR) and R3 (136.5 bpm ± 30.0 IQR) (p =
0.001, d = 0.83 large), and between R2 and R3 (p = 0.010, d = 0.26
small).

ANOVA showed a simple effect of round on relativeHR% for both
the Test and Retest (f = 38.80, p < 0.001, ηp2 = 0.76 large). Holm–
Bonferroni corrected pairwise comparisons identified significant
average differences between TestR1 (58.4 ± 5.69%) and TestR2
(64.8 ± 6.10%) (t = −5.75, p < 0.001), between TestR2 and TestR3
(69.8% ± 6.53) (t = −3.76, p = 0.004) and between TestR1 and
TestR3 (t = −5.84, p < 0.001).

3.1.2 Punch Trackers

Data were not normally distributed (w = 0.75, p = 0.003). The
Wilcoxon rank test showed no significant difference between the
median total punch count across rounds between Test (469.5 ±
44.0 IQR) and Retest (476.5 ± 26 IQR) (z = 13.5, p = 0.313, r =
−0.40 medium). Friedman tests showed no significant difference
in punch count between rounds for either Test (X2(2) = 5.74, p =
0.057) or Retest (X2(2) = 1.56, p = 0.459).

ANOVA showed no effect of round (F (2,18) = 2.350, p = 0.124),
session (F (1,9) = 0.153, p = 0.705), or an interaction of round x
session (F (2,18) = 0.770, p = 0.478) on average maximal punch
speed (Test 11.9 ± 1.95 m/s and Retest 12.0 ± 2.0 m/s).

3.1.3 Perception of Effort

The paired t-test showed no significant difference in perception
of effort recorded at the end of VRex (i.e., immediately after
removing the headset) between Test (42.9 CR100 units±18.9) and
Retest (46 CR100 units ± 16.6) (t(9) = −1.46, p = 0.179, d = −0.461
moderate).

3.2 Global Inter-Day Evaluation

3.2.1 Global EEG 4–30 Hz

The normalized permutational statistics topographical plots dis-
played no statistical differences across electrode sites across all
tasks for the overall frequency range of 4–30 Hz (see Figure 3). F-
tests and t-tests revealed no significant differences between global
EEG metrics across all tasks for the test-retest sessions (p > 0.05;
see Table 1). ICC reports of the test-retest evaluation of the global
power spectrum EEG data ranged from poor (i.e., second rest
interval Rest-2; ICC = 0.208, CI = [−0.352, 0.658]) to excellent
reliability (for the pre-VR 1-min EEG; ICC = 0.858, CI = [0.608,
0.953]) within the average frequency band range. Inter-day t-test
and reliability and agreement (SEM) results for continuous EEG
are presented in Table 1. See Figure 4 for mean EEG spectral
power estimate comparisons between conditions.

3.2.2 Alpha Band EEG

The normalized permutational statistics topographical plots dis-
played no statistical differences across electrode sites across all
tasks for the alpha frequency range (see Figure 3). F-tests and
t-tests revealed no significant differences between global EEG
metrics across all tasks for the test-retest sessions (p > 0.05; see
Table 1). ICC reports of the test-retest evaluation of the global
power spectrum EEG data ranged from poor (i.e., second rest
interval Rest-2; ICC = 0.186, CI = [−0.372, 0.645]) to excellent
reliability (for the pre-VR exposure EEG; ICC= 0.850, CI= [0.590,
0.950]) within the alpha frequency band range. Inter-day t-test
and reliability and agreement (SEM) results for continuous EEG
are presented in Table 1.

3.2.3 Theta Band EEG

t-Tests revealed no significant differences between global EEG
metrics across all tasks for the test-retest sessions (p > 0.05; see
Table 1). ICC reports of the test-retest evaluation of the global
power spectrum EEG data ranged from poor (i.e., second rest
interval Rest-2; ICC = 0.384, CI = [−0.172, 0.754]) to excellent
reliability (for the pre-VR exposure EEG; ICC= 0.824, CI= [0.532,
0.941]) within the theta frequency band range. Inter-day t-test and
reliability and agreement (SEM) results for continuous EEG are
presented in Table 1.

3.2.4 Low-Beta Band EEG

t-Tests revealed no significant differences between global EEG
metrics across all tasks for the test-retest sessions (p > 0.05; see
Table 1). ICC reports of the test-retest evaluation of the global
power spectrum EEG data ranged from poor (i.e., second rest
interval Rest-2; ICC = 0.0.076, CI = [−0.464, 0.574]) to excellent
reliability (for the pre-VR exposure EEG; ICC= 0.859, CI= [0.612,
0.954]) within the low-beta frequency band range. Inter-day t-test
and reliability and agreement (SEM) results for continuous EEG
are presented in Table 1.
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FIGURE 3 The statistical topographical plots display the normalized interindividual power spectrum densities (µV2/Hz) differences between the
test and the retest sessions, with the local p-value parameters represented. These topographical plots were computed for frequency range of 4–30 Hz
(panel a; frequencies ranging from the theta to the beta band) and the alpha band (8–12 Hz; panel b) across all electrode sites. Plots were presented for
the (i) pre-virtual reality (VR) exposure, (ii) VR Round-1, (iii) the first rest interval (Rest-1), (iv) VR Round-2, (v) the second rest interval (Rest-2), (vi)
VR Round-3, and (vii) post-VR exposure. Such topographical maps demonstrate that across electrode sites, no significant differences were found when
comparing test and retest sessions, for neither the pre-, during, nor the post-VR EEG collections. This was displayed both within the alpha band, as well
as across the theta–beta band frequency range.

3.2.5 High-Beta Band EEG

t-Tests revealed no significant differences between global EEG
metrics across all tasks for the test-retest sessions (p >

0.05; see Table 1). ICC reports of the test-retest evaluation
of the global power spectrum EEG data ranged from poor
(i.e., second rest interval Rest-2; ICC = 0.129, CI = [−0.421,
0.7609]) to excellent reliability (for the pre-VR exposure EEG;
ICC = 0.895, CI = [0.707, 0.966]) within the high-beta fre-
quency band range. Inter-day t-test and reliability and agree-
ment (SEM) results for continuous EEG are presented in
Table 1.

3.3 Inter-Day Electrode Evaluation

3.3.1 Average Pre- and Post-VR Exposure EEG

No main effects of the sessions on the global EEG results were
reported for the pre-VR exposure EEG (F(1,10) = 1.160, p = 0.310,
η2 = 0.009), as well as for any electrode placements (p > 0.05; see
Table 1). Global EEG metrics over the specified frequency bands
showed excellent test-retest reliability (0.858; CI = [0.607, 0.953])
for the pre-VR exposure EEG. When investigating individual
electrode sites, excellent reliability was displayed in electrode
placement F4 (0.777; CI = [0.431, 0.924]), good reliability was
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FIGURE 4 Mean EEG spectral power estimate comparisons between conditions for all electrode placements for all participants for the average
(4–30 Hz) frequency range. These are presented for the (a) pre-virtual reality (VR) exposure, (b) VR Round-1, (c) the first rest interval (Rest-1), (d) VR
Round-2, (e) the second rest interval (Rest-2), (f) VR Round-3, and (g) post-VR exposure.

found in electrode sites F3, C3, C4, and P4 (0.678-0.707), with
poor-to-fair reliability found in electrodes Pz and P3 with ICC
values at 0.216 and 0.498, respectively. Agreement (SEM) was
found in Tables 1 and 2.

Similarly, neither main effects were reported on the global EEG
results for the post-VR exposure EEG (F(1,10) = 1.250, p = 0.293,
η2 = 0.029), nor for all electrode placements (p> 0.05; see Table 1),
apart from electrode P3 (p = 0.047). Global EEG metrics showed
fair test-retest reliability (0.575; CI = [0.076, 0.843]) for the post-
VR exposure EEG. When investigating individual electrode sites,
good reliability was displayed in electrode placement C3 (0.683;

CI= [0.250, 0.888]) and fair reliability was found in electrode sites
F3, F4, P3, Pz, and P4 (0.417–0.596), with poor reliability found in
electrodes C4 (0.395; CI= [−0.159, 0.760]). Agreement (SEM) was
found in Tables 1 and 2.

3.3.2 Alpha Pre- and Post-VR Exposure EEG

No main effects of the sessions on the global EEG results were
reported for the pre-VR exposure EEG (F(1,10) = 0.884, p = 0.372,
η2 = 0.007), as well as for any electrode placements (p > 0.05;
see Table 1). Global EEG metrics over the alpha frequency bands
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showed excellent test-retest reliability (0.850; CI = [0.590, 0.950])
for the pre-VR exposure EEG. When investigating individual
electrode sites, excellent reliability was displayed in electrode
placement F4 (0.779; CI = [0.434, 0.925]) and good reliability was
found in electrode sites F3, C3, C4, and P4 (0.677–0.717), with
poor-to-fair reliability found in electrodes Pz and P3 with ICC
values at 0.280 and 0.537, respectively. Agreement (SEM) was
found in Tables 1 and 3.

Similarly, neither main effects were reported on the global EEG
results for the post-VR exposure EEG (F(1,10)= 1.860, p= 0.106, η2
= 0.037), nor for any electrode placements (p > 0.05; see Table 1),
apart from electrode P3 (p = 0.025). Global EEG metrics showed
good test-retest reliability (0.630; CI = [0.162, 0.867] for the post-
VR exposure EEG. When investigating individual electrode sites,
excellent reliability was displayed in electrode placement C3
(0.719; CI = [0.317, 0.902]) and good reliability was found in
electrode sites F3, F4, P3, and P4 (0.623–0.690), with poor-to-fair
reliability found in electrodes C4 and Pz with values of 0.393 and
0.484, respectively. Agreement (SEM)was found in Tables 1 and 3.

3.3.3 Average VR EEG

No main effects of the sessions on the global EEG results were
reported for either task-active VR intervals (p = 0.907, 0.344,
and 0.742, for VR Round-1, VR Round-2, and VR Round-3,
respectively), as well as for all electrode placements (p > 0.05).
Global EEG metrics over the specified frequency bands showed
poor-to-fair reliability (0.393–0.591) across the task-active VR
intervals. When investigating individual electrode sites, good
reliability was displayed in electrode placements F4, C3, and
P4 (0.634–0.697; reported in VR Round-3), with other electrode
placements displaying poor-to-fair reliability (0.262–0.697) across
the VR intervals within the test-retest sessions. Agreement (SEM)
was found in Tables 1 and 2.

3.3.4 Alpha VR EEG

No main effects of the sessions on the global EEG results were
reported for either task-active VR intervals (p = 0.873, 0.409,
and 0.737 for VR Round-1, VR Round-2, and VR Round-3,
respectively), as well as for all electrode placements (p > 0.05).
Global EEG metrics over the specified frequency bands showed
fair-to-good reliability (0.513–0.636) across the task-active VR
intervals.When investigating individual electrode sites, reliability
ranged from poor (e.g., electrode P3 in VR Round-2; ICC = 0.197
[-0.361 0.680]) to excellent (e.g., electrode P4 in VR Round-3; ICC
= 0.728 [0.206 878]) across the VR intervals within the test-retest
sessions. Agreement (SEM) was found in Tables 1 and 3.

3.3.5 Average Rest Interval EEG

No main effects were reported from the sessions on the global
EEG results. This was found neither for the first rest interval
(Rest-1; F(1,10) = 0.157, p = 0.702, η2 = 0.005), the second rest
interval (Rest-2; F(1,10) = 0.078, p = 0.786, η2 = 0.004), nor for
any individual electrode placements (p > 0.05). Averaged global
EEG metrics showed fair (Rest-1 = 0.506 [−0.020 0.759]) and
poor (Rest-2 = 0.208 [−0.352 0.658]) test-retest reliability for the
rest intervals in order of sequence. Variability was found within

individual electrode sites, with reliability ranging from poor to
good (0.000–0.674). Agreement (SEM) was found in Tables 1
and 2.

3.3.6 Alpha Rest Interval EEG

No main effects were reported from the sessions on the global
EEG results. This was found neither for the first rest interval
(Rest-1; F(1,10) = 0.332, p = 0.579, η2 = 0.009), the second rest
interval (Rest-2; F(1,10) = 0.022, p = 0.886, η2 = 0.001), nor
for any individual electrode placements (p > 0.05). Averaged
global EEG metrics showed fair (Rest-1 = 0.506) and poor (Rest-
2 = 0.208) test-retest reliability for the rest intervals in order
of sequence. Variability was found within individual electrode
sites, with reliability ranging from poor to good (0.000–0.674).
Agreement (SEM) was found in Tables 1 and 3.

3.3.7 Agreement

Agreement measures using the typical error (SEM) showed that
differences between the test-retest measurements were small,
with values starting from 1.717 upwards (see Tables 1–3). Across
the protocol, errors of measurement ranged between 4.000 a d
6.000 across all frequency bands. However, higher SEM values
were consistently noted within the Rest-1 and Rest-2, with values
ranging from 7.147 to 11.108 across measurement parameters.
Bland–Altman plots (Figure 5) displayed mean difference bias
is close to zero, indicating the mean differences between test-
retest sessions were in agreement across the protocol. Consistent
differences across measurements magnitudes were found, with
no evident proportional biases and/or heteroscedasticity.

4 Discussion

The present study examined the recording feasibility and test-
retest (24 h) reliability of 4- to 30-Hz EEG bands using a
dry-electrode EEG system during a dynamic psychomotor VR
task. Themain findings of this studywere that (1) the EEG system
offered feasibility in the extraction of relevant neurophysiological
information, in the form of the PSD values of interest during
the VRex (i.e., motion), and (2) overall the dry-electrode EEG
displayed reliability ranging from poor to excellent (0.208–0.858)
across measurements. Such findings were globally consistent,
both across all spectral bands independently (i.e., theta, alpha,
low beta, and high beta), as well as averaged across the specified
frequency range.

4.1 Standardization Evaluation

The results confirmed no significant differences in HR, relative
HR, punch count, punch speed or perceived effort between the
Test and Retest sessions. Small effect size for all variables, other
than perceived exertion (small-to-medium effect size), further
suggests the VR-boxing protocol conditions between test and
retest were matched for intensity. Such results demonstrate the
standardization of the protocol.

In comparison with previous research reporting on HR during
simulated boxing (Finlay et al. 2020; Thomson and Lamb 2017),
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FIGURE 5 Bland–Altman plots for the continuous EEG data, comparing the test and retest sessions. The plots display the global 10log10
transformed power spectrum density (PSD) differences between the sessions, against each participant’s mean. These are presented for the (a) pre-virtual
reality (VR) exposure, (b) VR Round-1, (c) the first rest interval (Rest-1), (d) VR Round-2, (e) the second rest interval (Rest-2), (f) VR Round-3, and (g)
post-VR exposure.
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it was identified that HR and relative HR % in this study also
increased with consecutive rounds during each testing session.
The relative HR intensities were also matched between test and
retest days but in comparison to other studies the average relative
intensitieswere∼10% lower than those quoted for amateur boxers
in simulated boxing experiments (Finlay et al. 2020; Thomson
and Lamb 2017). One explanationmay be the variation in striking
style, and thus range of relative physiological load, between
different combat-sports participants in this study. An additional
explanation may be the constrained combos to standardize the
VRex (i.e., hooks and uppercut were not allowed) requiring a
lower effort overall.

The average punch velocity values recorded in this study are
comparable to other literature that reported hand-accelerometer
velocities (Stanley et al. 2018) but slightly lower velocities to
similar punch trackers as used in this study for jab and cross
punching styles (Omcirk et al. 2023). It could be explained by the
lack of the competitive element, compared to other studies, may
have impacted on the willingness to maximize punch speed.

4.2 EEG Recording Feasibility—Motor-Artifacts

The present data showed that the EEG system can detect mean-
ingful signal during VR-induced motion, indicating feasibility in
the extraction of potentially relevant neurophysiological informa-
tion, in the form of the PSD values of interest. ICA was employed
as standardized method of consistently and uniformly dealing
with unwanted artifacts. Such method involved the identifying
and removing of unwanted components which surpassed a
specified threshold of artifact characterization (Delorme and
Makeig 2004). As detected by EEG electrodes,motion artifacts are
large interfering signals induced by the users’motion (Beach et al.
2021). Such artifacts may be either due to electrode displacement
against the scalp or changes on the surface of the skin. For
instance, if proper contact is not made by the electrodes on the
scalp, motion artifacts can be induced, thereby corrupting EEG
signals. This is of particular concern when using EEG in high-
motion and dynamic sports (C. H. Wang et al. 2019). Relevantly,
dry-electrode EEG technology is designed to minimize relative
motion between the electrodes and the user, by means of main-
taining constant contact on the scalp (Seok et al. 2021; Taheri et al.
1994). For this reason, such technology offers the potential of EEG
collection during sports (Kohli and Casson 2015). As the DSI-7
has previously shown feasibility in exacting PSD values during
sporting conditions (Kohli and Casson 2015), the present results
further support the use of the dry-electrode technology during
dynamicmovements/tasks, such as those induced by VRex-based
training.

4.3 Global EEG Reliability

4.3.1 VRex

Within the task-active VR intervals, global EEG metrics within
the alpha band showed fair-to-good reliability (0.513–0.636),
although showed poor-to-fair reliability (0.393–0.591) when using
the averages across the specified frequency range. Agreement
was evaluated in the form of typical error (SEM) and was found

to be in a consistently acceptable range. Bland–Altman plots
confirmed absolute agreement between test-retest sessions across
the protocol. The alpha band results thereby indicate the potential
employment of such EEG metrics for the investigation of neu-
ral mechanisms associated with dynamic VRex task, although
further measures to increase the reliability may be required (as
discussed in sections to follow).

Overall, although variability in test-retest reliably is found within
frequency bands (Höller, Uhl, et al., 2017), the use of power of
frequency band investigation in adults displays excellent (0.76–
0.99) reliability across most bands and relational band measures
(Lopez et al. 2023). For instance, it has been suggested that
the averaging of measures within specified frequency ranges is
suggested to increase reliability with EEG-based metrics, and
thereby leading tomore reliable results (e.g., in the form of Spear-
man rank correlation; Höller, Uhl, et al., 2017). For this reason,
the present study employed averaged power spectrum analysis
over the specified frequency bands as one means to investigate
reliability. The alpha band was investigated independently, in
alignment to the primary investigation (i.e., centering the alpha
band). As confirmed by the present results, the frequency band of
investigation did indeed impact the reliability of EEG within the
VRex bout.

Interestingly, lower reliability has been demonstrated within
power values of lower frequencies, such as those within the delta
range compared to higher frequency bands (Hatz, Hardmeier,
Bousleiman, et al. 2015). Further, lower reliability is found in
theta and beta frequency band, whereas the alpha band displays
higher reliability as well as higher variability (Hardmeier et al.
2014; Höller, Uhl, et al., 2017). The present results showing higher
reliability within the alpha compared to averages across a 4-
to 30-Hz range are thereby in alignment with work displaying
the highest reliability being found centering the alpha band
compared to both lower (i.e., delta) and higher (i.e., gamma)
frequency ranges (Hatz, Hardmeier, Bousleiman, et al. 2015;
Höller, Uhl, et al., 2017).

4.3.2 Pre- and Post-VR Exposure Rest EEG

The inter-day tests revealed the reliability ranging from poor to
excellent, across the pre- and post-VR exposure EEG, when inves-
tigating the alpha and the average (4–10 Hz) frequency range.
Such resting EEG measurements provide a baseline reliability
for metrics with the dry-electrode EEG system in a non-fatigued
condition (i.e., before a bout of VRex training), and a resting EEG
measurement after enduring the neurophysiological demands of
the VRex training. For the pre-VR exposure EEG, global EEG
metrics showed excellent test-retest reliability, with ICC values
ranging from 0.850 to 0.858 for the alpha and average frequency
range, respectively. These results were in alignment with other
studies showing excellent test-retest reliability of continuous
EEG in the power analysis at rest (Corsi-Cabrera et al. 2007;
Gudmundsson et al. 2007; McEvoy et al. 2000; Williams et al.
2005) and were expected due to the systems’ requirement to
comply technological standards. As for the post-VR exposure,
resting EEG displayed reliability ranging from fair (0.575 for the
average band) to good (0.630 for the alpha band). As such findings
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are assumed to capture neuropsychological changes associated
with the bout of VRex training, the decrease in reliability within
the post condition is speculated to be due to sweat and/or
movement of electrodes (i.e., causing reliability to deteriorate
relative to the pre-VR exposure baseline), or the buildup of fatigue
(Zhang et al. 2022).

In general, excellent reliability has been found using frequency
band investigation during baseline conditions, although it must
be noted that these results were found over time periods longer
than a year (Lopez et al. 2023). Over long-time ranges, the abso-
lute power of traditional frequency bands shows high variance
between subject and notably high test-retest reliability within
subjects (Dustman et al. 1999; Gasser et al. 1985; Grandy et al.
2013; Näpflin et al. 2007). Another study investigating test-
retest reliability held over longer durations revealed ICC ranging
from 0.68–0.80 and 0.12–0.73 for global interactions and graph
measures, respectively (Hardmeier et al. 2014). Regarding shorter
terms (i.e., weeks), test-retest protocols are found to range in
from low reliability (i.e., below 0.5) to high reliability (i.e., above
0.9; Höller, Butz, et al. 2017). As the present study used short
durations of investigation (i.e., over 24 hours), it is suggested
that the timescale of investigation may have contributed to the
variation found within the results.

4.3.3 Rest Intervals

The global EEG metrics showed poor to fair (0.208–0.506) test-
retest reliability for the rest intervals across the average and alpha
frequency range. Such results indicate that the dynamics of VRex
protocol impacted the reliability of resting EEG conditions, which
interestingly was also found when comparing the pre- and post-
VR exposure resting EEG. For instance, such impacting variables
may involve changes in precision and accuracy requirements
of the VR boxing exercise, inducing moderation in attention
moderation, reaction time, and focus (Wu et al. 2024; Yordanova
et al. 2023). Therefore, a possible interpretation of such result
may be reflecting neuropsychological changes associated with,
for example, cognitive fatigue due to the bout of VRex training
(Zhang et al. 2022). In addition, the low reliability found in
these intermediate rest intervals may additionally to be a result
of factors impacting contact endured as a result of the VRex
bouts (i.e., sweat, movement of electrodes; Kalevo et al. 2020;
Kohli and Casson 2015; Tatum et al. 2011). For this reason, it is
suggested that further measures between dynamic bouts of EEG
measurement (such as additional electrode adjustment, cleaning)
may be required in order to maintain the integrity of the detected
signal.

4.4 Local EEG Reliability

Within the pre- and post-VR exposure EEG conditions, electrode
sites ranged from poor to excellent in both the average and
alpha frequency range. As the post-VR exposure EEG electrode
reliability ranged from poor to good in the average PSD range
(compared to poor to excellent in the pre exposure condition),
such results indicate that the reliability of the system was
impacted by the VRex protocol. Interestingly, the alpha band
seemed to be less impacted by the protocol, wherein this band

showed greater reliability over the average frequency range across
electrode sites. This is consistent with findings showing the
highest ICC reliability being found centering the alpha band for
baseline measures compared to surround bands (e.g., beta or
theta bands; Hardmeier et al. 2014; Höller, Uhl, et al., 2017). The
decrease in reliability on a local scale is additionally assumed to
derive frommovement of the electrodes endured during the VRex
task, as well as other factors associating with endured effort, such
as sweat (Kalevo et al. 2020; Kohli and Casson 2015; Tatum et al.
2011), although the ergonomics of the headset used in the present
work may also account for the variation found in local reliability.

Importantly, investigating such assumption on a local scale (i.e.,
per each electrode) allows for insight on whether certain sites
are more susceptible and/or prone to be impacted by moderating
variables (such as movement as a result of the protocol). For
instance, within the presentwork, electrodes F3 andC3 presented
as the electrodes impacted by the VR protocol (decreasing from
0.707 to 0.417 and from 0.685 to 0.396, respectively), from the
pre- to post-VR resting EEG measurements. This indicates that
under the parameters of the present study, such electrodes either
1) require increased interventional care throughout the protocol
beyond what was already implemented, 2) may not serve as
reliable measurement sites for this VRex-based protocol, or 3)
may have been affected by suboptimal headset ergonomics for the
dynamic task. Further investigation is required to support these
claims.

In extension, local investigation may provide insight on which
electrodes may be most suitable for investigations involving
dynamic VR training. Although no electrodes consistently dis-
played excellent reliability across all measures, electrode place-
ments C3 and F4 were identified to be most consistently reliable.
Such results indicate that electrode placements therefore poten-
tially act as reliable sites of EEGmeasurement duringVRex-based
investigations. As such, it is important to note that factors
impacting electrode reliability have been previously explored and
therefore may have impacted the present findings. For one, age
has been shown to impact the reliability of EEG measures with
older adults showing higher reliability at the fronto-central site
(Cz) with young adults having higher reliability at the centro-
parietal area site (Pz) within the same EEG measure (e.g.,
P3 amplitude; Walhovd and Fjell 2002). Further, variability in
reliability associated with age has been found within powers of
frequency bands or over specific scalp topography in adults (i.e.,
ranging from fair to excellent; Lopez et al. 2023). Alternatively,
over the scale of weeks, excellent test-retest reliability is found
within younger (Angelidis et al. 2016) and older adults (Keune
et al. 2019). For this reason, it is necessary to consider that
the variation of the results of the present study may have been
impacted by the reliability of electrode sites associated with
factors, such as age. However, further evidence to support such
claim is required.

4.5 General Reliability of EEGMeasures

Given the varying reliability observed acrossmeasurements in the
present study, it is important to acknowledge that the issue of
variable reliability in individual differences is widely recognized
in neuroscience (Elliott et al. 2021; Greene et al. 2022; Kennedy
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et al. 2022; Kragel et al. 2021; Lopez et al. 2023; Noble et al.
2021). This challenge has been particularly emphasized in the
context of individual differences analysis in methodologies such
as EEG and magnetic resonance imaging (MRI; Lopez et al.
2023), leading to the characterization of cognitive neuroscience
as being “at a crossroads” (“Cognitive Neuroscience at the
Crossroads” 2022). Generally, the test-retest reliability of EEG
has been shown to be highly variant and ultimately depends on
various implications and factors. These include frequency, trial
number, signal-to-noise ratio (Miskovic and Keil 2015), epoch
length (Gudmundsson et al. 2007), recording intervals (Sandman
and Patterson 2000), reference schemes (Towers and Allen 2009),
as well as differentmetrics of the EEG data (Tenke et al. 2018). For
instance, lower reliability is found in phase-dependent measures
compared to non-phase-dependent metrics, such as power and
coherence (Cannon et al., 2012). Relevantly, the frequency band
of investigation plays an important role in the reliability of the
investigation at hand, where the form of measure can be said
to account for differences between reliability within frequency
ranges (Höller, Uhl, et al., 2017). For this reason, the present
study used power frequency band investigation as this has been
shown to be highly reliable acrossmost bands and relational band
measures in adults (Lopez et al. 2023).

It is important to mention that the similarities found in test-
retest reliability (e.g., as measured by intraclass correlation
coefficient; Bartko 1966; Fisher 1958; Yen andLo 2002) derive from
the characteristics and estimates of individual’s data obtained
within a session, which are highlighted to be accounted for by
psychometric reliability. Psychometric reliability characterizes
internal consistencies and self-similarities in repeated measures
(as defined by: Cronbach 1951; Streiner 2003; Strube et al. 2007),
where research investigating individual differences in brain met-
rics is highly constrained by (Lopez et al. 2023; Parsons et al. 2019).
Such mention thereby encapsulates the variability found in test-
retest reliability, although other factors such as accompanying
brain network also play a role in the variability found in EEG
reliability (Höller, Uhl, et al. 2017). Ultimately, the variability in
EEG data is believed to derive from the non-stationary nature of
the EEG (Hatz, Hardmeier, Benz, et al. 2015), although further
investigation is needed to explain the variability in the reliability
of these neurophysiological metrics (Höller, Uhl, et al. 2017).

4.6 Limitations, Applications, and Future Work

As supported by the present work, the combination of VR
and EEG holds potential for understanding the mechanisms
behind athlete performance, investigating training regimens, and
advancing our understanding of the interplay between the mind
and body in sports (Fahl et al. 2023; Richlan et al. 2023; J.
Wang 2012). For instance, head-mounted VR technology has
been shown to support the delivery of realistic first-person per-
spective embodied feedback, in turn, increasing intra-individual
awareness, thereby improving motor learning (Haar et al. 2021;
Kilteni et al. 2012). In combination with the EEG systems’ ability
to support real-time assessment of brain activity patterns, the
neural adaptations during VR-based training need be monitored,
examined, and thereby utilized. This exists in the form of
real-time neurofeedback training, which has been shown to
enhance performance by providing immediate feedback on brain

activity patterns (Berger and Davelaar 2018; Gong et al. 2021;
Keune et al. 2019; J. Morrone and Minini 2023). Beyond sports,
VR also holds promise in rehabilitation by enhancing recov-
ery in stroke, brain injury, and other neuromuscular disorders
through neuroplasticity and adaptive training (Ceradini et al.
2024; Khan et al. 2023; Perez-Marcos 2018). When paired with
EEG-driven feedback, real-time neurophysiological monitoring
during immersive, motor-based interventions, may allow for
personalized rehabilitation and optimized outcomes through
brain-informed strategies (Z. Wang et al. 2022).

Additionally, potential longitudinal monitoring (i.e., across mul-
tiple sessions) may be supported for the tracking of EEG-based
neurophysiological indices associated with task-specific perfor-
mance over time (Morrone and Pedlar 2024a; Morrone and
Minini 2023). In the next steps to achieve this, the investigation
and characterization of the manner in which both the periodic
and aperiodic EEG signal alter as a result of the dynamic training,
especially in relation to the individual differences, should be
done (Gyurkovics et al. 2021). As such, the present study high-
lights the potential to employ the combination of VR and EEG,
enabling researchers and coaches to utilize EEGmarkers, such as
alpha band activity, for monitoring attention in sport, potentially
facilitating performance optimization and cognitive training.

However, monitoring EEG during sports poses challenges,
whereby traditional wired EEG systems limit natural and
dynamic motion, are highly susceptible to motion artifacts, may
face electrode placement issues, and involve highly specific
operational requirements which require a specialist to conduct
(Zander et al. 2011). Dry-electrode technology, such as that used
in the present work, offers a means to overcome such challenges.
Although this might be the case, it must be highlighted that
such systemsmay involve user discomfort, endure environmental
interference, and the complexity of data interpretation remains
difficult (C. H. Wang et al. 2019). Additionally, as dry-electrode
systems remain susceptible to motion artifacts, further work
investigating suitable artifact characterization methods associ-
ated with highly dynamic and/or psychomotor-based tasks is
recommended in order to support the implementation of such
tools within practical applications and real-world settings. This
may be supported in the form of targeted signal processing
techniques, such as artifact removal algorithms or adaptive
filtering to minimize the impact of motion artifacts on EEG data
(Beach et al. 2021).

It should also be noted that although the present systemwasmore
fitted for dynamic investigations than traditional EEG systems,
it remained somewhat cumbersome as well as had limited
number of electrodes, therefore restricting the informativeness
of the topographical maps (e.g., of posterior cortical activity).
In addition, the study would have benefitted from a larger
sample size. Value would also be found in conducting associated
validation studies to assess the performance of such dry-electrode
EEG systems in other alternative high-motion movements and
environments (i.e., other VRex simulations), and/or work mon-
itoring or manipulating of head movements to either control or
compensate for themotion artifacts induced by suchmovements.
It may also be suggested to compare such EEG technology during
sports activities with data collected during more controlled, low-
motion conditions to evaluate related changes in signal quality
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and reliability. With this stated, it is argued that the present
results provide valuable insight into the potential neuronal
alterations endured as a result VRex-based training, although
further investigation on the basis of these results is warranted.

5 Conclusion

The present study examined the test-retest reliability of a dry-
electrode EEG system during a dynamic psychomotor VR task,
over 2 consecutive days. Inter-day analysis was used to investigate
the EEG signal pre, during, post and a 3- by 3-min VRex boxing
focus ball protocol. Due to dry-electrode EEG headsets designed
to comply with the needs of clinical applications, we expected
to find moderate-to-excellent reliability of the metrics analyzed.
The EEG system offered feasibility in the extraction of themetrics
of interest, which was achieved under confirmed standardized
parameters.

The dry-electrode EEG displayed reliability ranging from poor to
excellent (0.208–0.858) across measurements. Such findings were
globally consistent both across all spectral bands independently
(i.e., theta, alpha, low beta, and high beta), as well as averaged
across the specified frequency range. For this reason, the find-
ings indicate the potential viability of using dry-electrode EEG
technology for the investigation of neural mechanisms associated
with such protocol. Such results provide preliminary data on
the reliability of using neuroelectric activity, such as the alpha
and surrounding frequency bands, for assessing the cognitive
demands associated with psychomotor-based VR tasks.
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EEG Data Pre-Processing

A uniform pre-process standardized procedure was initially undergone,
which involved data segmentation and the consecutive processing of inde-
pendent component analysis (ICA). Such procedure involved the iden-
tifying and removing of unwanted components, achieved through both
filters and visual inspection-based artifact rejection analysis (Delorme
and Makeig 2004). Components that were rejected were those predicated
to account for non-brain activity at a magnitude of equal to or above 90%,
including oculomotor artifact and visual contextual complexes (such as
eye-blinks and eye-movements), muscular activities, and other non-brain
related complexes (Jung et al. 2000). As a result, out of all EEG files a total
of 117 (<12%) independent components (IC) were removed.

The power spectrum densities (PSD) were quantified through fast Fourier
transform using Welch’s method with windows of 500 sampling points
and 375 sampling point overlaps. As the present study predominantly
targets activity surrounding the alpha band, only the theta, alpha, and
beta bands were evaluated. The PSDs were extracted per participant
per protocol and were decomposed into the following frequency bands:
theta (4–7 Hz), alpha (8–12 Hz), low beta (13–16 Hz), and high beta (17–
30 Hz). The beta band was broken into its lower and higher constituents
to evaluate if the components of band closer the alpha band (i.e., low
beta) offered variation in reliability compared to its higher frequency
counterparts. PSD values were then 10log10 transformed to achieve higher
degrees of normal distribution; therefore, interpretations of individual
frequency bands should be considered on respective scales.
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